EP0445006A1 - Echangeur de chaleur à écoulement circulaire - Google Patents

Echangeur de chaleur à écoulement circulaire Download PDF

Info

Publication number
EP0445006A1
EP0445006A1 EP91400482A EP91400482A EP0445006A1 EP 0445006 A1 EP0445006 A1 EP 0445006A1 EP 91400482 A EP91400482 A EP 91400482A EP 91400482 A EP91400482 A EP 91400482A EP 0445006 A1 EP0445006 A1 EP 0445006A1
Authority
EP
European Patent Office
Prior art keywords
gutters
plates
energy exchange
oil
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91400482A
Other languages
German (de)
English (en)
Other versions
EP0445006B1 (fr
Inventor
Paul Kenneth Beatenbough
Kris J. Meekins
Clark E. Stohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dana Canada Corp
Original Assignee
Long Manufacturing Ltd
Valeo Engine Cooling Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Long Manufacturing Ltd, Valeo Engine Cooling Inc filed Critical Long Manufacturing Ltd
Publication of EP0445006A1 publication Critical patent/EP0445006A1/fr
Application granted granted Critical
Publication of EP0445006B1 publication Critical patent/EP0445006B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another

Definitions

  • This invention describes an improved corrugated plate heat exchanger, particularly suitable for applications in oil cooling equipment of automobile engines in which high ratios - heat transfer / oil pressure drop - are desired.
  • heat transfer systems external to the engine block, usually used as oil coolers in automotive applications included a continuous serpentine tube, with or without cooling fins, installed outside the engine, usually in the air stream in front of the radiator or in the latter's cooling radiator.
  • Oil such as engine oil, transmission oil or any other fluid, is sent into the tube for cooling.
  • a refrigerant passed over the tube, for example in a radiator using a refrigerant or in a separate element using air cooling, thus ensuring the exchange of energy in the tube between the hot oil and the coolant.
  • the oil coolers were subsequently mounted on the engine, usually between the engine block and the oil filter mounted outside the engine; they cooled the oil coming from or leaving the filter using the fluid from the engine cooling system.
  • These oil filter mounted coolers generally included multiple hollow plate structures spaced apart from each other and generally parallel between which the oil and coolant flow in parallel planes to maximize heat transfer .
  • Such spaced plate structures can be fitted with cooling fins between the hollow structures or are constructed of corrugated plates.
  • oil flows from an orifice located on or near the filter to the cooler and flows between the parallel plates of the cooler.
  • the cooling agent coming from the engine cooling system circulates between and / or near the parallel plates containing the circulating oil, thereby transferring the heat energy from the oil to the cooling agent.
  • a typical feature of oil coolers mounted on the filter is that one or both of the fluids circulate in a generally circular direction relative to the center of the cooler and, generally, the heat transfer elements of the fins and wavy surfaces, are generally not aligned in more than one or two directions.
  • One of the aims of this invention is to provide energy exchange structures having better heat transfer.
  • Another object of this invention is to provide energy exchange structures causing only a reduced drop in the internal pressure of the fluid.
  • Another object of the invention is to provide an automotive oil cooler with reduced internal oil pressure drop.
  • Yet another object of the invention is to propose a method of manufacturing energy exchange structures ensuring efficient heat transfer associated with a drop in internal pressure of the reduced fluid.
  • the invention relates to an improved energy exchange structure, comprising plates generally opposite in parallel and assembled to define between them a hollow passage in which a fluid circulates in a generally circular direction between an inlet and an outlet, said opposite plates being corrugated to form a cruciform structure defining multiple opposite gutters projecting into the hollow passage and arranged to constitute four or more sets of generally parallel gutters drawn to make an oblique with respect to the adjacent sets and also with respect to the direction of circulation of the fluid which flows in the hollow passage formed by the plates assembled together.
  • the sets of gutters of a first plate being arranged to join in a cross with the opposite sets of gutters of a second plate so that the volume between the opposite gutters of the opposite sets define cruciform passages in which the fluid can circulate.
  • the improved automotive engine oil coolers of the invention include multiple opposing plates, stacked to form interconnected energy exchange structures for flow of oil in a generally circular direction.
  • the inputs of the energy exchange structures open into an input collector where they are connected in parallel with the other inputs or else they are connected in series with the inputs and outputs of a second structure.
  • the outputs lead to an output collector and are also connected either in parallel or in series with the inputs and outputs of a second structure.
  • the stacked and interconnected energy exchange structures provide the passage for the flow of oil inside the energy exchange structures and for the circulation of a cooling fluid outside the energy structures. energy exchange.
  • the preferential direction of the flow of the fluid generally forms an oblique with respect to the axis of the opposite gutters of the opposite plates of the energy exchange structures to improve the energy exchange.
  • the energy exchange structures can be installed inside a container acting as a housing in which the liquid and / or the cooling gas can be circulated above and between the opposing plates, or alternatively may be exposed to be subjected to a draft or other coolant.
  • the periphery of the stacked energy exchange structures can be made integral with the wall of the housing so as to define separate passages for the coolant which can also be connected separately or interconnected in parallel or in series with the inlet collectors and / or coolant outlet.
  • the improved automobile engine oil coolers of the invention are manufactured by a process in which opposing plates are corrugated to obtain a cruciform structure forming multiple gutters arranged in four or more sets of generally parallel gutters, with each assembly forming an oblique with the direction of the adjacent assemblies as well as with the circular direction of the flow of the fluid in the hollow passage formed between the attached plates.
  • the gutters of a first plate are in contact with the tops of the gutters in opposition to a second plate and the area between the gutters in opposition constitutes a passage which preferably must form an oblique between 5 and 75 ° with respect to the circular direction of flow in energy exchange structures.
  • Said first and second plates are assembled to form a hollow passage, comprising an inlet and an outlet for the fluid, the passage being constructed to direct the incoming fluid from the inlet towards the outlet in a generally circular direction.
  • the multiple energy exchange structures can be assembled in series and / or in parallel to constitute the cooler, with an input of a first energy exchange structure connected to an output or to an input of a second energy exchange structure.
  • the energy exchange structures thus assembled are placed in a container serving as a housing equipped with an inlet and an outlet for the coolant.
  • the contiguous outer edges of the opposing plates are extended to form a flat plate providing additional cooling surface on the outer edges of the exchange structures.
  • Such an extension allows the circulation of the cooling fluid over the outer limits of the stacked structures for additional cooling and can also present a practical means of assembling the structures together to immobilize them in the housing.
  • Figure 1 is a top perspective view of an oil cooler designed according to the present invention.
  • Figure 2 is a perspective bottom view of the oil cooler of Figure 1.
  • Figure 3 is a sectional view taken approximately along line 3-3 of Figure 1.
  • Figure 3a is an enlarged sectional view of a hollow energy exchange structure of Figure 3.
  • Figure 4 is a sectional view taken approximately along line 4-4 of Figure 1.
  • Figure 5 is a perspective view of an energy exchange structure designed according to the present invention.
  • Figure 6 is a plan view of the interior surface of the top plate of Figure 5.
  • Figure 7 is a plan view of the interior surface of the bottom plate of Figure 5.
  • Figure 8 is a schematic view of another embodiment of the invention.
  • FIG. 1 an embodiment of an automobile oil cooler designed according to the invention is illustrated by Figures 1 and 2. It is understood, however, that the present invention can be used in all applications where the 'there is an energy exchange structure.
  • the cooler 10 comprises a metal housing 11 having a base for attachment to the engine 12, a base for attachment to the oil filter 20, an outer wall for the housing 17 and an interior opening for the housing 14.
  • the base for attachment to the engine 12 includes an oil inlet 13 and an engine sealing groove 16 which maintains the oil seal 15, as shown in Figures 3 and 4.
  • the outer wall 17 of the housing 11 includes the inlet of the coolant 18 and the outlet of the coolant 19.
  • the bottom of attachment to the oil filter 20 includes an oil outlet 21 and a sealing surface to the oil filter 22.
  • the interior opening of the housing 14 goes from the bottom of the attachment to the engine 12 to the bottom of the attachment to the oil filter 20 and thus presents a passage in which a removable oil filter can be fixed to the engine while ensuring the sealing of the filter and the cooler to the engine as well as the return passage of the cooled and filtered oil to the engine.
  • the oil cooler 10 comprises a set of hollow energy exchange structures, contained in the housing 11, through which the oil circulates between the oil inlet 13 and the oil outlet 21. Surrounding at at least part of the energy exchange structures, there are hollow passages in which the coolant can flow from the inlet of the coolant 18 to the outlet of the coolant 19 while establishing an exchange ratio of energy with hollow energy exchange structures.
  • a first fluid first brought to high temperature, like a hot engine oil, enters the oil cooler 10 through the oil inlet 13, circulates between the opposite plates by the generally circular passages of the set of hollow energy exchange structures up to the engine oil outlet from the cooler 21 to the inlet of the oil filter (not shown in the figures).
