EP0453566B1 - Methode pour controler le refrodissement de materiau en acier - Google Patents

Methode pour controler le refrodissement de materiau en acier Download PDF

Info

Publication number
EP0453566B1
EP0453566B1 EP89907279A EP89907279A EP0453566B1 EP 0453566 B1 EP0453566 B1 EP 0453566B1 EP 89907279 A EP89907279 A EP 89907279A EP 89907279 A EP89907279 A EP 89907279A EP 0453566 B1 EP0453566 B1 EP 0453566B1
Authority
EP
European Patent Office
Prior art keywords
cooling
transformation
steel
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89907279A
Other languages
German (de)
English (en)
Other versions
EP0453566A1 (fr
EP0453566A4 (en
Inventor
K Mizushima Wks Kawasaki Steel Corp: Yahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4140238&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0453566(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority claimed from PCT/JP1989/000603 external-priority patent/WO1990015885A1/fr
Publication of EP0453566A1 publication Critical patent/EP0453566A1/fr
Publication of EP0453566A4 publication Critical patent/EP0453566A4/en
Application granted granted Critical
Publication of EP0453566B1 publication Critical patent/EP0453566B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the present invention relates to a method of cooling a steel, and more specifically to a method for the controlled cooling of a hot rolled steel to a predetermined target temperature.
  • a hot rolling system forms in general a steel coil by winding a steel sheet being a hot drawn steel after rolling the sheet, with a coiler. To wind up such a steel sheet, the steel sheet should be cooled to a temperature suitable for the winding. In the hot rolling system, the steel sheet is cooled by a cooling system R illustrated in Fig. 5, for example.
  • the hot rolling system is constructed such that a finishing rolling machine 1 rolls the steel sheet S, which sheet is then forcedly sent on a run-out table (not shown) in the direction of a arrow A in the figure and wound up by a coiler 6.
  • a cooling system R along the run-out table which is to cool the steel sheet S to a temperature suitable for the winding.
  • the cooling system R includes on the side of an inlet thereof an inlet thermometer 2 for measuring the termperature of the steel sheet S to be cooled, and on the side of an outlet thereof an outlet thermometer 5 for measuring the temperature of the steel sheet S after cooled.
  • the cooling system R is separated into two and disposed across vertically the run-out table. Each the separated portion includes a water cooling section 3 for cooling the steel sheet S by pouring water thereon and an air cooling section 4 for cooling the same with air.
  • the air cooling section 4 has the same structure as the water cooling section 3 when the latter stops the pouring of water on the steel sheet S.
  • the water cooling section 3 and the air cooling section 4 disposed on the upper and lower sides of the cooling system R are divided into N cooling banks as designated at numerals 1 through N in the figure, respectively. Each bank is controllable in its cooling capability to cool the steel sheet S.
  • the cooling system R is divided into a plurality of cooling zones each including the cooling banks of one or more along the run-out table, the cooling capability of each cooling zone being controlled by controlling the amount of supply of a cooling medium (cooling water) from each bank to the steel sheet S in conformity with the travelling of the steel sheet S.
  • a cooling medium cooling water
  • JP-61-266524 as well as JP-61-110723 disclose techniques of controlling the transformation rate pattern to obtain a predetermined transformation rate in order to achieve a homogenized target material quality.
  • the two above indicated prior art references teach to control the transformation rate of the steel in order to obtain the target transformation rate.
  • the last mentioned prior art references teach making use of a target transformation rate which is to be kept constant.
  • the rate V of the transformation of a steel material indicative of the temporal development of the transformation of the same under cooling changes by a curve as illustrated in Fig. 6 (B), and the amount Q T of the heat production changes in proportion to the gradient ( ⁇ W / ⁇ T) of the rate W with respect to time T.
  • the rate W of the transformation changes as illustrated to the same figure (B)
  • the gradient ( ⁇ W / ⁇ T) of the rate W changes as illustrated in the same figure (C).
  • the actual amount Q T of the heat production in the transformation changes as illustrated in the same figure (D).