  • the cooled oil passes through the oil filter, then is directed to a hollow oil filter attachment rod (not shown in the figures) which extends to the engine passing through the interior opening 14 of the housing.
  • the hollow oil filter attachment rod attaches to the engine and is threaded in a conventional manner to compress the oil filter and oil cooler to the engine. The rod therefore provides both a means of fixing the filter and the cooler to the engine and a return passage of the cooled and filtered oil from the filter to the engine.
  • the oil can follow an opposite path: from the engine to the filter by the hollow rod, then to the cooler and back to the engine from the cooler.
  • the circulation of oil through the exchange structures is directed by several assemblies, arranged to form an angle between them, of generally parallel gutters which protrude into the hollow passage of the opposite plates.
  • the oil flow is passively separated and mixed by the cruciform paths formed by the opposing gutters thus increasing the contact of the oil flow with the opposite plates of the energy exchange structure.
  • the heat energy from the oil is dissipated in the opposite plates of the energy exchange structures and in all the fins with which it can be in contact.
  • a second fluid such as a coolant such as a conventional water / antifreeze mixture, enters through the inlet of the cooler 18 so as to circulate through opposite plates or any fin with which it can be in contact, preferably in the direction contrary to the direction of flow of the oil flow.
  • the heat energy is dissipated by the energy exchange structures when the heat energy of the cooling fluid is less than the heat energy of the exchange structures.
  • the coolant flows into the housing containing the exchange structures towards the outlet of the cooler 19 to be recycled by the cooling system.
  • FIG 3 illustrates a sectional view of the oil cooler of Figure 1 taken approximately along line 3-3, in which there is seen a stack of hollow energy exchange structures 23 to the interior of the housing 11.
  • an energy exchange structure is shown enlarged to show an opposite corrugated upper plate 24 and an opposite lower plate 25, joined to form a welded outer border 26.
  • the low points 27 of the gutters directed towards the inside of the upper opposite plate 24 cross the low points 28 of the gutters directed towards the inside of the opposite opposite plate 25, with the area between the low points of the gutters of a plate comprising ridges 29 in the upper plate 24 and ridges 30 in the lower plate 25.
  • the gutters formed downward direct the flow of oil in the exchange structures along the line of the ridges , the cross gutters continuously performing passive separation, mixing and redirecting in oblique angular directions the flow of oil in a generally circumferential direction from the entry of the energy exchange structure to the exit of this structure.
  • the volumes between the energy exchange structures stacked one on the other also constitute passages formed by the undulations of the plates.
  • the coolant circulating in these passages is directed by the arrangement of the gutters 27 and 28.
  • the arrangement of the gutters performs the passive separation, the mixing and the oblique angular deflection of the current of the coolant from the entry of the cooler until it leaves.
  • the central inner edges of the upper plates 24 and lower plates 25 are joined to each other by means of a compression ring 31 to ensure the general assembly of the hollow energy exchange structures and to ensure the separation of the fluids.
  • the surface 34 of the interior housing opening thanks to its upper lip 33 and its lower lip 32, retains the base for attachment to the engine 12 and the base for attachment to the oil filter 20 and, by compression, ensures the contact of the upper plates 24 and of the lower plates 25 with one another, alternating direct contacts and contacts by means of the compression ring 31.
  • Figure 4 is a sectional view of Figure 1 showing in particular the inlet oil collector 35 and the outlet oil collector 36. It can be seen there that the upper plates of a first exchange structure of stacked energy and the lower plates of a second energy exchange structure are contiguous near the inner periphery of the manifolds to obtain a sealed separation between the oil and coolant circuits in the exchange structures. It should be clearly understood that if the embodiment illustrated here shows common collectors between all the inputs and all the outputs of the energy exchange structure for oil flows in parallel between the structures, the invention considers this case as specific and includes the organization in separate manifolds between the inputs and outputs of the stacked exchange structures for serial oil flows.
  • the plates of the exchange structures are fixed to each other by any suitable means to ensure a structural integrity of the assembly sufficient to withstand the pressures generated inside the system.
  • a conventional welding by brass welding is to be preferred when the building materials are in stainless steel, copper, brass or aluminum.
  • Appropriate ceramic or polymeric materials can also be used, the assembly of the plates can then be done with suitable solvents, adhesive materials or by welding the materials hot and by ultrasound.
  • FIG. 5 shows a preferred embodiment of an energy exchange structure object of the present invention comprising four sets of gutters.
  • the upper plate 24 comprises downward-formed gutters 27 and the lower plate 25 comprises opposite gutters formed downward. bottom 28 (not seen in the Figure) .
  • the area between the gutters of the top plate 24 includes ridges 29 and the area between the gutters of the bottom plate 25 includes ridges 30 (not seen in the Figure), each of these two zones constituting a passage through which the flow of oil circulates.
  • the opposing plates are fixed to each other by their outer edge 26. In the preferred embodiment described here, the edges are brazed to ensure the structural integrity of the assembly of the energy exchange structures.
  • the central inner edge of the exchange structure comprises the compression ring 31 on which the edges of the plates rest.
  • the gutters of the opposing plates can conveniently be formed by stamping, stamping or molding or any other process which makes it possible to obtain the desired arrangement of gutters in the plates.
  • the gutters are straight or slightly curved and it is preferable that they are short in length.
  • equidistant spacing is meant that the distance between two adjacent gutters generally remains the same all along the gutter. It should be understood that this preferred equidistance does not mean that the distance between the gutters must be the same everywhere, although here too this is preferable for many applications.
  • the areas between two adjacent gutters constitute the adjacent ridges. Neither the adjacent ridges nor the adjacent gutters need to be the same width.
  • the ridges can be in the plane of the plate or they can be stamped, stamped or otherwise formed so as to protrude from the plane of the plate. It should be understood that all the means well known in the state of the art for forming gutters and ridges, including molding and other process are taken into account by the invention.
  • ridges and gutters form an oblique with respect to the general circular direction of the plate.
  • this oblique will form an angle between 5 and 75 ° approximately with respect to the circumferential direction taken by the oil circulating between the plates and, better still, between 15 and 45 ° approximately.
  • the first and second plates in opposition, with their gutters arranged angularly, are assembled in such a way that the gutters of the first plate meet the opposite gutters of the second plate. It is not essential that the gutters and ridges of the first plate form the same oblique angle with respect to the longitudinal direction as those of the second plate, although this is generally preferable. In general, it is preferable that the figure formed by a set of gutters of the first plate in a hollow structure of energy exchange assembled, that is to say the inverted reflected image of the figure formed by the set of gutters of the second plate.
  • Figures 6 and 7 show plan views of the inner faces of the upper plate 24 and the lower plate 25 of Figure 5.
  • Figure 6 shows the gutters 27 of the upper plate 24, arranged in four sets so that practically straight gutters are primarily equidistant from the adjacent gutter over their entire length on the plate.
  • the ridges shown in this preferred embodiment are practically of equal width, but it should be understood that the invention takes into account any configuration in which the ridges and the gutters do not have a width equal to the ridge or the gutter which is adjacent to them.
  • Figure 7 shows the inner surface of the lower plate 25 which is opposite the inner surface of the upper plate 24.
  • the gutters 28 organized in four sets, with gutters in each set equidistant from the adjacent gutters and forming a reverse reflected image of the upper plate 24.
  • the gutters of each assembly of the upper plate in contact with the gutters organized according to an inverted reflected image on the lower plate.
  • FIG. 8 schematically represents a configuration of gutters on the opposite interior surfaces of corrugated plates in which the corrugations form five sets of gutters which are practically parallel, each set being in oblique inside the hollow passage.
  • the oblique direction with respect to the circular flow in the exchanger is not suitable for all sets of gutters for the circulation of the oil flow through the exchanger.
  • the oil coolers of the invention can be made from any suitable material which will withstand the effects of corrosion and the internal pressures exerted by the fluid on the system.
  • Conventional material includes malleable metals such as aluminum, copper, steel, stainless steel and their alloys and may even include plastics and / or ceramics.
  • the material can be coated internally or externally, treated, etc.
  • each component of the cooler is of the same material whenever they are to be joined together.
  • the plates used to form the energy exchange structures should ideally be made of the same material. It should however be clearly understood that the invention takes into account the use of various materials for assembly, such as for example using steel or plastics to manufacture the housing or the housing bottoms and other metals, plastics or ceramics, for the manufacture of energy exchange structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