  • the conventional technique just-mentioned above to control the cooling ignores the temporal development of the transformation of a steel but supposing the amount Q T of the heat production in the transformation being as illustrated in the same figure (A), without taking the actual amount Q T of the heat production in the transformation which changes as illustrated in the same fignure (D), for example, at the initiation and completion of the transformation. So, estimation accuracy depends on accuracy of pre-measured data, and a measuring error directly causes error in cooling control. Then, it has a drawback of the accuracy of temperature estimation being lowered followed by the cooling control with insufficient accuracy.
  • the invention provides a control apparatus wherein the control method of the present invention is executed to cool a hot drawn steel with use of a cooling system R in a cooling apparatus located on a hot drawing line as illustrated in Fig. 1.
  • the cooling system R is of the same construction as that shown in Fig. 5, wherein the steel sheet S rolled through the finishing rolling machine 1 is successiveively wound up by the coiler 6 through the cooling system R.
  • the finishing rolling machine 1 disposed on the inlet side of the cooling system R includes an inlet speed detector 10 for detecting the carrying speed of the steel sheet S carried after rolled by the finishing rolling machine 1.
  • the coiler 6 disposed on the outlet side of the cooling system R includes an outlet speed detector 12 for detecting the wind-up speed of the steel sheet S.
  • the cooling system R includes a predetermined number of cooling zones, each zone having at least one cooling bank.
  • the pouring amount of coolant (for example, water) from the cooling bank is controlled to control the cooling of the steel sheet S passing through each cooling zone.
  • the inlet thermometer 2, inlet speed detector 10 and outlet speed detector 12 shown in Fig. 1 transmit respective detection signals to a cooling bank output pattern determining unit 14.
  • the cooling bank output pattern determining unit 14 determines by computation a pattern to control the cooling capability of each cooling bank according to a cooling time t (hereinafter, referred to as a cooling bank pattern) for obtaining the desired temperature decrease of the steel sheet S in response to the cooling time t based upon the inputted inlet side temperature, the carrying speed of the steel sheet S, the wind-up speed, a preset target temperature of the steel sheet S and sheet thickness, etc..
  • the cooling bank pattern determined as described above is inputted into a cooling bank switching input/output unit 16.
  • the cooling bank switching input/output unit 16 controls the cooling capability of each cooling bank in response to the inputted cooling bank pattern.
  • Cooling results of pouring water by each bank of the cooling system R controlled by the bank switching input/output unit 16 are fed into a learning control unit 18.
  • the learning control unit 18 receives detection signals from the inlet speed detector 10, the output speed detector 12, the inlet thermometer 2, and the outlet thermometer 5, and learns the cooling capability of the cooling system R on the basis of the inputted aforesaid cooling results and the detection signals.
  • the change in the temperature of the steel sheet S after the lapse of predetermind time is estimated on the basis of the cooling time of the steel sheet S and of the cooling capability of the cooling system R.
  • the amount of heat production of the steel sheet S for example, due to the transformation ion of the same is calculated in the response to the temporal development of the transformation caused by the cooling of the steel sheet S.
  • the error of the estimated change in the temperature of the steel sheet S is corrected by the calculated amount of heat production of the steel sheet S due to the transformation of the same.
  • the cooling bank pattern of the cooling system R is determined for cooling control so as to provide the corrected amount of the change in the temperature of the steel sheet S.
  • A, B, and C are parameters determined by the component, temperature, thickness, and cooling pattern of each steel sheet S. More specifically, A is a parameter for calculating the rate of the transformation, B and C are coefficients for learning. The accuracy of estimating the rate W of the transformation can be increased by correcting the coefficients for learning according to the learning results based on signals from a plurality of sensors for detecting the transformation rate, disposed in the cooling system.