L'invention se rapporte à une structure d'échange d'énergie améliorée, comprenant des plaques (24,25) généralement parallèles, assemblées pour constituer un passage en creux permettant l'écoulement généralement circulaire d'un fluide entre une entrée (13) et une sortie (21), lesdites plaques ayant des ondulations en structure croisée pour définir des gouttières (27,28) opposées disposées obliquement et réunies en plusieurs ensembles de gouttières généralement parallèles.

Description

  • Cette invention décrit un échangeur de chaleur à plaque ondulée amélioré, pouvant particulièrement recevoir des applications dans les équipements de refroidissement d'huile des moteurs d'automobile dans lesquels des rapports élevés - transfert de chaleur/ chute de pression d'huile - sont souhaités.
  • Avec le développement de moteurs à combustion interne plus légers, plus compacts, à haut régime et à couple moteur élevé, on constate le besoin accru de moyens de refroidissement d'huile plus efficaces. De nombreux constructeurs automobiles ont introduit dans leur concept de base de moteur la nécessité de moyens de refroidissement de l'huile s'ajoutant à celui obtenu par le système classique de circuits de refroidissement d'huile venus de fonderie avec le bloc moteur. Quelques constructeurs ont précisé l'utilisation de refroidisseurs d'huile non intégrés au bloc moteur et destinés à refroidir un flux d'huile par des moyens extérieurs au bloc moteur. Un assemblage type consiste à monter le système de refroidissement d'huile sur le système de filtrage d'huile. Pour répondre aux exigences de l'industrie automobile, un tel moyen de refroidissement doit être compact, léger et d'une grande efficacité dans le transfert de chaleur sans provoquer de chute de pression d'huile. C'est ainsi que le besoin persistant d'avoir des systèmes de transfert de chaleur plus légers et plus efficaces a provoqué le développement d'une multitude de nouveaux systèmes et de nouvelles configurations dans la fabrication des échangeurs de chaleur utilisés dans les systèmes de refroidissement de l'huile de l'automobile.
  • A l'origine, les systèmes de tranfert de chaleur, extérieurs au bloc moteur, habituellement utilisés comme refroidisseurs d'huile dans l'application à l'automobile comprenaient un tube serpentin continu, avec ou sans ailettes de refroidissement, installé à l'extérieur du moteur, habituellement dans le courant d'air devant le radiateur ou dans le radiateur de refroidissement de ce dernier. L'huile, comme l'huile moteur ou l'huile de transmission ou tout autre fluide, est envoyée dans le tube afin d'y être refroidie. Classiquement, un agent réfrigérant passait sur le tube, par exemple dans un radiateur utilisant un réfrigérant ou dans élément séparé utilisant le refroidissement par air, assurant ainsi l'échange d'énergie dans le tube entre l'huile chaude et l'agent réfroidisseur.
  • Avec le besoin de compacité plus grande, les refroidisseurs d'huile furent ultérieurement montés sur le moteur, habituellement entre le bloc moteur et le filtre à huile monté extérieurement au moteur ; ils refroidissaient l'huile venant ou quittant le filtre en utilisant le fluide provenant du système de refroidissement du moteur. Ces refroidisseurs montés sur le filtre à huile comprenaient généralement des structures multiples creuses de plaques espacées l'une de l'autre et généralement parallèles entre lesquelles l'huile et l'agent réfroidisseur s'écoulent dans des plans parallèles pour maximiser le transfert de chaleur. De telles structures de plaques espacées peuvent être équipées d'ailettes de refroidissement entre les structures creuses ou sont construites en plaques ondulées. Dans de tels dispositifs, l'huile coule d'un orifice situé sur ou à proximité du filtre vers le refroidisseur et circule entre les plaques parallèles du refroidisseur. L'agent refroidisseur provenant du système de refroidissement du moteur circule entre et/ou à proximité des plaques parallèles renfermant l'huile en circulation en réalisant ainsi le transfert de l'énergie calorifique de l'huile vers l'agent réfroidisseur. Il existe une grande variété de réalisations de ce système, avec l'huile étant d'abord filtrée puis envoyée vers le système de refroidissement ou l'inverse et, généralement, avec l'agent réfroidisseur circulant du système de refroidissement du moteur, provenant habituellement du radiateur ou de la pompe à eau, vers le système de refroidissement de l'huile.
  • Une des caractéristiques typiques des refroidisseurs d'huile montés sur le filtre est que l'un ou les deux fluides circulent dans une direction généralement circulaire par rapport au centre du refroidisseur et, généralement, les éléments de transfert de chaleur que sont les ailettes et les surfaces ondulées, ne sont généralement pas alignés sur plus d'une ou deux directions. Nous avons trouvé qu'une telle configuration des ailettes ou des surfaces ondulées a pour résultat une perte d'efficacité dans le domaine du rapport transfert de chaleur/ chute de pression d'huile dans l'échangeur de chaleur.
  • On peut donc dire qu'un problème existe toujours, en particulier pour l'optimisation du rapport transfert de chaleur/chute de pression d'huile dans les échangeurs de chaleur. Avec des moteurs modernes dont le nombre de tours/minute moyen croît, ajouté à un couple moteur élevé et des temps de réponse décroissant, le besoin d'un système de refroidissement d'huile très efficace, ayant un effet minime sur la pression d'huile du système de lubrification du moteur, est devenu souhaitable.
  • Un des buts de cette invention est de proposer des structures d'échange d'énergie ayant un meilleur transfert de chaleur.
  • Un autre but de cette invention est de proposer des structures d'échange d'énergie n'occasionnant qu'une chute réduite de la pression interne du fluide.
  • Un autre but de l'invention est de proposer un refroidisseur d'huile pour automobile avec chute de pression interne d'huile réduite.
  • Un autre but encore de l'invention est de proposer une méthode de fabrication de structures d'échange d'énergie assurant un transfert de chaleur efficace associé à une chute de pression interne du fluide réduite.
  • Ces buts ainsi que d'autres buts visés par l'invention sont atteints par l'invention décrite ci-après:
  • L'invention se rapporte à une structure d'échange d'énergie améliorée, comprenant des plaques généralement opposées en parallèle et assemblées pour définir entre elles un passage en creux dans lequel circule un fluide dans une direction générale circulaire entre une entrée et une sortie, les dites plaques opposées étant ondulées pour former une structure cruciforme définissant des gouttières opposées multiples faisant saillie dans le passage en creux et disposées pour constituer quatre ensembles ou plus de gouttières généralement parallèles tracées pour faire une oblique par rapport aux ensembles adjacents et aussi par rapport à la direction de circulation du fluide qui s'écoule dans le passage en creux constitué par les plaques assemblées l'une à l'autre. Les ensembles de gouttières d'une première plaque étant disposés pour se joindre en croix avec les ensembles opposés de gouttières d'une seconde plaque de façon à ce que le volume compris entre les gouttières opposées des ensembles opposés définissent des passages cruciformes dans lesquels le fluide peut circuler.
  • Les refroidisseurs d'huile pour moteur d'automobile améliorés de l'invention comprennent de multiples plaques en opposition, empilées pour former des structures d'échange d'énergie interconnectées pour un écoulement de l'huile dans une direction générale circulaire. Les entrées des structure d'échange d'énergie débouchent dans un collecteur d'entrée où elles sont reliées en parallèle avec les autres entrées ou alors elles sont reliées en série avec les entrées et les sorties d'une seconde structure. Les sorties débouchent sur un collecteur de sortie et sont reliés également soit en parallèle soit en série avec les entrées et les sorties d'une seconde structure.
  • Les structures d'échange d'énergie empilées et interconnectées assurent le passage pour l'écoulement de l'huile à l'intérieur des structures d'échange d'énergie et pour la circulation d'un fluide refroidisseur à l'extérieur des structures d'échange d'énergie. La direction préférentielle de l'écoulement du fluide forme généralement une oblique par rapport à l'axe des gouttières opposées des plaques opposées des structures d'échange d'énergie pour améliorer l'échange d'énergie.
  • Les structures d'échange d'énergie peuvent être installées à l'intérieur d'un recipient faisant office de boîtier dans lequel le liquide et/ou le gaz refroidisseur peut être mis en circulation au-dessus et entre les plaques en opposition, ou encore peuvent être exposées pour être soumises à un courant d'air ou d'un autre agent refroidisseur. La périphérie des structures d'échange d'énergie empilées peut être rendue solidaire de la paroi du boîtier pour définir ainsi des passages distinctes pour l'agent refroidisseur qui peuvent également être reliés séparément ou interconnectés en parallèle ou en série avec les collecteurs d'entrée et/ou de sortie du fluide refroidisseur.
  • Les refroidisseurs d'huile pour moteur d'automobile améliorés de l'invention sont fabriqués par un procédé dans lequel des plaques en opposition sont ondulées pour obtenir une structure cruciforme formant des gouttières multiples disposées en quatre ensembles ou plus de gouttières généralement parallèles, avec chaque ensemble formant une oblique avec la direction des ensembles adjacents ainsi qu'avec la direction circulaire de l'écoulement du fluide dans le passage en creux formé entre les plaques jointes. Les gouttières d'une première plaque sont en contact avec les sommets des gouttières en opposition d'une seconde plaque et la zone comprise entre les gouttières en opposition constitue un passage qui de préférence doit former une oblique comprise entre 5 et 75° par rapport à la direction circulaire de l'écoulement dans les structures d'échange d'énergie. Les dites premières et secondes plaques sont assemblées pour former un passage en creux, comprenant une entrée et une sortie du fluide, le passage étant construit pour diriger le fluide entrant de l'entrée vers la sortie sur une direction générale circulaire. Les multiples structures d'échange d'énergie peuvent être assemblées en série et/ou en parallèle pour constituer le refroidisseur, avec une entrée d'une première structure d'échange d'énergie reliée à une sortie ou à une entrée d'une seconde structure d'échange d'énergie. Typiquement, il est préférable d'assembler un ou plusieurs groupes de structures reliées entre elles en parallèle avec chaque groupe organisé en série avec les entrées et les sorties de collecteur.
  • Ordinairement, les structures d'échange d'énergie ainsi assemblées sont mises dans un recipient faisant office de boîtier équipé d'une entrée et d'une sortie pour le fluide refroidisseur. En général, les bords extérieurs jointifs des plaques en opposition sont prolongés pour former une plaque plate offrant une surface supplémentaire de refroidissement sur les bordures extérieures des structures d'échange. Une telle extension permet la circulation du fluide refroidisseur sur les limites extérieures des structures empilées pour un refroidissement supplémentaire et peut présenter aussi un moyen pratique d' assembler les structures entre elles pour les immobiliser dans le boîtier.
  • La Figure 1 est une vue de dessus en perspective d'un refroidisseur d'huile conçu selon la présente invention.
  • La Figure 2 est une vue de dessous en perspective du refroidisseur d'huile de la Figure 1.
  • La Figure 3 est une vue en coupe prise approximativement selon la ligne 3-3 de la Figure 1.
  • La Figure 3a est une vue en coupe agrandie d'une structure creuse d'échange d'énergie de la Figure 3.
  • La Figure 4 est une vue en coupe prise approximativement selon la ligne 4-4 de la Figure 1.
  • La Figure 5 est une vue perspective d'une structure d'échange d'énergie conçue selon la présente invention.
  • La Figure 6 est une vue plane de la surface intérieure de la plaque supérieure de la Figure 5.
  • La Figure 7 est une vue plane de la surface intérieure de la plaque inférieure de la Figure 5.
  • La Figure 8 est une vue schématique d'une autre réalisation de l'invention.
  • A titre d'exemple, une réalisation d'un refroidisseur d'huile pour automobile conçu selon l'invention est illustrée par les Figures 1 et 2. Il est cependant entendu que la présente invention peut être utilisée dans l'ensemble des applications où l'on trouve une structure d'échange d'énergie.
  • En se référant aux Figures 1 et 2, on y trouve une illustration d'un refroidisseur d'huile 10 du type habituellement installé entre le moteur du véhicule et le filtre à huile selon un schéma classique d'agencement de la technique automobile. Le refroidisseur 10 comprend un boîtier métallique 11 ayant un fond d'attache au moteur 12, un fond d'attache au filtre à huile 20, une paroi extérieure de boîtier 17 et une ouverture intérieure de boîtier 14. Le fond d'attache au moteur 12 comprend une entrée d'huile 13 et une rainure d'étanchéité au moteur 16 qui maintient le joint d'étanchéité d'huile 15, comme l'indiquent les Figures 3 et 4. La paroi extérieure 17 du boîtier 11 comprend l'entrée du fluide refroidisseur 18 et la sortie du fluide refroidisseur 19. Le fond d'attache au filtre à huile 20 comprend une sortie d'huile 21 et une surface d'étanchéité au filtre à huile 22. L'ouverture intérieure du boîtier 14 va du fond d'attache au moteur 12 au fond d'attache au filtre à huile 20 et présente ainsi un passage dans lequel un filtre à huile amovible peut être fixé au moteur tout en assurant l'étanchéité du filtre et du refroidisseur au moteur ainsi que le passage retour de l'huile refroidie et filtrée vers le moteur.