  • the transformation rate sensor comprises by a combination of an exiting coil and magnetic detecting element, for example, and the transformation rate is detected by measuring phase transformation through a change in magnetic permeability.
  • the means to know the temporal development of the transformation of the steel sheet S is not limited to the one which utilizes the relationship of the equation (1). Instead, the transformation rate sensor to directly detect the rate of the transformation can be used.
  • H latent heat of the steel sheet S upon the transformation (a physical quantity which can be determined from the component of the steel sheet S, the kind of the same, and the temperature of the same).
  • the amount of heat production Q T upon the transformation in each cooling zone when the steel sheet S is cooled from the inlet temperature FDT to the target temperature CT is calculated by using the equation (2). Then the temperature change of the steel sheet S estimated from the cooling time of the steel sheet S and the capability of the cooling system R is corrected by the amount of heat production Q Ti upon the transformation so calculated. In consequence, the accurate temperature change of the steel sheet S as the sheet passes through each cooling zone can be estimated.
  • the number of the water pouring banks in each cooling zone is determined with use of the following temperature model equation (3) which shows the temperature change ⁇ Tiw in water cooling in the ith cooling zone and the following temperature model equation (4) which shows the temperature change ⁇ Tia in air cooling in the ith cooling zone.
  • Cp is the specific heat
  • the specific gravity
  • ⁇ ui the coefficient of cooling capacity of each upper cooling bank
  • ⁇ di the coefficient of cooling capacity of each lower cooling bank
  • TI the temperature of the steel sheet S at the inlet of the ith cooling zone
  • Tw the temperature of the cooling water
  • Cj the emission constant
  • ⁇ ROLL the heat transfer coefficient (for the associated roll)
  • Tair air temperature
  • Fig. 2 illustrates the cooling bank pattern.
  • the cooling bank pattern is a target of the temperature change to be realized for the steel sheet S in each cooling bank when the steel sheet S is cooled by the cooling system R from the inlet temperature FDT to the target temperature CT.
  • a symbol A denotes a temperature change curve by air cooling (hereinafter, referred to as an air cooling curve A)
  • a symbol B denotes a temperature change curve by water cooling (hereinafter, referred to as a water cooling curve B).
  • the cooling system R shares the cooling between the cooling zones to a predetermined one located in the vicinity of the inlet for the water cooling and those located in the vicinity of the outlet for the air cooling. For this, the water cooling curve B passes through the inlet temperature FDT, while the air cooling curve A passing through the target temperature CT.
  • the water cooling curve B is obtained by calculating the temperature change ⁇ Tiw using the equation (3) when water pouring valves are opened in succession from the first cooling bank to actuate the respective cooling zones to the ith cooling zone.
  • the calculated temperature change ⁇ Tiw is corrected by the amount of the heat production Q Ti due to the transformation calculated by the equation (2).
  • the air cooling curve A is obtainable by correcting the temperature change ⁇ Ta calculated using the equation (4) by the aforementioned amount of the heat production Q Ti due to the transformation.
  • a hatched portion designated at a symbol Q T in the figure corresponds to the temperature rise of the steel sheet S which might be caused by the amount of the heat production Q T in the transformation, for correction the cooling curves A, B.
  • a cooling curve designated at C in the figure (hereinafter, referred to as a water cooling curve C) is required for changing smoothly the temperature of the steel sheet S from Tm to Tm+1.
  • the cooling capacity of the cooling banks in the aforementioned mth cooling zone is adjusted. The adjustment of the cooling capacity is done by changing the number of the water pouring cooling banks in the zone.
  • the various parameters are first inputted into the cooling bank output pattern determining unit 14 in Step 105.
  • the parameters include the target temperature CT, the cooling pattern of each bank, the inlet temperature FDT, the inlet speed, the outlet speed, and the thickness of the steel sheet S, etc. Then, the amount of heat production Q Ti of the steel sheet S under cooling is calculated by the equation (2) in Step 110.
  • Step 120 the temperature change ⁇ Ti by the air cooling by each cooling bank is calculated by the equation (4) for determining the cooling curve A which passes through the target temperature CT.