  • Le refroidisseur d'huile 10 comprend un ensemble de structures creuses d'échange d'énergie, contenues dans le boîtier 11, au travers desquelles l'huile circule entre l'entrée d'huile 13 et la sortie d'huile 21. Entourant au moins une partie des structures d'échange d'énergie, on trouve des passages en creux dans lesquels le fluide refroidisseur peut circuler depuis l'entrée du fluide refroidisseur 18 vers la sortie du fluide refroidisseur 19 tout en établissant un rapport d'échange d'énergie avec les structures creuses d'échange d'énergie.
  • En fonctionnement selon la réalisation figurant sur les schémas, un premier fluide, d'abord porté à haute température, comme une huile moteur chaude, entre dans le refroidisseur d'huile 10 par l'entrée d'huile 13, circule entre les plaques opposées par les passages de forme généralement circulaire de l'ensemble des structures creuses d'échange d'énergie jusqu'à la sortie d'huile moteur du refroidisseur 21 vers l'entrée du filtre à huile (non montré sur les figures). L'huile refroidie traverse le filtre à huile, puis est dirigée vers une tige creuse d'attache du filtre à huile (non montrée sur les figures) qui se prolonge jusqu'au moteur en passant au travers de l'ouverture intérieure 14 du boîtier. La tige creuse d'attache du filtre à huile se fixe sur le moteur et est filetée d'une façon classique pour assujettir par compression le filtre à huile et le refroidisseur d'huile au moteur. La tige fournit donc à la fois un moyen de fixation du filtre et du refroidisseur au moteur et un passage retour de l'huile refroidie et filtrée du filtre vers le moteur.
  • Il doit être bien entendu qu'alternativement l'huile peut suivre un chemin inverse : du moteur vers le filtre par la tige creuse, puis vers le refroidisseur et retour vers le moteur à partir du refroidisseur.
  • La circulation d'huile à travers les structures d'échange est dirigée par plusieurs ensembles, disposés pour former entre eux un angle, de gouttières généralement parallèles qui font saillies dans le passage en creux des plaques opposées. Le flot d'huile est passivement séparé et mélangé par les cheminements cruciformes que forment les gouttières opposées augmentant ainsi le contact du flot d'huile avec les plaques opposées de la structure d'échange d'énergie. L'énergie calorifique provenant de l'huile est dissipée dans les plaques opposées des structures d'échange d'énergie et dans toutes ailettes avec lesquelles elle peut être en contact.
  • Un second fluide, tel un liquide de refroidissement comme un mélange classique eau/antigel, entre par l'entrée du refroidisseur 18 de façon à circuler au travers des plaques opposées ou toute ailette avec laquelle il peut être en contact, de préférence dans le sens contraire au sens de circulation du flot d'huile. L'énergie calorifique est dissipée par les structures d'échange d'énergie quand l'énergie calorifique du fluide refroidisseur est inférieur à l'énergie calorifique des structures d'échange. Le fluide refroidisseur s'écoule dans le boîtier contenant les structures d'échange vers la sortie du refroidisseur 19 pour être recyclé par le système de refroidissement.
  • En se référant maintenant à la Figure 3, qui illustre une vue en coupe du refroidisseur d'huile de la Figure 1 prise approximativement selon la ligne 3-3, dans laquelle on voit un empilement de structures creuses d'échange d'énergie 23 à l'intérieur du boîtier 11. Dans la Figure 3a, une structure d'échange d'énergie est présentée agrandie pour montrer une plaque opposée ondulée supérieure 24 et une plaque opposée inférieure 25, jointes pour former une bordure extérieure soudée 26. Les points bas 27 des gouttières dirigés vers l'intérieur de la plaque opposée supérieure 24 croisent les points bas 28 des gouttières dirigés vers l'intérieur de la plaque opposée inférieure 25, avec la zone entre les points bas des gouttières d'une plaque comprenant des crêtes 29 dans la plaque supérieure 24 et des crêtes 30 dans la plaque inférieure 25. Les gouttières formées vers le bas dirigent le flot d'huile dans les structures d'échange suivant la ligne des crêtes, les gouttières cruciformes effectuant de manière continue une séparation passive, mélangeant et redirigeant sur des directions angulaires obliques le flot d'huile dans un sens général circonférentiel depuis l'entrée de la structure d'échange d'énergie jusqu'à la sortie de cette structure. Les volumes entre les structures d'échange d'énergie empilées l'une sur l'autre constituent aussi des passages formés grâce aux ondulations des plaques. Le fluide refroidisseur circulant dans ces passages est dirigé par la disposition des gouttières 27 et 28. Comme pour le flot d'huile, la disposition des gouttières effectue la séparation passive, le mélange et l'infléchissement angulaire oblique du courant du fluide réfroidisseur de l'entrée du refroidisseur jusqu'à sa sortie.
  • Dans la réalisation illustrée à la Figure 3, les bords intérieurs centraux des plaques supérieures 24 et des plaques inférieures 25 sont réunis l'un à l'autre au moyen d'un anneau de compression 31 pour assurer l'assemblage général des structures creuses d'échange d'énergie et pour assurer la séparation des fluides. La surface 34 de l'ouverture intérieure de boîtier, grâce à sa lèvre supérieure 33 et sa lèvre inférieure 32, retient le fond d'attache au moteur 12 et le fond d'attache au filtre à huile 20 et, par compression, assurent le contact des plaques supérieures 24 et des plaques inférieures 25 entre elles, en alternant contacts directs et contacts par l'intermédiaire de l'anneau de compression 31.
  • La Figure 4 est une vue en coupe de la Figure 1 montrant particulièrement le collecteur d'huile d'entrée 35 et le collecteur d'huile de sortie 36. On y voit que les plaques supérieures d'une première structure d'échange d'énergie empilée et les plaques inférieures d'une seconde structure d'échange d'énergie sont jointives à proximité de la périphérie intérieure des collecteurs pour obtenir une séparation étanche entre les circuits d'huile et de fluide refroidisseur dans les structures d'échange. Il doit être bien entendu que si la réalisation illustrée ici montre des collecteurs communs entre toutes les entrées et toutes les sorties de la structure d'échange d'énergie pour des flux d'huile en parallèle entre les structures, l'invention considére ce cas comme spécifique et inclut l'organisation en collecteurs distincts entre les entrées et les sorties des structures d'échange empilées pour des flux d'huile en série.
  • Les plaques des structures d'échange sont fixées l'une à l'autre par tout moyen approprié pour assurer une intégrité structurale de l'ensemble suffisante pour résister aux pressions générées à l'intérieur du système. Une soudure classique par soudage au laiton est à préférer quand les matériaux de construction sont en acier inoxydable, en cuivre, en laiton ou en aluminium. Des matériaux céramiques ou polymères appropriés peuvent aussi être utilisés, l'assemblage des plaques peut alors se faire avec des solvants appropriés, des matières adhésives ou encore par soudage des matériaux à chaud et par ultrason.
  • La Figure 5 montre une réalisation préférentielle d'une structure d'échange d'énergie objet de la présente invention comprenant quatre ensembles de gouttières. On y trouve une structure d'échange d'énergie 23, une plaque supérieure opposée ondulée 24 et une plaque ondulée inférieure 25. La plaque supérieure 24 comprend des gouttières formées vers le bas 27 et la plaque inférieure 25 comprend des gouttières opposées formées vers le bas 28 (non vues sur la Figure).La zone entre les gouttières de la plaque supérieure 24 comprend des crêtes 29 et la zone entre les gouttières de la plaque inférieure 25 comprend des crêtes 30 (non vues sur la Figure), chacune de ces deux zones constituant un passage par lequel le flot d'huile circule. Les plaques en opposition sont fixées l'une à l'autre par leur bord extérieur 26. Dans la réalisation préférentielle décrite ici, les bords sont brasés pour assurer l'intégrité structurelle de l'assemblage des structures d'échange d'énergie. Le bord intérieur central de la structure d'échange comprend l'anneau de compression 31 sur lequel les bords des plaques reposent.
  • Les gouttières des plaques en opposition peuvent commodément être formées par estampage, par emboutissage ou par moulage ou tout autre procédé permettant d'obtenir l'agencement souhaité des gouttières dans les plaques. Classiquement, les gouttières sont rectilignes ou légèrement incurvées et il est préférable qu'elles soient de courte longueur.
  • Bien qu'il ne soit pas nécessaire qu'une gouttière soit équidistante de la gouttière adjacente sur toute sa longueur, une telle disposition est préférable dans beaucoup d'applications du domaine automobile. Par espacement équidistant on entend que la distance entre deux gouttières adjacentes reste généralement la même tout le long de la gouttière. Il doit être bien entendu que cette équidistance préférée ne signifie que la distance entre les gouttières doit être la même partout, bien qu'ici aussi ceci soit préférable pour beaucoup d'applications.
  • Les zones entre deux gouttières adjacentes constituent les crêtes adjacentes. Ni les crêtes adjacentes ni les gouttières adjacentes n'ont besoin d'être de la même largeur. Les crêtes peuvent être dans le plan de la plaque ou elles peuvent être estampées, embouties ou formées de toute autre manière de façon à faire saillie par rapport au plan de la plaque. Il doit être bien entendu que tout les moyens bien connus dans l'état de l'art pour former des gouttières et des crêtes, y compris le moulage et autre procédé sont pris en compte par l'invention.
  • Généralement crêtes et gouttières forment une oblique par rapport à la direction générale circulaire de la plaque. De préférence, cette oblique formera un angle compris entre 5 et 75° environ par rapport à la direction circonférentielle que prend l'huile circulant entre les plaques et, mieux encore, compris entre 15 et 45° environ.
  • La première et la seconde plaque en opposition, avec leurs gouttières disposées angulairement, sont assemblées de telle manière que les gouttières de la première plaque rencontrent les gouttières opposées de la seconde plaque. Il n'est pas essentiel que les gouttières et les crêtes de la première plaque forment le même angle oblique par rapport à la direction longitudinale que ceux de la seconde plaque, bien que ceci soit généralement préférable. De façon générale, il est préférable que la figure formée par un ensemble de gouttières de la première plaque dans une structure creuse d'échange d'énergie assemblée, soit l'image réfléchie inversée de la figure formée par l' ensemble de gouttières de la deuxième plaque.
  • Les Figures 6 et 7 représentent des vues planes des faces intérieures de la plaque supérieure 24 et de la plaque inférieure 25 de la Figure 5. La Figure 6 montre les gouttières 27 de la plaque supérieure 24, disposées en quatre ensembles de façon à ce que les gouttières pratiquement rectilignes soient au premier chef équidistantes de la gouttière adjacente sur toute leur longueur sur la plaque. Les crêtes montrées dans cette réalisation préférentielle sont pratiquement d'égale largeur, mais il doit être bien entendu que l'invention prend en compte toute configuration dans laquelle les crêtes et les gouttières n'ont pas une largeur égale à la crête ou la gouttière qui leur est adjacente.
  • La Figure 7 montre la surface intérieure de la plaque inférieure 25 qui est en regard de la surface intérieure de la plaque supérieure 24. On y voit les gouttières 28 organisées en quatre ensembles, avec des gouttières dans chaque ensemble équidistantes des gouttières adjacentes et formant une image réfléchie inversée de la plaque supérieure 24. Quand les plaques supérieure et inférieure sont assemblées pour se faire face, elles forment la structure d'échange d'énergie objet de l'invention, les gouttières de chaque ensemble de la plaque supérieure en contact avec les gouttières organisées selon une image réfléchie inversée sur la plaque inférieure.
  • La Figure 8 représente schématiquement une configuration de gouttières sur les surfaces intérieures opposées de plaques ondulées dans laquelle les ondulations forment cinq ensembles de gouttières pratiquement parallèles, chaque ensemble se présentant en oblique à l'intérieur du passage en creux. Dans cette réalisation la direction oblique par rapport au flot circulaire dans l'échangeur ne convient pas pour tous les ensembles de gouttières à la circulation du flot d'huile à travers l'échangeur.
  • Ordinairement, les refroidisseurs d'huile de l'invention peuvent être fabriqués à partir de n'importe quel matériau convenable qui résistera aux effets de la corrosion et aux pressions internes exercées par le fluide sur le système. Le matériau classique comprend les métaux malléables comme aluminium, le cuivre, l'acier, l'acier inoxydable et de leurs alliages et peut même inclure les plastiques et/ou les céramiques.
  • Le matériau peut être revêtu intérieurement ou extérieurement, traité, etc. Typiquement, il est souhaitable d'utiliser un matériau d'une épaisseur aussi fine que possible pour obtenir un gain d'efficacité maximum au cours de l'échange d'énergie. Généralement, il est préférable que chaque composant du refroidisseur soit du même matériau chaque fois qu'ils doivent être assemblés l'un à l'autre. Par exemple, les plaques utilisées pour former les structures d'échange d'énergie devraient idéalement être formées du même matériau. Il devra cependant être bien entendu que l'invention prend en compte l'utilisation de matériaux divers pour l'assemblage, comme par exemple utiliser de l'acier ou des plastiques pour fabriquer le boîtier ou les fonds de boîtier et d'autres métaux, plastiques ou céramiques, pour la fabrication des structures d'échange d'énergie.
  • Il doit être bien entendu que, si l'invention décrite ici se rapporte à un refroidisseur d'huile d'automobile, on doit la considérer comme applicable aux multiples applications utilisant l'échange de chaleur.

Claims (14)

1. - Structure d'échange d'énergie améliorée, comprenant une première et une seconde plaque généralement opposées en parallèle (24,25) et réunies l'une à l'autre pour constituer un passage en creux dans lequel une circulation de fluide dans une direction généralement circulaire s'établit entre une entrée et une sortie (13,21), caractérisée en ce que les plaques opposées (24,25) sont ondulées pour définir une structure croisée formant de multiples gouttières opposées (27,28) faisant saillie dans le passage en creux et disposées en plusieurs ensembles de gouttières généralement parallèles, chaque ensemble formant une oblique par rapport à l'ensemble adjacent et par rapport à la direction généralement circulaire du fluide, avec les gouttières (27) de la première plaque (24) disposées pour croiser les gouttières (28) de la seconde plaque (25) de sorte que la zone entre deux gouttières opposées définissent des passages croisés.
2.- Structure selon la revendication 1, caractérisée en ce que chacune desdites plaques opposées (24,25) comprend au moins quatre ensembles de gouttières (27,28).
3.- Structure selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend des gouttières (27,28) généralement rectilignes.
4.- Structure selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des gouttières (27,28) généralement courbes.
5.- Structure selon l'une des revendications précédentes, caractérisée en ce que les gouttières (27,28) sont disposées obliquement d'environ 5 à 75° par rapport à la direction du fluide dans le passage en creux.
6.- Structure selon l'une des revendications précédentes, caractérisée en ce que les gouttières (27,28) d'une plaque (24,25) sont équidistantes des gouttières adjacentes sur toute leur longueur.
7.- Structure selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des gouttières (27,28) généralement d'égale largeur.
8.- Structure selon l'une des revendications précédentes, caractérisée en ce que les bords extérieurs des plaques (24,25) sont réunis pour former une plaque plate.
9.- Structure selon l'une des revendications précédentes, caractérisée en ce que les ensembles de gouttières sont disposées pour former le même angle d'obliquité par rapport à la direction générale de circulation du fluide de la structure.
10.- Refroidisseur d'huile pour automobile amélioré, caractérisé en ce qu'il comprend au moins une structure d'échange d'énergie selon l'une quelconque des revendications 1 à 9.
11.- Refroidisseur selon la revendication 10, caractérisé en ce qu'une entrée (13) de la structure creuse d'échange d'énergie est reliée à un collecteur (35) et une sortie (21) de la structure creuse d'échange d'énergie est reliée à un collecteur (36).
12.- Refroidisseur selon la revendication 10 ou 11, caractérisé en ce qu'une entrée (13) d'une structure creuse d'échange d'énergie est reliée à une sortie (21) d'une autre structure creuse d'échange d'énergie.
13.- Refroidisseur selon l'une des revendications 10 à 12, caractérisé en ce qu'un empilement de structures creuses d'échange d'énergie est réalisé dans une structure (11) configurée de façon à permettre à un second fluide de circuler au voisinage des surfaces des structures d'échange d'énergie empilées.
14.- Procédé pour fabriquer un refroidisseur d'huile amélioré selon l'une des revendications 10 à 13, caractérisé en ce qu'il comprend la fabrication de plaques (24,25), ondulées en structure croisée pour former des gouttières (27,28) multiples disposées en plusieurs ensembles de gouttières parallèles, chaque ensemble disposé obliquement par rapport aux ensembles adjacents; le dispositif lesdites plaques de façon à ce que les sommets des ensembles de gouttières de la première plaque (24) soient en contact avec les sommets adjacents des ensembles de gouttières de la seconde plaque; l'assemblage lesdites première et seconde plaques sur leur centre et sur leurs bords extérieurs qui ont été prolongés de façon à constituer une structure d'échange d'énergie présentant un passage en creux offrant une direction d'écoulement circulaire entre une entrée et une sortie et dans lequel les dites gouttières des dites plaques sont disposées obliquement par rapport à la direction de circulation dudit passage; et l'assemblage de plusieurs structures d'échange d'énergie en les empilant l'une sur l'autre.
EP19910400482 1990-02-26 1991-02-22 Echangeur de chaleur à écoulement circulaire Expired - Lifetime EP0445006B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48425290A 1990-02-26 1990-02-26
US484252 1990-02-26

Publications (2)

Publication Number Publication Date
EP0445006A1 true EP0445006A1 (fr) 1991-09-04
EP0445006B1 EP0445006B1 (fr) 1994-07-27

Family

ID=23923378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910400482 Expired - Lifetime EP0445006B1 (fr) 1990-02-26 1991-02-22 Echangeur de chaleur à écoulement circulaire

Country Status (4)

Country Link
EP (1) EP0445006B1 (fr)
JP (1) JPH07104114B2 (fr)
CA (1) CA2037093C (fr)
DE (1) DE69103044T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012397A1 (fr) * 1991-12-16 1993-06-24 Long Manufacturing Ltd. Echangeur thermique a plaques___________________________________

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642308B2 (ja) * 1993-12-28 1997-08-20 リンナイ株式会社 吸収式冷凍機用の溶液熱交換器
DE10132120A1 (de) * 2001-07-03 2003-01-16 Deere & Co Ölkühler
US20080251242A1 (en) * 2005-10-20 2008-10-16 Behr Gmbh & Co. Kg Heat Exchanger
DK3372941T3 (da) 2017-03-10 2021-01-11 Alfa Laval Corp Ab Pladepakke, plade og varmeveksleranordning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669062A (en) * 1924-10-28 1928-05-08 Menzel Ag Heat-exchange apparatus
DE2109346A1 (de) * 1970-03-20 1971-10-14 Apv Co Ltd Platte fur Plattenwärmetauscher und Werkzeug zu seiner Herstellung
US3743011A (en) * 1971-11-04 1973-07-03 Modine Mfg Co Heat exchanger
EP0208957A1 (fr) * 1985-06-25 1987-01-21 Nippondenso Co., Ltd. Echangeur de chaleur
US4836276A (en) * 1987-03-09 1989-06-06 Nippondenso Co., Ltd. Heat exchanger for engine oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3441251A1 (de) * 1984-11-12 1986-05-22 Danfoss A/S, Nordborg Ventil fuer leicht verdampfbare fluessigkeiten, insbesondere expansionsventil fuer kaelteanlagen
JPS6298068A (ja) * 1985-10-21 1987-05-07 Honda Motor Co Ltd タイミングベルトケ−ス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669062A (en) * 1924-10-28 1928-05-08 Menzel Ag Heat-exchange apparatus
DE2109346A1 (de) * 1970-03-20 1971-10-14 Apv Co Ltd Platte fur Plattenwärmetauscher und Werkzeug zu seiner Herstellung
US3743011A (en) * 1971-11-04 1973-07-03 Modine Mfg Co Heat exchanger
EP0208957A1 (fr) * 1985-06-25 1987-01-21 Nippondenso Co., Ltd. Echangeur de chaleur
US4836276A (en) * 1987-03-09 1989-06-06 Nippondenso Co., Ltd. Heat exchanger for engine oil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012397A1 (fr) * 1991-12-16 1993-06-24 Long Manufacturing Ltd. Echangeur thermique a plaques___________________________________
GB2278189A (en) * 1991-12-16 1994-11-23 Long Mfg Ltd Plate type heat exchanger
GB2278189B (en) * 1991-12-16 1995-09-13 Long Mfg Ltd Plate type heat exchanger
AU663126B2 (en) * 1991-12-16 1995-09-28 Long Manufacturing Ltd. Plate type heat exchanger

Also Published As

Publication number Publication date
JPH04217792A (ja) 1992-08-07
CA2037093A1 (fr) 1991-08-27
DE69103044T2 (de) 1994-11-17
DE69103044D1 (de) 1994-09-01
JPH07104114B2 (ja) 1995-11-13
CA2037093C (fr) 1999-04-06
EP0445006B1 (fr) 1994-07-27

Similar Documents

Publication Publication Date Title
EP0430752B1 (fr) Echangeur de chaleur à écoulement circonférentiel
EP0447528B1 (fr) Condenseur pour automobile
EP2310787B1 (fr) Echangeur de chaleur comportant un faisceau d'echange de chaleur et un boitier
EP2032928B1 (fr) Echangeurs thermiques a plaquettes creuses
FR2681419A1 (fr) Echangeur de chaleur a faisceau tubulaire comportant plusieurs circuits de fluides.
FR2873433A1 (fr) Ailette d'agitation de fluide, procede de fabrication de celle-ci et tube d'echangeur de chaleur, et echangeur de chaleur ou appareil de refroidissement de gaz du type a echange de chaleur dote, a l'interieur, de l'ailette
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
EP1063486B1 (fr) Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR3081983A1 (fr) Dispositif d’échange de chaleur
EP1063487B1 (fr) Echangeur de chaleur à plaques, en particulier pour le refroidissement d'une huile de véhicule automobile
EP0445006B1 (fr) Echangeur de chaleur à écoulement circulaire
FR2978236A1 (fr) Echangeur thermique, tube plat et plaque correspondants
WO2020178536A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR2812081A1 (fr) Module d'echange de chaleur, notamment pour vehicule automobile, et procede de fabrication de ce module
FR2855602A1 (fr) Echangeur de chaleur a plaques, notamment refroidisseur des gaz d'echappement recircules
FR2465982A1 (fr) Echangeur de chaleur a plaques
WO2009021826A1 (fr) Echangeur de chaleur pour gaz et procede de fabrication correspondant
EP1063488B1 (fr) Echangeur de chaleur à plaques, notamment pour refroidir une huile d'un véhicule automobile
EP2901097B1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, et procede d'assemblage associe
WO2021038152A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
FR2850740A1 (fr) Echangeur de chaleur a plaques a haute tenue a la pression, en particulier pour circuit de climation de vehicule automobile
WO2024008650A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2024008644A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
EP4078058A1 (fr) Échangeur de chaleur à passages de fluide optimisés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR SE

17P Request for examination filed

Effective date: 19920108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LONG MANUFACTURING LTD.

17Q First examination report despatched

Effective date: 19930811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

REF Corresponds to:

Ref document number: 69103044

Country of ref document: DE

Date of ref document: 19940901

EAL Se: european patent in force in sweden

Ref document number: 91400482.5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050222

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060223

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090331

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090217

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901