  • Step 130 the temperature change ⁇ Tiw by the water cooling by each cooling bank is calculated for determining the water cooling curve B.
  • the calculation is done in succession starting from the 1st cooling zone until the water cooling curve B resulting from the present calculation becomes less than the air cooling curve A calculated in Step 120.
  • the details are as follows.
  • Step 131 cooling zones, for which the temperature changes ⁇ Tiw have been calculated, are set in succession.
  • Step 132 the total of the temperature changes ⁇ Tiw up to the finally set cooling bank is calculated.
  • Step 133 it is judged whether or not a value of the total temperature change substracted from the inlet side temperature FDT, i.e., the water cooling curve B is smaller than the air cooling curve A.
  • Step 133 if the result in Step 133 is positive, i.e., if the value of the cooling curve B is judged to be smaller than the value of the cooling curve A, then the operation advances to Step 140.
  • a cooling zone which first gives the positive result, is assumed to be a mth one.
  • values giving the water cooling curve B are evaluated in succession up to the just-mentioned mth cooling zone.
  • Step 140 in order to achieve the cooling control in the mth cooling zone such that the steel sheet S is changed in its temperature following the water cooling curve C, the number of the water pouring banks, is determined by calculation, The number of the water pouring banks is determined such that the temperature Tm of the steel sheet S on the entrance side of the present cooling zone becomes a temperature Tm+1 of the air cooling curve A on the exit side of the same.
  • the completion of the calculation in this Step 140 gives the cooling bank output pattern.
  • the cooling bank output pattern such as illustrated in Fig. 2 as determined by the cooling bank output pattern determining unit 14 as described above is inputted into a cooling bank switching input/output unit 16.
  • the cooling bank switching input/output unit 16 controls the pouring of water in each cooling bank according to the inputted cooling bank output pattern while inputting results of the pouring in each cooling bank into the learning control unit 18.
  • the learning control section 18 learns the inputted pouring results, the inlet speed of the steel sheet S, the output speed of the same, and the inlet and outlet temperature, etc., and supplies to the bank output pattern determining unit 14 data for determination of the optimum cooling bank output pattern for the sucessive cooling control based upon the learned values.
  • a plurality of transformation rate sensor 20 are disposed in the cooling system R.
  • Learning coefficient for calculating the actual rate of the transformation is calculated in a transformation rate calculating unit 22 based on output signal from the respective transformation rate sensors 20 and inputted into the learning control unit 18 as is the first embodiment. Then, the learning coefficient used in the equation (1) is corrected.
  • the learning coefficients B and C are calculated by the following equations (7) and (8).
  • the optimum cooling control of the steel sheet S is thus assured by taking the temporal development of the transformation into consideration using the heat production of the steel sheet S caused by the transformation of the same.
  • a cooling bank output pattern as illustrated in Fig. 2, i.e., a cooling pattern for water cooling from the inlet side of the cooling apparatus was described.
  • Another cooling bank output pattern is possible according to the present invention without limitation to the cooling where the illustrated cooling bank output pattern is persued. That is, such modifications are achievable in response to cooling condition.
  • a cooling bank output pattern where the first half of the cooling system R performs the air cooling while the second half of the same performing the water cooling, can be obtained by constructing the cooling bank output pattern such that the water cooling curve B reaches the target temperature CT and the air cooling curve A reaches the inlet temperature FDT.
  • the present invention may be applied for lines and steels without limitation thereto.
  • the present invention can be applied to steels such as thick steel, line steel, rod steel when they are cooled after hot processing.
  • the present invention is most suitable in particular for use, in a cooling zone of a cooling system for cooling a hot drawn steel, in cooling the steel to a temperature of suited to the winding of the steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (7)

  1. Procédé de refroidissement d'un acier dans un système de refroidissement grâce à la commande du refroidissement de l'acier jusqu'à une température cible, le procédé comprenant les étapes consistant à :
       déterminer la mise au point dans le temps de l'acier en déterminant la cadence W d'une transformation de phase de l'acier en fonction du temps de refroidissement et ensuite en calculant la quantité de chaleur produite au cours de ladite transformation, dans lequel la cadence W de transformation est évaluée grâce à la formule suivante en fonction du temps de refroidissement t : W = 1 - exp [A•(t/B)C] dans laquelle A, B et C sont des paramètres définis par le composant, la température, l'épaisseur et le modèle géométrique de refroidissement de chaque acier utilisé;
    évaluer les changements de température de l'acier pendant une période de temps basée sur le temps de refroidissement et la capacité de refroidissement du système de refroidissement ;
    corriger les erreurs dans les changements de température estimés en utilisant la quantité de chaleur produite, calculée, au cours de la transformation ;
    calculer un modèle de refroidisseur à partir des paramètres comprenant la température cible, la quantité de chaleur produite, déterminée, au cours de la transformation, et les changements de température corrigés ; et
    déterminer un modèle de température cible sur la base du modèle de refroidisseur et commander le système de refroidissement afin de refroidir l'acier jusqu'à une température cible basée sur le modèle calculé de refroidisseur.
  2. Procédé de refroidissement d'un acier selon la revendication 1, caractérisé en ce que la cadence W de transformation est détectée en utilisant un détecteur de cadence de transformation (20).
  3. Procédé de refroidissement d'une feuille d'acier selon la revendication 1, dans lequel la capacité de refroidissement du système de refroidissement est établie en consultant les résultats du refroidissement, la vitesse de transport de l'acier et la température détectée.
  4. Procédé de refroidissement d'un acier selon la revendication 1, caractérisé en ce que ladite commande du refroidissement est conduite en modifiant la quantité d'eau de refroidissement dans chaque refroidisseur et/ou le nombre de refroidisseurs en fonctionnement selon la quantité du refroidissement.
  5. Procédé de refroidissement d'un acier selon la revendication 4, dans lequel ladite commande du refroidissement est conduite en combinant le refroidissement à l'eau et le refroidissement à l'air selon une combinaison de courbes de températures séparées qui sont basées sur une température à l'entrée et une température à la sortie, respectivement, un certain nombre de refroidisseurs arrosés à l'eau est changé au niveau d'une zone de refroidissement dans laquelle les deux courbes de refroidissement se coupent, et le refroidissement est conduit selon une courbe de refroidissement qui combine les deux courbes de refroidissement.
  6. Procédé de refroidissement d'une feuille d'acier selon la revendication 1, dans lequel les paramètres du modèle de commande sont accordés, en se fondant sur les résultats de la commande de façon à augmenter la précision du modèle de commande.
  7. Procédé de refroidissement d'un acier selon la revendication 2, dans lequel la cadence de transformation est corrigée grâce aux équations suivantes en réponse à une sortie en provenance des détecteurs de cadence de transformation, C' = ℓn (ℓnWi/ℓnWj)/ℓn (ti/tj) B' = ti{(1/A)ℓnWi}-1/C' B = (1 - G) * B + G * B', et C = (1 - G) * C + G * C', dans lesquelles Wi, Wj sont des cadences de la transformation mesurées par les détecteurs i et j ; ti et tj sont les temps de refroidissement entre un côté entrée et une ième ou jème zone de refroidissement et
    G est le coefficient de pondération.
EP89907279A 1989-06-16 1989-06-16 Methode pour controler le refrodissement de materiau en acier Expired - Lifetime EP0453566B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1989/000603 WO1990015885A1 (fr) 1989-06-16 1989-06-16 Methode pour controler le refrodissement de materiau en acier
CA000603379A CA1341247C (fr) 1989-06-16 1989-06-20 Methode de controle du refroidissement de l'acier

Publications (3)

Publication Number Publication Date
EP0453566A1 EP0453566A1 (fr) 1991-10-30
EP0453566A4 EP0453566A4 (en) 1993-03-10
EP0453566B1 true EP0453566B1 (fr) 1998-04-08

Family

ID=4140238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89907279A Expired - Lifetime EP0453566B1 (fr) 1989-06-16 1989-06-16 Methode pour controler le refrodissement de materiau en acier

Country Status (2)

Country Link
EP (1) EP0453566B1 (fr)
DE (1) DE68928639T2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891275A (en) * 1996-09-16 1999-04-06 Mannesmann Aktiengesellschaft Model-assisted process for the controlled cooling of hot strip and plate in a computer-guided rolling and cooling process
EP0997203A1 (fr) * 1998-10-31 2000-05-03 Sms Schloemann-Siemag Aktiengesellschaft Procédé et système pour contrôler des lignes de refroidissement
EP1111074A2 (fr) * 1999-12-23 2001-06-27 SMS Demag AG Procédé et dispostif de refroidissement de profilés laminés à chaud

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129565C5 (de) * 2001-06-20 2007-12-27 Siemens Ag Kühlverfahren für ein warmgewalztes Walzgut und hiermit korrespondierendes Kühlstreckenmodell
JP2020509243A (ja) * 2016-12-20 2020-03-26 アルセロールミタル 熱的に処理された鋼板を製造するための方法
EP3559285B1 (fr) * 2016-12-20 2021-09-22 ArcelorMittal Procédé de réglage dynamique pour la fabrication d'une tôle d'acier traitée thermiquement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107237B1 (fr) * 1982-10-11 1986-09-03 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé pour le contrôle automatique de la structure des produits en acier laminés

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891275A (en) * 1996-09-16 1999-04-06 Mannesmann Aktiengesellschaft Model-assisted process for the controlled cooling of hot strip and plate in a computer-guided rolling and cooling process
EP0997203A1 (fr) * 1998-10-31 2000-05-03 Sms Schloemann-Siemag Aktiengesellschaft Procédé et système pour contrôler des lignes de refroidissement
EP1111074A2 (fr) * 1999-12-23 2001-06-27 SMS Demag AG Procédé et dispostif de refroidissement de profilés laminés à chaud

Also Published As

Publication number Publication date
EP0453566A1 (fr) 1991-10-30
DE68928639D1 (de) 1998-05-14
DE68928639T2 (de) 1998-07-30
EP0453566A4 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
US20100018270A1 (en) Method for controlling materials quality in rolling, forging, or leveling process
JP4287740B2 (ja) 熱間圧延された被圧延材のための冷却方法およびこれに対応する冷却区間モデル
JP3495909B2 (ja) 圧延ロールのプロフィール制御装置
WO2008078908A1 (fr) Procédé et appareil de régulation de température dans une installation de laminage à chaud
US7293440B2 (en) Method of setting/controlling wedge in plate material rolling
CN101056721B (zh) 用于制造金属的方法
US5778151A (en) Method and control device for controlling a material-processing process
EP0453566B1 (fr) Methode pour controler le refrodissement de materiau en acier
JP2783124B2 (ja) 熱延鋼材の温度制御方法
JP4402502B2 (ja) 巻取温度制御装置
JP2786386B2 (ja) 熱延鋼材の冷却制御方法および冷却制御装置
KR100568358B1 (ko) 권취목표온도 변경을 통한 열연강판의 냉각제어방법
JP2563844B2 (ja) 鋼板材質予測方法
CA1341247C (fr) Methode de controle du refroidissement de l'acier
JPH01162508A (ja) 鋼材の冷却制御方法
KR19990047916A (ko) 열연강판의 냉각제어방법
JPH0919712A (ja) 鋼板の冷却制御装置
JP3450108B2 (ja) 熱延板材の冷却制御装置
JP3054031B2 (ja) 熱延鋼帯の捲取温度制御方法
JPH0275409A (ja) 熱延鋼板の巻取温度制御方法
JPH05277535A (ja) 鋼板の冷却制御方法
JP2954485B2 (ja) 熱延鋼帯の捲取温度制御方法
KR950007469B1 (ko) 강재(steel)의 냉각 제어방법
JPH08103809A (ja) 熱間圧延における鋼板の冷却制御方法
JPS63317208A (ja) 熱間鋼帯の冷却制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

A4 Supplementary search report drawn up and despatched

Effective date: 19930121

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19940322

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 68928639

Country of ref document: DE

Date of ref document: 19980514

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VOEST-ALPINE INDUSTRIEANLAGEN GMBH

Effective date: 19981215

26 Opposition filed

Opponent name: HOOGOVENS STAAL BV

Effective date: 19990108

Opponent name: VOEST-ALPINE INDUSTRIEANLAGEN GMBH

Effective date: 19981215

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VOEST-ALPINE INDUSTRIEANLAGEN GMBH * 19990108 HOOG

Effective date: 19981215

R26 Opposition filed (corrected)

Opponent name: VOEST-ALPINE INDUSTRIEANLAGEN GMBH * 19990108 HOOG

Effective date: 19981215

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20010719

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030604

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030610

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030611

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030626

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040616

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST