EP4018146B1 - Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur - Google Patents

Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur Download PDF

Info

Publication number
EP4018146B1
EP4018146B1 EP20760495.0A EP20760495A EP4018146B1 EP 4018146 B1 EP4018146 B1 EP 4018146B1 EP 20760495 A EP20760495 A EP 20760495A EP 4018146 B1 EP4018146 B1 EP 4018146B1
Authority
EP
European Patent Office
Prior art keywords
hollow
elements
protuberances
fluid
protuberance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20760495.0A
Other languages
German (de)
English (en)
Other versions
EP4018146A1 (fr
Inventor
Kamel Azzouz
Mathieu Caparros
Cédric DE VAULX
Xavier Marchadier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP4018146A1 publication Critical patent/EP4018146A1/fr
Application granted granted Critical
Publication of EP4018146B1 publication Critical patent/EP4018146B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F2001/027Tubular elements of cross-section which is non-circular with dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to the field of heat exchangers, in particular for motor vehicles, and to methods of manufacturing such heat exchangers.
  • EP 2 420 791 discloses a heat exchanger comprising the features of the preamble of claim 1.
  • Heat exchangers generally comprise a heat exchange bundle consisting of a set of superimposed hollow elements in which a first heat transfer fluid, such as glycolated water or a refrigerant, is intended to flow.
  • This heat exchange bundle has a plurality of fins arranged between these hollow elements. These fins are configured to increase the heat exchange surface between the first heat transfer fluid circulating inside the hollow elements and a second heat transfer fluid, such as air, circulating between these hollow elements.
  • a second heat transfer fluid such as air
  • finned heat exchangers generate a certain thermal resistance for the exchange between the first heat transfer fluid, such as the refrigerant, and the second heat transfer fluid, such as air.
  • the surface of the fins allowing the exchange surface to be increased is not in direct contact with the two fluids. The heat exchanges between these two fluids with the heat exchangers of the prior art can therefore be improved.
  • the object of the present invention is to propose a heat exchanger having improved heat exchange capacities compared to those known from the prior art and having good mechanical strength.
  • Another objective of the present invention is to provide a heat exchanger whose number of parts constituting it is limited.
  • Another objective of the present invention is to provide a heat exchanger which is simple and quick to assemble.
  • Another object of the present invention is to provide a method of manufacturing a heat exchanger which is simple, fast and inexpensive.
  • the present invention relates to a heat exchanger, in particular for a motor vehicle, comprising the characteristics of claim 1.
  • the possibility for the first fluid to pass from one hollow element to another hollow element through the protuberances connecting these hollow elements allows a good homogenization of the temperature of this first fluid and also an improvement heat exchanges between the first and second fluids.
  • the presence of the protuberances allows a disturbance of the circulation of the second fluid through the heat exchange bundle.
  • the heat exchanges between the first and second fluids are improved due to the protuberances connecting the hollow elements together and also allowing the circulation of the first fluid through certain hollow protuberances.
  • the protuberances are configured to connect the hollow elements together, which also makes it possible to simplify the structure of the heat exchange bundle by making it possible in particular to limit the number of parts making up this heat exchange bundle.
  • the heat exchanger according to the present invention may further comprise one or more of the following features taken alone or in combination.
  • the hollow elements of the heat exchange bundle may be plates.
  • the heat exchange beam can be formed by a row of superimposed plates.
  • the hollow elements of the heat exchange bundle may be flat tubes.
  • the heat exchange bundle can be formed by at least one row of superimposed flat tubes.
  • Hollow elements may be made of a material having a thermal conductivity greater than or equal to 45 Wm -1 .K -1 at 20°C.
  • Hollow elements can be made of metal or a metal alloy, particularly aluminium.
  • the first hollow element can carry at least one hollow protuberance cooperating with an orifice made in the second hollow element arranged opposite the at least one hollow protuberance of the first hollow element, said hollow protuberance ensuring fluid communication between the first and second hollow elements and forming a sealed connection with the orifice.
  • the first and second hollow elements alternately have a hollow protuberance and an orifice intended to cooperate with a hollow protuberance in a sealed manner in the assembled state of the heat exchange bundle.
  • first and second hollow elements may each have at least one hollow protuberance, the hollow protuberance carried by the first hollow element having an end cooperating with an end of the hollow protuberance carried by the second hollow element and forming a sealed connection with this hollow protuberance of the second hollow element so as to allow fluid communication between the first and second hollow elements.
  • each channel for the circulation of the first fluid has a center and a periphery and the at least one hollow protuberance allowing fluid communication between two adjacent hollow elements can be arranged at the center of the channel.
  • the plurality of protrusions carried by the at least one hollow element may be hollow protrusions allowing fluid communication between the first and second hollow elements.
  • the hollow protuberances may have a constant section shape, a first end of which is arranged in contact with a face of the hollow element carrying the protuberance and a second free end, arranged opposite the first end and in contact with the adjacent hollow element.
  • the section of the hollow protuberance can be circular, oblong, or even parallelepipedal in shape.
  • the hollow protuberances may have a variable section shape, a first end of which is arranged in contact with a face of the hollow element carrying the protuberance and a second free end, opposite the first end and arranged in contact with the adjacent hollow element, said first end having a section whose area is greater than that of the second free end.
  • the hollow protuberance may be conical in shape, the second end of which is flat or dome-shaped.
  • the hollow protuberances have a leading wall and an end wall, the leading wall being the first in contact with the first fluid during the passage of this first fluid at the level of the hollow protuberance.
  • the hollow elements each have at least one hollow protuberance whose second free ends are in contact with each other, and these hollow protuberances have a central symmetry relative to the center of the opening of the hollow protuberances for the passage of the first fluid between a first and a second hollow element.
  • leading wall of the hollow protuberance and the channel of the hollow element can form an angle of between 90° and 180°, and in particular of between 105° and 150°.
  • the end wall of the hollow protuberance and the channel of the hollow element can form an angle between 90° and 180°, and in particular between 120° and 165°.
  • the hollow element can have at least one transverse partition.
  • the transverse partition can be arranged in the middle of the space defined between two hollow protrusions in the hollow element.
  • the heat exchange bundle may further comprise two end elements arranged parallel to the superimposed hollow elements and respectively on either side of the superposition of hollow elements, each end element has a face arranged opposite a face of a hollow element and defining a space between the end element and the hollow element to allow the circulation of the second fluid.
  • the face of the end member may be smooth and is configured to obstruct openings of the second ends of the hollow protrusions disposed opposite the end member so as to form a sealed connection between the hollow member and the adjacent member.
  • the orifices of the second hollow element can correspond to the opening of the second end of the protuberances carried by the second hollow element.
  • the stack may further comprise two end elements arranged respectively on either side of the superposition of hollow elements and parallel to these hollow elements, said end elements having a face arranged opposite a face of the adjacent hollow element, said face of the end elements being smooth.
  • the hollow elements arranged opposite the end elements may have hollow protuberances on their face arranged opposite the end elements in order to allow the brazing of the end elements with the adjacent hollow elements and the formation of a sealed mechanical connection between the hollow elements and the end elements.
  • certain elements or parameters may be indexed, such as for example first element or second element as well as first parameter and second parameter or even first criterion and second criterion etc.
  • it is a simple indexing to differentiate and name elements or parameters or criteria that are close but not identical. This indexing does not imply a priority of one element, parameter or criterion over another and such names can easily be interchanged without departing from the scope of the present description. This indexing also does not imply an order in time for example to assess such and such criteria.
  • thermal conductivity means the energy, or quantity of heat, transferred per unit area and time, expressed in watts per meter-kelvin (Wm -1 .K -1 ).
  • fluid in the following description, we mean a body whose molecules have little adhesion and can slide freely relative to each other (in the case of liquids) or move independently of each other (in the case of gases), so that the body takes the shape of the vessel which contains it.
  • a heat exchanger 1 is shown, in particular for a motor vehicle.
  • This heat exchanger 1 comprises a heat exchange bundle 3 between at least a first heat transfer fluid F1 and a second heat transfer fluid F2 (visible in the figure 2 ).
  • the heat exchange bundle 3 is composed of at least two superimposed hollow elements 31. Each hollow element 31 forms at least one channel 35 (visible on the figure 2 ) inside which the first fluid F1 is intended to circulate.
  • the heat exchanger 1 further comprises a first 11 and a second 13 collector boxes. The first 11 and second 13 collector boxes are arranged at the ends of the hollow elements 31 and form with the heat exchange bundle 3 the heat exchanger 1.
  • the first collector box 11 has for example an inlet 11a in order to supply the hollow elements 31 with first fluid F1 and the second collector box 13 has for example an outlet 13a in order to allow the circulation of the first fluid F1 in a circuit (not shown) allowing the return of this first fluid F1 to the level of the first collector box 11.
  • This first heat transfer fluid F1 may in particular be a liquid, such as for example glycolated water or a refrigerant fluid.
  • These first 11 and second 13 collector boxes are attached to the heat exchange bundle 3 in order to form the heat exchanger 1.
  • These first 11 and second 13 collector boxes may be fixed to the heat exchange bundle 3 by brazing or by a mechanical connection, in particular by crimping, for example.
  • the superimposed hollow elements 31 of the heat exchange bundle 3 may be plates in order to form a plate heat exchanger 1, or else be flat tubes in order to form a tube heat exchanger 1.
  • the heat exchange bundle 3 may therefore be produced by a row of superimposed plates or else by at least one row of superimposed flat tubes. In the case where the heat exchange bundle 3 has more than one row of flat tubes, these rows are arranged side by side in the direction of circulation of the second fluid F2 (shown in the figure 2 ).
  • the superimposed hollow elements 31 of the heat exchange bundle 3 may in particular be made of a material having a thermal conductivity greater than or equal to 45 Wm -1 .K -1 at 20°C. Typically, these hollow elements may be made of metal or a metal alloy, and in particular aluminum. Such thermal conductivity for the material constituting the hollow elements 31 makes it possible to ensure good heat transfers between the first F1 and the second F2 fluids in this heat exchange bundle 3 in order to allow in particular the heat exchanges of the first fluid F1.
  • the hollow elements 31 are also configured to allow the circulation of the second fluid F2 in a space 37 between the hollow elements 31 in order to allow a heat exchange between the first F1 and the second F2 fluids during the operation of this heat exchanger 1.
  • the second heat transfer fluid F2 may for example be air intended to circulate between the hollow elements 31 in order to exchange thermal energy with the first fluid F1 circulating inside the hollow elements 31 for example.
  • a hollow element 31 having two channels 35 each having a center and a periphery.
  • the hollow element 31 may have a different number of channels 35.
  • At least one of the hollow elements 31 of the heat exchange bundle 3 has a plurality of protuberances 5.
  • the protuberances 5 extend into the space 37 defined for the circulation of the second fluid F2.
  • Such an arrangement of the protuberances 5 in the space 37 defined for the passage of the second fluid F2 makes it possible to create disturbances in the flow of the second fluid F2 through the heat exchange bundle 3, which allows, among other things, better homogenization of the temperature of this second fluid F2 and an improvement in the heat exchanges between the first F1 and the second F2 fluids circulating in the heat exchange bundle 3.
  • This disturbance of the flow of the second fluid F2 in the space 37 may in particular consist of a reduction in its speed or even a disturbance in its direction of circulation allowing better homogenization of its temperature.
  • the protuberances 5 form the connection between two adjacent hollow elements 31.
  • adjacent elements are understood to mean two elements arranged opposite one another.
  • at least one first hollow element 31a and one second hollow element 31b arranged opposite one another are in fluid communication with one another by at least one hollow protuberance 5 carried by at least one of the first 31a and/or second 31b hollow elements 31.
  • the heat exchange bundle 3 may further comprise two end elements 38, 39 arranged parallel to the superimposed hollow elements 31 and respectively on either side of the superposition of hollow elements 31.
  • Each end element 38, 39 has a face arranged opposite a face of a hollow element 31 and defines a space 37' between the end element 38, 39 and the hollow element 31 to allow the circulation of the second fluid F2.
  • These end elements 38, 39 may be made of a plate, for example made of metal or a metal alloy such as, for example, aluminum or an aluminum alloy.
  • the material constituting the end elements 38, 39 is identical to that forming the hollow elements 31.
  • the protuberances 5 are formed directly on the faces of the hollow elements 31.
  • the protuberances 5 can be produced by deformation of a surface of the hollow elements 31.
  • the protuberances 5 have a first end 51 arranged in contact with the face of the hollow element 31 which carries the protuberance 5 and a second free end 53, opposite the first end 51, intended to be in contact with the hollow element 31 or the adjacent end element 38, 39 (visible in the figure 1 ).
  • the term adjacent element is understood to mean an element of the heat exchange bundle 3 arranged opposite a face of a hollow element 31. An adjacent element can therefore be another hollow element 31, or even an end element 38, 39.
  • the second free end 53 of the hollow protuberances 5 has an opening configured to ensure fluid communication between the first 31a and the second 31b hollow elements.
  • the hollow protuberances 5 are shown according to a first variant.
  • the hollow protuberances 5 may have a constant section shape.
  • constant section shape it is understood here that the hollow protuberance 5 has a constant diameter over its entire length, that is to say over the entire space 37, 37' arranged between the elements 31, 38, 39 for the passage of the second fluid F2 in which it extends.
  • two hollow protuberances 5 are shown, the second free ends 53 of which have an opening for the passage of the first fluid F1 and are arranged respectively in contact with each other and form a sealed connection.
  • Such an arrangement of the hollow protuberances 5 corresponds to that described previously with reference to the second particular embodiment and can offer significant resistance to deformations related to the passage of the second fluid F2 in the space 37, 37'. More particularly according to this first variant, the section of the hollow protuberance 5 can be oblong in shape ( Figure 3A ), parallelepiped ( Figure 3B ), or even circular ( Figure 3C ).
  • the hollow protuberances 5 are shown according to a second variant.
  • the hollow protuberances 5 may have a variable section shape.
  • variable section shape it is meant here that the hollow protuberance 5 has a variable diameter over its entire length, that is to say over the entire space 37, 37' arranged between the elements 31, 38, 39 for the passage of the second fluid F2 in which it extends.
  • the first end 51 of the hollow protuberances 5 has an area greater than that of the second free end 53.
  • hollow protuberances 5 are shown, the second free ends 53 of which having an opening for the passage of the first fluid F1 are arranged respectively in contact with each other.
  • Such an arrangement of the hollow protuberances 5 also corresponds to the second particular embodiment described above.
  • Such hollow protuberances 5 can make it possible to limit the reduction in the flow rate of the second fluid F2 in the space 37, 37' defined between a hollow element 31 and an adjacent element 31, 38, 39 while disturbing the circulation of this second fluid F2 in the space 37, 37' and the circulation of the first fluid F1 inside the hollow elements 31.
  • the hollow protuberances 5 can have a conical shape having a second free end 53 that is flat ( Figure 4A ), or even a dome shape ( Figure 4B ).
  • the shape of the hollow protuberances 5 can be chosen according to the constraints that they may be subjected to during the operation of the heat exchanger 1 or during the brazing of the heat exchange bundle 3.
  • the shape of these hollow protuberances 5 can also be chosen according to the disturbances in the flow of the second fluid F2 and/or the first fluid F1 (visible on the figure 2 ) desired in space 37, 37' (visible in particular on the figure 1 ).
  • the protuberances 5 have a contact zone 54 at the level of the periphery of their second free ends 53.
  • This contact zone 54 makes it possible to ensure brazing between these second free ends 53 to allow the formation of the heat exchange bundle 3 (notably visible on the figure 3 ).
  • this contact zone 54 may have a length greater than or equal to 0.5 mm.
  • the contact zone 54 of the second free end 53 of a protuberance 5 may cooperate with the periphery of a orifice carried by the face of a hollow element 31 arranged opposite this protuberance 5.
  • the second free ends 53 of the protuberances 5 carried respectively by a first 31a and a second 31b hollow elements and arranged opposite each other can be nested in order to allow the brazing of these second free ends 53 and thus the formation of the mechanical connection to form the heat exchange bundle 3.
  • the assembly of the heat exchange bundle 3 by brazing makes it possible to ensure good mechanical maintenance of this heat exchange bundle 3.
  • the protuberances 5 occupy the space 37, 37' for the passage of the second fluid F2.
  • this space was occupied by the presence of fins arranged between the hollow elements 31.
  • the presence of the protuberances 5 therefore makes it possible to limit the number of components of the heat exchange bundle 3, which in particular makes it possible to simplify its structure and assembly by eliminating the presence of the fins known from the prior art.
  • Such a heat exchange bundle 3 therefore has fairly low production costs while guaranteeing good mechanical strength thereof.
  • such a mechanical connection of the heat exchange bundle 3 is also achievable when the latter has the end elements 38, 39, one face of which is arranged opposite the second free ends 53 of the protuberances 5, possibly hollow, and thus defining the space 37' for the passage of the second fluid F2.
  • this face of the end elements 38, 39 is smooth and configured to obstruct the openings of the second free ends 53 of the hollow protuberances 5 arranged opposite the end element 38, 39 so as to form a sealed connection between the hollow element 31 and the adjacent element 31, 38, 39.
  • a first hollow element 31a can carry at least one hollow protuberance 5 cooperating with an orifice 36 made in a second hollow element 31b arranged opposite this hollow protuberance 5 of the first hollow element 31a.
  • the second free end 53 of this hollow protuberance 5 ensures the fluid communication between the first 31a and second 31b hollow elements for the first fluid F1 and forms a sealed connection with the orifice carried by the second hollow element 31b.
  • the first hollow element 31a has the hollow protuberances 5 and the second hollow element 31b has the orifices in order to allow fluid communication between these first 31a and second 31b hollow elements and also the formation of the sealed mechanical connection between these hollow elements 31a, 31b.
  • the first 31a and second 31b hollow elements may alternately have a hollow protuberance 5 and an orifice 36.
  • This orifice 36 is intended to cooperate with the second free end 53 of a hollow protuberance 5 carried by the face of the hollow element 31 arranged opposite this orifice 36.
  • the connection between the hollow protuberance 5 and the orifice 36 is a sealed mechanical connection, which may in particular be produced by brazing.
  • the first 31a and the second 31b hollow elements each have at least one protuberance 5, the second free end 53 of the hollow protuberance 5 carried by the first hollow element 31a cooperating with the second free end 53 of the hollow protuberance 5 carried by the second hollow element 31b.
  • These second free ends 53 of the hollow protuberances 5 carried by the first 31a and second 31b hollow elements form a sealed connection so as to allow fluid communication between the first 31a and second 31b hollow elements.
  • the first fluid F1 has turbulence T at the first ends 51 of the hollow protuberances 5.
  • This turbulence T linked to the passage of the first fluid F1 at least at the first ends 51 of the protuberances 5 allows a disturbance of the flow of this first fluid F1 in the hollow element 31, thus contributing to an improvement in the homogenization of the temperature of this first fluid F1 and therefore of the heat exchanges between the first F1 and the second F2 fluids.
  • the first fluid F1 can pass from the first hollow element 31a to the second hollow element 31b and vice versa by passing through one of the protuberances 5.
  • the plurality of protuberances 5 carried by the at least one hollow element 31 are hollow protuberances 5 allowing fluid communication between the first 31a and the second 31b hollow elements.
  • these hollow protuberances 5 ensuring fluid communication between the first 31a and second 31b hollow elements allow the first fluid F1 to pass from the first hollow element 31a to the second hollow element 31b and reverse.
  • Such a movement of the first fluid F1 allows agitation of the latter at least at the level of the hollow protuberance 5, thus contributing to an improvement in the homogenization of its temperature.
  • such a disturbance of the flow of the first fluid F1 allows an improvement in its heat exchanges with the second fluid F2 circulating in the space 37 between two adjacent hollow elements 31.
  • the hollow elements 31 may comprise transverse partitions 9.
  • the transverse partitions 9 obstruct a section of the channel 35 so that the first fluid F1 circulates between two adjacent hollow elements 31 in fluid communication.
  • These transverse partitions 9 therefore allow the formation of a baffle for the first fluid F1.
  • This baffle imposes the circulation of the first fluid F1 between the first hollow element 31a and the second hollow element 31b and vice versa.
  • the hollow elements 31 have transverse partitions 9 arranged in a staggered manner and between each hollow protuberance 5 in order to maximize the passages of the first fluid F1 between the first 31a and second 31b hollow elements in order to have good homogenization of its temperature and thus improve the heat exchanges that this first fluid F1 can have with the second fluid F2 within the heat exchange bundle 3.
  • the hollow elements 31 may have a lower number of transverse partitions 9 and more particularly more spaced from each other within the same hollow element 31.
  • a fourth embodiment of the hollow protuberances 5 is shown.
  • This fourth embodiment makes it possible in particular to limit the pressure losses linked to the passage of the first fluid F1 between the first 31a and second 31b hollow elements.
  • the first 31a and second 31b hollow elements each have hollow protuberances 5 arranged opposite each other.
  • these hollow protuberances 5 have a variable section. More particularly, the hollow protuberances 5 have a leading wall 55 and an end wall 57.
  • the leading wall 55 of the hollow protuberance 5 is the first encountered in the direction of circulation of the first fluid F1.
  • each of the first 31a and second 31b hollow elements has hollow protuberances 5 whose second free ends 53 are arranged facing each other in order to ensure the mechanical connection, in particular by brazing, of these first 31a and second 31b hollow elements.
  • these second free ends 53 have an opening in order to allow the passage of the first fluid F1 from the first hollow element 31a to the second hollow element 31b and vice versa.
  • these hollow protuberances 5 facing each other have a central symmetry relative to the center of the opening for the circulation of the first fluid F1 between these first 31a and second 31b hollow elements.
  • the hollow elements 31 also have transverse partitions 9 connecting the walls 35a of the channel 35 to each other.
  • these transverse partitions are arranged in a staggered manner in the first 31a and second 31b hollow elements and separate the hollow protuberances 5 from each other.
  • the transverse partitions 9 are arranged in the center of the length separating two hollow protuberances 5. According to other alternatives not shown here, the transverse partitions 9 may have a different spacing or even a different positioning within the first 31a and second 31b hollow elements.
  • each channel 35 for the circulation of the first fluid F1 has a center and a periphery and the at least one hollow protuberance 5 allowing fluid communication between two adjacent hollow elements 31 is arranged at the center of this channel 35.
  • the heat exchange bundle 3 has more than two hollow elements 31, and more particularly a first 31a, a second 31b, and a third 31c hollow elements, all in fluid communication via the protuberances 5.
  • the different hollow elements 31a, 31b, 31c have transverse partitions 9 configured to direct the flow towards a channel 35 of a particular hollow element 31. More particularly according to this fifth particular embodiment, the transverse partitions 9 are arranged so as to define flow directions for the first fluid F1 in directions orthogonal to the channels 35 of the hollow elements 31.
  • Such an arrangement of the transverse partitions 9 increases the path traveled by the first fluid F1 in the heat exchange bundle 3, which contributes to improving the heat exchanges between the first F1 and second F2 fluids. Furthermore, such a configuration of the heat exchange bundle 3 also makes it possible to limit the pressure losses linked to the different changes of direction of the first fluid F1.
  • the manufacturing method 100 comprises a step E1 of producing hollow protuberances 5 on at least one face of a hollow element 31. At least a portion of these hollow protuberances 5 has an opening arranged at their second free end 53 opposite their first end 51 arranged in contact with the first hollow element 31a. These hollow protuberances 5 can in particular be produced by stamping the at least one face of this hollow element 31.
  • the manufacturing method 100 then implements a step of preparing a stack E2.
  • This stack comprises at least a first 31a and a second 31b superimposed hollow elements.
  • the face of the first hollow element 31a having the hollow protuberances 5 is arranged opposite the face of the second hollow element 31b having orifices and in such a way that the hollow protuberances 5 cooperate with the orifices in order to allow fluid communication between the first 31a and second 31b hollow elements.
  • the orifices of the second hollow element 31b correspond to the opening of the second free ends 53 of the protuberances carried by the second hollow element 31b.
  • the manufacturing method 100 then implements a heating and compression step E3 of the stack in order to allow the mechanical connection by brazing of at least the hollow protuberances 5 carried by the first hollow element 31a with the periphery of the orifices carried by the second hollow element 31b in order to form a sealed mechanical connection between the first 31a and second 31b hollow elements.
  • the manufacturing method 100 is simple and quick to implement, in particular due to the reduction in the constituent elements of the heat exchange bundle 3 of the heat exchanger 1.
  • the stack may further comprise two end elements 38, 39 (visible in the figure 1 ) arranged on either side of the superposition of hollow elements 31 and parallel to these hollow elements 31.
  • Each end element 38, 39 has a face arranged opposite a face of a hollow element 31. This face of the end elements 38, 39 is smooth and intended to be brazed with the hollow elements 31 in the stack.
  • the face of the hollow elements 31 arranged opposite the end elements 38, 39 has hollow protuberances 5 in order to form the space 37' for the passage of the second fluid F2 and the brazing of the end elements 38, 39 with the adjacent hollow elements 31.
  • These hollow protuberances 5 may have an opening for the passage of the first fluid F1. This opening is obstructed by the end elements 38, 39 during the formation of the sealed mechanical connection by brazing between the adjacent elements 31, 38, 39.
  • the manufacturing method 100 may include a final step of fixing (not shown) the input 11 and output 13 (visible on the figure 1 ) for the first fluid F1.
  • the heat exchanger 1 having a heat exchange bundle 3 as defined above.
  • the presence of protuberances 5 allows the joining together of at least the various adjacent hollow elements 31 of the heat exchange bundle 3 and allows an increase in the heat exchange surface improving the exchanges between the first F1 and second F2 fluids.
  • the joining of the various adjacent hollow elements 31 of this heat exchange bundle 3 by brazing at the level of the protuberances 5 makes it possible to simplify the structure of the heat exchange bundle 3 and also to ensure good mechanical strength of this heat exchange bundle 3 and therefore of the heat exchanger 1.
  • hollow protuberances 5 allowing fluid communication between at least a first 31a and a second 31b hollow element allows an improvement in the homogenization of the temperature of the first fluid F1 and therefore an improvement in its heat exchanges with the second fluid F2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention traite du domaine des échangeurs de chaleur, notamment pour les véhicules automobiles, et des procédés de fabrication de tels échangeurs de chaleur.
  • De nos jours, les échangeurs de chaleur équipent de grands nombres de véhicules automobiles. Ces échangeurs de chaleur peuvent par exemple être dédiés au refroidissement des moteurs ou des batteries, ou encore au fonctionnement des dispositifs de climatisation. EP 2 420 791 divulgue un échangeur de chaleur comportant les caractéristiques du préambule de la revendication 1.
  • Les échangeurs de chaleur comprennent généralement un faisceau d'échange thermique constitué par un ensemble d'éléments creux superposés dans lesquels un premier fluide caloporteur, comme par exemple de l'eau glycolée ou un fluide réfrigérant, est destiné à s'écouler. Ce faisceau d'échange thermique présente une pluralité d'ailettes disposées entre ces éléments creux. Ces ailettes sont configurées pour augmenter la surface d'échange thermique entre le premier fluide caloporteur circulant à l'intérieur des éléments creux et un deuxième fluide caloporteur, comme par exemple de l'air, circulant entre ces éléments creux. Toutefois, de tels échangeurs de chaleur présentent un nombre important de pièces et peuvent être complexes à assembler, notamment du fait du montage des ailettes. Un tel échangeur de chaleur est par exemple décrit dans le document EP 2869015 .
  • D'autre part, les échangeurs de chaleur à ailettes génèrent une certaine résistance thermique pour l'échange entre le premier fluide caloporteur, comme par exemple le fluide réfrigérant, et le deuxième fluide caloporteur, comme par exemple l'air. En effet, la surface des ailettes permettant d'augmenter la surface d'échange n'est pas en contact direct avec les deux fluides. Les échanges thermiques entre ces deux fluides avec les échangeurs thermiques de l'art antérieur peuvent donc être améliorés.
  • On connaît du document US 3757856 , un échangeur de chaleur dans lequel les éléments creux du faisceau d'échange thermique présentent des protubérance ou des cavités de manière à améliorer les surfaces d'échanges entre les deux fluides circulant dans cet échangeur de chaleur. Cependant, les échanges de chaleur entre les premier et deuxième fluide au sein du faisceau d'échange thermique décrit dans ce document peuvent être améliorés.
  • La présente invention a pour objet de proposer un échangeur de chaleur présentant des capacités d'échange thermique améliorées par rapport à ceux connus de l'art antérieur et présentant une bonne tenue mécanique.
  • Un autre objectif de la présente invention, différent de l'objectif précédent, est de proposer un échangeur de chaleur dont le nombre de pièces le constituant est limité.
  • Un autre objectif de la présente invention, différent des objectifs précédents, est de proposer un échangeur de chaleur qui soit simple et rapide à assembler.
  • Un autre objectif de la présente invention, différent des objectifs précédents, est de proposer un procédé de fabrication d'un échangeur de chaleur qui soit simple, rapide et bon marché.
  • Afin d'atteindre, au moins partiellement, au moins un des objectifs précités, la présente invention a pour objet un échangeur de chaleur, notamment pour véhicule automobile, comprenant les caractéristiques de la revendication 1.
  • La possibilité pour le premier fluide de passer d'un élément creux à un autre élément creux à travers les protubérances reliant ces éléments creux, permet une bonne homogénéisation de la température de ce premier fluide et également une amélioration des échanges thermiques entre les premier et deuxième fluides. D'autre part, la présence des protubérances permet une perturbation de la circulation du deuxième fluide à travers le faisceau d'échange thermique. Ainsi, les échanges thermiques entre les premier et deuxième fluides sont améliorés du fait des protubérances reliant les éléments creux entre eux et permettant également la circulation du premier fluide à travers certaines protubérances creuses. De plus, les protubérances sont configurés pour relier les éléments creux entre eux, ce qui permet également de simplifier la structure du faisceau d'échange thermique en permettant notamment de limiter le nombre de pièces composant ce faisceau d'échange thermique.
  • L'échangeur de chaleur selon la présente invention peut comporter en outre une ou plusieurs des caractéristiques suivantes prises seules ou en combinaison.
  • Selon un premier aspect, les éléments creux du faisceau d'échange thermique peuvent être des plaques.
  • Selon ce premier aspect, le faisceau d'échange thermique peut être formé par une rangée de plaques superposées.
  • Selon un deuxième aspect, les éléments creux du faisceau d'échange thermique peuvent être des tubes plats.
  • Selon ce deuxième aspect, le faisceau d'échange thermique peut être formé par au moins une rangée de tubes plats superposés.
  • Les éléments creux peuvent être réalisés en un matériau présentant une conductivité thermique supérieure ou égale à 45 W.m-1.K-1 à 20°C.
  • Les éléments creux peuvent être réalisés en métal ou en un alliage métallique, notamment en aluminium.
  • Selon un mode de réalisation particulier, le premier élément creux peut porter au moins une protubérance creuse coopérant avec un orifice réalisé dans le deuxième élément creux disposé en regard de l'au moins une protubérance creuse du premier élément creux, ladite protubérance creuse assurant la communication fluidique entre les premier et deuxième éléments creux et formant une liaison étanche avec l'orifice.
  • Selon ce mode de réalisation particulier, les premier et deuxième éléments creux présentent en alternance une protubérance creuse et un orifice destiné à coopérer avec une protubérance creuse de manière étanche à l'état assemblé du faisceau d'échange thermique.
  • Selon un autre mode de réalisation particulier, le premier et le deuxième éléments creux peuvent présenter chacun au moins une protubérance creuse, la protubérance creuse portée par le premier élément creux présentant une extrémité coopérant avec une extrémité de la protubérance creuse portée par le deuxième élément creux et formant une liaison étanche avec cette protubérance creuse du deuxième élément creux de manière à permettre la communication fluidique entre les premier et deuxième éléments creux.
  • Selon un aspect, chaque canal pour la circulation du premier fluide présente un centre et une périphérie et l'au moins une protubérance creuse permettant la communication fluidique entre deux éléments creux adjacents peut être disposée au niveau du centre du canal.
  • Selon un aspect, la pluralité de protubérances portée par l'au moins un élément creux peuvent être des protubérances creuses permettant la communication fluidique entre le premier et le deuxième éléments creux.
  • Selon un premier mode de réalisation particulier, les protubérances creuses peuvent présenter une forme de section constante dont une première extrémité est disposée au contact d'une face de l'élément creux portant la protubérance et une deuxième extrémité libre, disposée à l'opposé de la première extrémité et au contact de l'élément creux adjacent.
  • Selon ce premier mode de réalisation particulier, la section de la protubérance creuse peut être de forme circulaire, oblongue, ou encore parallélépipédique.
  • Selon un deuxième mode de réalisation particulier, les protubérances creuses peuvent présenter une forme de section variable dont une première extrémité est disposée au contact d'une face de l'élément creux portant la protubérance et une deuxième extrémité libre, opposée à la première extrémité et disposée au contact de l'élément creux adjacent, ladite première extrémité présentant une section dont l'aire est supérieure à celle de la deuxième extrémité libre.
  • Selon ce deuxième mode de réalisation particulier, la protubérance creuse peut être de forme conique dont la deuxième extrémité est plane ou en forme de dôme.
  • Selon une variante de ce deuxième mode de réalisation particulier, les protubérances creuses présentent une paroi d'attaque et une paroi de fin, la paroi d'attaque étant la première en contact avec le premier fluide lors du passage de ce premier fluide au niveau de la protubérance creuse.
  • Selon un mode de réalisation particulier de cette variante, les éléments creux présentent chacun au moins une protubérance creuse dont les deuxièmes extrémités libres sont en contact les unes avec les autres, et ces protubérances creuses présentent une symétrie centrale par rapport au centre de l'ouverture des protubérances creuses pour le passage du premier fluide entre un premier et un deuxième éléments creux.
  • Selon cette variante, la paroi d'attaque de la protubérance creuse et le canal de l'élément creux peuvent former un angle compris entre 90° et 180°, et notamment compris entre 105° et 150°.
  • Selon cette variante également, la paroi de fin de la protubérance creuse et le canal de l'élément creux peuvent former un angle compris entre 90° et 180°, et notamment compris entre 120° et 165°.
  • Encore selon cette variante, l'élément creux peut présenter au moins une cloison transversale.
  • La cloison transversale peut être disposée au milieu de l'espace défini entre deux protubérances creuses dans l'élément creux.
  • Selon un mode de réalisation particulier, le faisceau d'échange thermique peut comporter en outre deux éléments d'extrémités disposés parallèlement aux éléments creux superposés et respectivement de part et d'autre de la superposition d'éléments creux, chaque élément d'extrémité présente une face disposée en regard d'une face d'un élément creux et définissant un espace entre l'élément d'extrémité et l'élément creux pour permettre la circulation du deuxième fluide.
  • La face de l'élément d'extrémité peut être lisse et est configurée pour obstruer les ouvertures des deuxièmes extrémités des protubérances creuses disposées en regard de l'élément d'extrémité de manière à former une liaison étanche entre l'élément creux et l'élément adjacent.
  • La présente invention a également pour objet un procédé de fabrication d'un échangeur de chaleur tel que défini précédemment comportant les étapes suivantes :
    • réalisation de protubérances creuses par emboutissage d'au moins une face d'un premier élément creux, au moins une partie des protubérances creuses présentant une ouverture disposée au niveau d'une deuxième extrémité opposée à une première extrémité disposée au contact du premier élément creux ;
    • formation d'un empilement comprenant au moins un premier et un deuxième éléments creux superposés, la face du premier élément creux présentant les protubérances creuses étant disposée en regard d'une face du deuxième élément creux présentant des orifices et de manière à ce que les protubérances coopèrent avec les orifices ; et
    • chauffe et compression de l'empilement afin de permettre la liaison mécanique par brasage au moins des protubérances creuses portées par le premier élément creux avec le pourtour des orifices portés par le deuxième élément creux afin de former une liaison mécanique étanche entre les premier et deuxième éléments creux.
  • Selon un mode de réalisation particulier, les orifices du deuxième élément creux peuvent correspondre à l'ouverture de la deuxième extrémité des protubérances portées par le deuxième élément creux.
  • Selon une variante, l'empilement peut comporter en outre deux éléments d'extrémités disposés respectivement de part et d'autre de la superposition d'éléments creux et parallèlement à ces éléments creux, lesdits éléments d'extrémités présentant une face disposée en regard d'une face de l'élément creux adjacent, ladite face des éléments d'extrémités étant lisse.
  • Selon cette variante, les éléments creux disposés en regard des éléments d'extrémités peuvent présenter des protubérances creuses sur leur face disposée en regard des éléments d'extrémités afin de permettre le brasage des éléments d'extrémités avec les éléments creux adjacent et la formation d'une liaison mécanique étanche entre les éléments creux et les éléments d'extrémités.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre illustratif et non limitatif, et des dessins annexés dans lesquels :
    • [Fig. 1] la figure 1 est une représentation schématique en perspective d'un échangeur de chaleur ;
    • [Fig. 2] la figure 2 est une représentation schématique en perspective partielle d'un faisceau d'échange thermique de l'échangeur de chaleur de la figure 1 ;
    • [Fig. 3A] la figure 3A est une représentation schématique en perspective d'un ensemble de protubérances selon une première variante ;
    • [Fig. 3B] la figure 3B est une représentation schématique en perspective d'un ensemble de protubérances selon une deuxième variante ;
    • [Fig. 3C] la figure 3C est une représentation schématique en perspective d'un ensemble de protubérances selon une troisième variante ;
    • [Fig. 4A] la figure 4A est une représentation schématique en perspective d'un ensemble de protubérances selon une quatrième variante ;
    • [Fig. 4B] la figure 4B est une représentation schématique en perspective d'un ensemble de protubérances selon une cinquième variante;
    • [Fig. 5A] la figure 5A est une représentation schématique en coupe transversale de deux protubérances coopérant entre elles selon un premier mode de réalisation;
    • [Fig. 5B] la figure 5B est une représentation schématique en coupe transversale de deux protubérances coopérant entre elles selon un deuxième mode de réalisation ;
    • [Fig. 6] la figure 6 est une représentation schématique en coupe transversale de deux éléments creux du faisceau d'échange thermique de la figure 2 en communication fluidique selon un premier mode de réalisation particulier ;
    • [Fig. 7] la figure 7 est une représentation schématique en coupe transversale de deux éléments creux du faisceau d'échange thermique de la figure 2 en communication fluidique selon un deuxième mode de réalisation particulier ;
    • [Fig. 8] la figure 8 est une représentation schématique en coupe transversale de deux éléments creux du faisceau d'échange thermique de la figure 2 en communication fluidique selon un troisième mode de réalisation particulier ;
    • [Fig. 9] la figure 9 est une représentation schématique en coupe transversale de deux éléments creux du faisceau d'échange thermique de la figure 2 en communication fluidique selon un quatrième mode de réalisation particulier ;
    • [Fig. 10] la figure 10 est une représentation schématique en coupe transversale d'un faisceau d'échange thermique présentant des éléments creux en communication fluidique selon un cinquième mode de réalisation particulier ; et
    • [Fig. 11] la figure 11 est une représentation schématique d'un organigramme illustrant un procédé de fabrication de l'échangeur de chaleur de la figure 1.
  • Les éléments identiques sur les différentes figures, portent les mêmes références.
  • Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées et/ou interchangées pour fournir d'autres réalisations.
  • Dans la présente description on peut indexer certains éléments ou paramètres, comme par exemple premier élément ou deuxième élément ainsi que premier paramètre et deuxième paramètre ou encore premier critère et deuxième critère etc. Dans ce cas, il s'agit d'un simple indexage pour différencier et dénommer des éléments ou paramètres ou critères proches mais non identiques. Cette indexation n'implique pas une priorité d'un élément, paramètre ou critère par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n'implique pas non plus un ordre dans le temps par exemple pour apprécier tels ou tels critères.
  • Dans la description suivante, on entend par « conductivité thermique », l'énergie, ou quantité de chaleur, transférée par unité de surface et de temps, exprimée en watt par mètre-kelvin (W.m-1.K-1).
  • Ensuite, on entend par « fluide » dans la description suivante, un corps dont les molécules ont peu d'adhésion et peuvent glisser librement les unes par rapport aux autres (dans le cas des liquides) ou se déplacer indépendamment les unes des autres (dans le cas des gaz), de façon que le corps prenne la forme du vase qui le contient.
  • En référence à la figure 1, il est représenté un échangeur de chaleur 1 notamment pour véhicule automobile. Cet échangeur de chaleur 1 comprend un faisceau d'échange thermique 3 entre au moins un premier fluide F1 caloporteur et un deuxième fluide F2 caloporteur (visibles sur la figure 2). Le faisceau d'échange thermique 3 est composé par au moins deux éléments creux 31 superposés. Chaque élément creux 31 forme au moins un canal 35 (visible sur la figure 2) à l'intérieur duquel le premier fluide F1 est destiné à circuler. L'échangeur de chaleur 1 comporte en outre une première 11 et une deuxième 13 boites collectrices. Les première 11 et deuxième 13 boites collectrices sont disposées aux extrémités des éléments creux 31 et forment avec le faisceau d'échange thermique 3 l'échangeur de chaleur 1. La première boite collectrice 11 présente par exemple une entrée 11a afin d'alimenter les éléments creux 31 en premier fluide F1 et la deuxième boite collectrice 13 présente par exemple une sortie 13a afin de permettre la circulation du premier fluide F1 dans un circuit (non représenté) permettant le retour de ce premier fluide F1 au niveau de la première boite collectrice 11. Ce premier fluide F1 caloporteur peut notamment être un liquide, comme par exemple de l'eau glycolée ou un fluide réfrigérant. Ces première 11 et deuxième 13 boites collectrices sont rapportées au faisceau d'échange thermique 3 afin de former l'échangeur de chaleur 1. Ces première 11 et deuxième 13 boites collectrices peuvent être fixées au faisceau d'échange thermique 3 par brasage ou par une liaison mécanique, notamment par sertissage, par exemple. Les éléments creux 31 superposés du faisceau d'échange thermique 3 peuvent être des plaques afin de former un échangeur de chaleur 1 à plaques, ou encore être des tubes plats afin de former un échangeur de chaleur 1 à tubes. Le faisceau d'échange thermique 3 peut donc être réalisé par une rangée de plaques superposées ou encore par au moins une rangée de tubes plats superposés. Dans le cas où le faisceau d'échange thermique 3 présente plus d'une rangée de tubes plats, ces rangées sont disposées côte-à-côte dans le sens de circulation du deuxième fluide F2 (représenté sur la figure 2). Les éléments creux 31 superposés du faisceau d'échange thermique 3 peuvent notamment être réalisés en matériau présentant une conductivité thermique supérieure ou égale à 45 W.m-1.K-1 à 20°C. Typiquement, ces éléments creux peuvent être réalisés en métal ou en un alliage de métaux, et notamment en aluminium. Une telle conductivité thermique pour le matériau constitutif des éléments creux 31 permet d'assurer de bons transferts thermiques entre le premier F1 et le deuxième F2 fluides dans ce faisceau d'échange thermique 3 afin de permettre notamment les échanges thermiques du premier fluide F1.
  • En référence aux figures 1 et 2, les éléments creux 31 sont également configurés pour permettre la circulation du deuxième fluide F2 dans un espace 37 entre les éléments creux 31 afin de permettre un échange thermique entre le premier F1 et le deuxième F2 fluides lors du fonctionnement de cet échangeur thermique 1. Le deuxième fluide F2 caloporteur peut par exemple être de l'air destiné à circuler entre les éléments creux 31 afin d'échanger de l'énergie thermique avec le premier fluide F1 circulant à l'intérieur des éléments creux 31 par exemple.
  • Selon le mode de réalisation particulier de la figure 2, il est représenté un élément creux 31 présentant deux canaux 35 comportant chacun un centre et une périphérie. Selon d'autres alternatives, l'élément creux 31 peut présenter un nombre différent de canaux 35.
  • En référence aux figures 1 et 2, au moins un des éléments creux 31 du faisceau d'échange thermique 3 présente une pluralité de protubérances 5. Les protubérances 5 s'étendent dans l'espace 37 défini pour la circulation du deuxième fluide F2. Une telle disposition des protubérances 5 dans l'espace 37 défini pour le passage du deuxième fluide F2 permet de créer des perturbations du flux du deuxième fluide F2 à travers le faisceau d'échange thermique 3, ce qui permet entre autre une meilleure homogénéisation de la température de ce deuxième fluide F2 et une amélioration des échanges thermiques entre le premier F1 et le deuxième F2 fluides circulants dans le faisceau d'échange thermique 3. Cette perturbation de l'écoulement du deuxième fluide F2 dans l'espace 37 peut notamment consister en une diminution de sa vitesse ou encore en une perturbation de sa direction de circulation permettant une meilleure homogénéisation de sa température. D'autre part, les protubérances 5 font la liaison entre deux éléments creux 31 adjacents. On entend ici par éléments adjacents deux éléments disposés en regard l'un de l'autre. De plus, au moins un premier élément creux 31a et un deuxième élément creux 31b disposés en regard l'un de l'autre sont en communication fluidique l'un avec l'autre par au moins une protubérance 5 creuse portée par au moins un des premier 31a et/ou deuxième 31b éléments creux 31.
  • Selon le mode de réalisation particulier de la figure 1, le faisceau d'échange thermique 3 peut comporter en outre deux éléments d'extrémités 38, 39 disposés parallèlement aux éléments creux 31 superposés et respectivement de part et d'autre de la superposition d'éléments creux 31. Chaque élément d'extrémité 38, 39 présente une face disposée en regard d'une face d'un élément creux 31 et définissent un espace 37' entre l'élément d'extrémité 38, 39 et l'élément creux 31 pour permettre la circulation du deuxième fluide F2. Ces éléments d'extrémités 38, 39 peuvent être réalisés par une plaque par exemple en métal ou en alliage métallique comme par exemple en aluminium ou en alliage d'aluminium. Selon un mode de réalisation particulier, le matériau constitutif des éléments d'extrémités 38, 39 est identique à celui formant les éléments creux 31.
  • Selon le mode de réalisation particulier de la figure 2, les protubérances 5 sont formées directement sur les faces des éléments creux 31. Selon ce mode de réalisation particulier, les protubérances 5 peuvent être réalisées par déformation d'une surface des éléments creux 31.
  • En référence aux figures 2 à 5B, les protubérances 5 présentent une première extrémité 51 disposée au contact de la face de l'élément creux 31 qui porte la protubérance 5 et une deuxième extrémité libre 53, opposée à la première extrémité 51, destinée à être au contact de l'élément creux 31 ou de l'élément d'extrémité 38, 39 adjacent (visibles sur la figure 1). On entend ici par élément adjacent, un élément du faisceau d'échange thermique 3 disposé en regard d'une face d'un élément creux 31. Un élément adjacent peut donc être un autre élément creux 31, ou encore un élément d'extrémité 38, 39. La deuxième extrémité libre 53 des protubérances 5 creuses présente une ouverture configurée pour assurer la communication fluidique entre le premier 31a et le deuxième 31b éléments creux.
  • En référence aux figures 3A à 3C, il est représenté les protubérances 5 creuses selon une première variante. Selon cette première variante, les protubérances 5 creuses peuvent présenter une forme de section constante. Par forme de section constante, il est entendu ici que la protubérance 5 creuse présente un diamètre constant sur l'ensemble de sa longueur, c'est-à-dire sur l'ensemble de l'espace 37, 37' disposé entre les éléments 31, 38, 39 pour le passage du deuxième fluide F2 dans lequel elle s'étend. Selon les différents modes de réalisations représentés en référence aux figures 3A à 3C, il est représenté deux protubérances 5 creuses dont les deuxièmes extrémités libres 53 présentant une ouverture pour le passage du premier fluide F1 sont disposées respectivement au contact les unes des autres et forment une liaison étanche. Une telle disposition des protubérances 5 creuses correspond à celle décrite précédemment en référence au deuxième mode de réalisation particulier et peut offrir une résistance aux déformations liées au passage du deuxième fluide F2 dans l'espace 37, 37' importante. Plus particulièrement selon cette première variante, la section de la protubérance 5 creuse peut être de forme oblongue (figure 3A), parallélépipédique (figure 3B), ou encore circulaire (figure 3C).
  • En référence aux figures 4A et 4B, il est représenté les protubérances 5 creuses selon une deuxième variante. Selon cette deuxième variante, les protubérances 5 creuses peuvent présenter une forme de section variable. Par forme de section variable, on entend ici que la protubérance 5 creuse présente un diamètre variable sur l'ensemble de sa longueur, c'est-à-dire sur l'ensemble de l'espace 37, 37' disposé entre les éléments 31, 38, 39 pour le passage du deuxième fluide F2 dans lequel elle s'étend. La première extrémité 51 des protubérances 5 creuses présente une aire supérieure à celle de la deuxième extrémité libre 53. Selon les différentes réalisations représentées en référence aux figures 4A et 4B, il est représenté deux protubérances 5 creuses dont les deuxièmes extrémités libres 53 présentant une ouverture pour le passage du premier fluide F1 sont disposées respectivement au contact les unes des autres. Ainsi, une telle disposition des protubérances 5 creuses correspond également au deuxième mode de réalisation particulier décrit précédemment. De telles protubérances 5 creuses peuvent permettre de limiter la diminution de la vitesse d'écoulement du deuxième fluide F2 dans l'espace 37, 37' défini entre un élément creux 31 et un élément adjacent 31, 38, 39 tout en perturbant la circulation de ce deuxième fluide F2 dans l'espace 37, 37' et la circulation du premier fluide F1 à l'intérieur des éléments creux 31. Plus particulièrement selon cette deuxième variante, les protubérances 5 creuses peuvent présenter une forme conique présentant une deuxième extrémité libre 53 plane (figure 4A), ou encore une forme de dôme (figure 4B).
  • En référence aux figures 3A à 4B, la forme des protubérances 5 creuses peut être choisie en fonction des contraintes qu'elles peuvent être amenées à subir au cours du fonctionnement de l'échangeur de chaleur 1 ou encore au cours du brasage du faisceau d'échange thermique 3. La forme de ces protubérances 5 creuses peut également être choisie en fonction des perturbations du flux du deuxième fluide F2 et/ou du premier fluide F1 (visibles sur la figure 2) souhaitées dans l'espace 37, 37' (visible notamment sur la figure 1).
  • Par ailleurs, en référence aux figures 5A et 5B, il est représenté une vue en coupe de deux protubérances 5 coopérant entre elles au niveau de leur deuxième extrémité libre 53 afin de permettre leur solidarisation par brasage pour former une liaison mécanique entre les premier 31a et deuxième 31b éléments creux présentant ces protubérances 5 disposées en regard les unes des autres. Selon le mode de réalisation particulier de la figure 5A, les protubérances 5 présentent une zone de contact 54 au niveau du pourtour de leurs deuxièmes extrémités libres 53. Cette zone de contact 54 permet d'assurer le brasage entre ces deuxièmes extrémités libres 53 pour permettre la formation du faisceau d'échange thermique 3 (notamment visible sur la figure 3). Selon un mode de réalisation particulier, cette zone de contact 54 peut présenter une longueur supérieure ou égale à 0,5 mm. Ce mode de réalisation particulier est décrit ici pour deux protubérances 5 coopérant entre elles. Toutefois, selon une variante non représentée ici, la zone de contact 54 de la deuxième extrémité libre 53 d'une protubérance 5 peut coopérer avec le pourtour d'un orifice porté par la face d'un élément creux 31 disposée en regard de cette protubérance 5. D'autre part, selon le mode de réalisation particulier de la figure 5B, les deuxièmes extrémités libres 53 des protubérances 5 portées respectivement par un premier 31a et un deuxième 31b éléments creux et disposées en regard les unes des autres peuvent être imbriquées afin de permettre le brasage de ces deuxièmes extrémités libres 53 et ainsi la formation de la liaison mécanique pour former le faisceau d'échange thermique 3.
  • L'assemblage du faisceau d'échange thermique 3 par brasage permet d'assurer un bon maintien mécanique de ce faisceau d'échange thermique 3. Par ailleurs, les protubérances 5 occupent l'espace 37, 37' pour le passage du deuxième fluide F2. Dans le cas des échangeurs de chaleur de l'art antérieur, cet espace était occupé par la présence d'ailettes disposées entre les éléments creux 31. La présence des protubérances 5 permet donc de limiter le nombre de constituants du faisceau d'échange thermique 3 ce qui permet notamment de simplifier sa structure et son assemblage en supprimant la présence des ailettes connues de l'art antérieur. Un tel faisceau d'échange thermique 3 présente donc des coûts de production assez faibles tout en garantissant une bonne tenue mécanique de celui-ci. De manière alternative ou en complément, une telle liaison mécanique du faisceau d'échange thermique 3 est également réalisable lorsque celui-ci présente les éléments d'extrémités 38, 39 dont une face est disposée en regard des deuxième extrémités libres 53 des protubérances 5, éventuellement creuses, et définissant ainsi l'espace 37' pour le passage du deuxième fluide F2. D'autre part, cette face des éléments d'extrémités 38, 39 est lisse et configurée pour obstruer les ouvertures des deuxièmes extrémités libres 53 des protubérances 5 creuses disposées en regard de l'élément d'extrémité 38, 39 de manière à former une liaison étanche entre l'élément creux 31 et l'élément adjacent 31, 38, 39.
  • Selon un premier mode de réalisation particulier représenté en référence à la figure 6, un premier élément creux 31a peut porter au moins une protubérance 5 creuse coopérant avec un orifice 36 réalisé dans un deuxième élément creux 31b disposé en regard de cette protubérance 5 creuse du premier élément creux 31a. La deuxième extrémité libre 53 de cette protubérance 5 creuse assure la communication fluidique entre les premier 31a et deuxième 31b éléments creux pour le premier fluide F1 et forme une liaison étanche avec l'orifice porté par le deuxième élément creux 31b. Selon le mode de réalisation particulier de la figure 6, les premier élément creux 31a présente les protubérances 5 creuses et le deuxième élément creux 31b présente les orifices afin de permettre la communication fluidique entre ces premier 31a et deuxième 31b éléments creux et également la formation de la liaison mécanique étanche entre ces éléments creux 31a, 31b.
  • Selon une variante de ce premier mode de réalisation particulier non représentée ici, les premier 31a et deuxième 31b éléments creux peuvent présenter en alternance une protubérance 5 creuse et un orifice 36. Cet orifice 36 est destiné à coopérer avec la deuxième extrémité libre 53 d'une protubérance 5 creuse portée par la face de l'élément creux 31 disposée en regard de cet orifice 36. Par ailleurs, la liaison entre la protubérance 5 creuse et l'orifice 36 est une liaison mécanique étanche, qui peut notamment être réalisée par brasage.
  • Selon un deuxième mode de réalisation particulier représenté en référence à la figure 7, le premier 31a et le deuxième 31b éléments creux présentent chacun au moins une protubérance 5, la deuxième extrémité libre 53 de la protubérance 5 creuse portée par le premier élément creux 31a coopérant avec la deuxième extrémité libre 53 de la protubérance 5 creuse portée par le deuxième élément creux 31b. Ces deuxièmes extrémités libres 53 des protubérances 5 creuses portées par les premier 31a et deuxième 31b éléments creux forment une liaison étanche de manière à permettre la communication fluidique entre les premier 31a et deuxième 31b éléments creux.
  • Selon ces premier et deuxième modes de réalisation, le premier fluide F1 présente des turbulences T au niveau des premières extrémités 51 des protubérances 5 creuses. Ces turbulences T liées au passage du premier fluide F1 au moins au niveau des premières extrémités 51 des protubérances 5 permet une perturbation de l'écoulement de ce premier fluide F1 dans l'élément creux 31, contribuant ainsi à une amélioration de l'homogénéisation de la température de ce premier fluide F1 et donc des échanges thermiques entre le premier F1 et le deuxième F2 fluides. D'autre part, le premier fluide F1 peut passer du premier élément creux 31a au deuxième élément creux 31b et inversement en passant à travers l'une des protubérances 5. De plus, selon ces premier et deuxième modes de réalisation particuliers, la pluralité de protubérances 5 portées par l'au moins un élément creux 31 sont des protubérances 5 creuses permettant la communication fluidique entre le premier 31a et le deuxième 31b éléments creux.
  • Ainsi, ces protubérances 5 creuses assurant une communication fluidique entre les premier 31a et deuxième 31b éléments creux permettent au premier fluide F1 de passer du premier élément creux 31a au deuxième élément creux 31b et inverseent. Un tel déplacement du premier fluide F1 permet une agitation de ce dernier au moins au niveau de la protubérance 5 creuse, contribuant ainsi à une amélioration de l'homogénéisation de sa température. De plus, une telle perturbation de l'écoulement du premier fluide F1 permet une amélioration de ses échanges thermique avec le deuxième fluide F2 circulant dans l'espace 37 entre deux éléments creux 31 adjacents.
  • D'autre part, selon un troisième mode de réalisation particulier représenté en référence à la figure 8, les éléments creux 31 peuvent comporter des cloisons transversales 9. Les cloisons transversales 9 obstruent une section du canal 35 afin que le premier fluide F1 circule entre deux éléments creux 31 adjacents et en communication fluidique. Ces cloisons transversales 9 permettent donc la formation d'une chicane pour le premier fluide F1. Cette chicane impose la circulation du premier fluide F1 entre le premier élément creux 31a et le deuxième élément creux 31b et inversement. Selon le mode de réalisation particulier de la figure 8, les éléments creux 31 présentent des cloisons transversales 9 disposées en quinconce et entre chaque protubérance 5 creuse afin de maximiser les passages du premier fluide F1 entre les premier 31a et deuxième 31b éléments creux afin d'avoir une bonne homogénéisation de sa température et ainsi améliorer les échanges thermiques que ce premier fluide F1 peut avoir avec le deuxième fluide F2 au sein du faisceau d'échange thermique 3. Selon une alternative non représentée ici, les éléments creux 31 peuvent présenter un nombre inférieure de cloisons transversales 9 et plus particulièrement plus espacées les unes des autres au sein d'un même élément creux 31.
  • En référence à la figure 9, il est représenté un quatrième mode de réalisation des protubérances 5 creuses. Ce quatrième mode de réalisation permet notamment de limiter les pertes de charge liées au passage du premier fluide F1 entre les premier 31a et deuxième 31b éléments creux. Selon ce quatrième mode de réalisation, les premier 31a et deuxième 31b éléments creux présentent chacun des protubérances 5 creuses disposées en regard les unes des autres. D'autre part, ces protubérances 5 creuses présentent une section variable. Plus particulièrement, les protubérances 5 creuses présentent une paroi d'attaque 55 et une paroi de fin 57. Selon ce quatrième mode de réalisation particulier, la paroi d'attaque 55 de la protubérance 5 creuse est la première rencontrée dans le sens de circulation du premier fluide F1. Selon ce quatrième mode de réalisation particulier, la paroi d'attaque 55 de la protubérance 5 creuse et le canal 35 de l'élément creux 31 forment un angle α compris entre 0° (borne exclue) et 90° (borne exclue), et notamment compris entre 15° et 60°. D'autre part, la paroi de fin 57 de la protubérance 5 creuse et le canal 35 de l'élément creux 31 forment un angle β compris entre 90° et 180° (bornes exclues), et notamment compris entre 105° et 150°. Selon le mode de réalisation particulier de la figure 9, chacun des premier 31a et deuxième 31b éléments creux présente des protubérances 5 creuses dont les deuxièmes extrémités libres 53 sont disposées en regard les unes des autres afin d'assurer la liaison mécanique, notamment par brasage, de ces premier 31a et deuxième 31b éléments creux. Selon ce mode de réalisation particulier, ces deuxièmes extrémités libres 53 présentent une ouverture afin de permettre le passage du premier fluide F1 du premier élément creux 31a au deuxième élément creux 31b et inversement. Par ailleurs, ces protubérances 5 creuses en regard l'une de l'autre présentent une symétrie centrale par rapport au centre de l'ouverture pour la circulation du premier fluide F1 entre ces premier 31a et deuxième 31b éléments creux.
  • D'autre part, selon le mode de réalisation particulier de la figure 9, les éléments creux 31 présentent également des cloisons transversales 9 reliant les parois 35a du canal 35 entre elles. Selon ce mode de réalisation particulier, ces cloisons transversales sont disposées en quinconce dans les premier 31a et deuxième 31b éléments creux et séparent les protubérances 5 creuses les unes des autres. Par ailleurs, et toujours selon ce mode de réalisation particulier, les cloisons transversales 9 sont disposées au centre de la longueur séparant deux protubérances 5 creuses. Selon d'autres alternatives non représentées ici, les cloisons transversales 9 peuvent présenter un espacement différent ou encore un positionnement différent au sein des premier 31a et deuxième 31b éléments creux.
  • Selon un mode de réalisation particulier non représenté ici, chaque canal 35 pour la circulation du premier fluide F1 présente un centre et une périphérie et l'au moins une protubérance 5 creuse permettant la communication fluidique entre deux éléments creux 31 adjacents est disposée au niveau du centre de ce canal 35.
  • D'autre part, selon un cinquième mode de réalisation particulier représenté en référence à la figure 10, le faisceau d'échange thermique 3 présente plus de deux éléments creux 31, et plus particulièrement un premier 31a, un deuxième 31b, et un troisième 31c éléments creux, tous en communication fluidique via les protubérances 5. Selon ce cinquième mode de réalisation particulier, les différents éléments creux 31a, 31b, 31c présentent des cloisons transversales 9 configurées pour orienter le flux en direction d'un canal 35 d'un élément creux 31 particulier. Plus particulièrement selon ce cinquième mode de réalisation particulier, les cloisons transversales 9 sont disposées de manière à définir des sens d'écoulement pour le premier fluide F1 selon des directions orthogonales aux canaux 35 des éléments creux 31. Une telle disposition des cloisons transversales 9 augmente le trajet parcouru par le premier fluide F1 dans le faisceau d'échange thermique 3, ce qui contribue à l'amélioration des échanges de chaleur entre les premier F1 et deuxième F2 fluides. Par ailleurs, une telle configuration du faisceau d'échange thermique 3 permet également de limiter les pertes de charge liées aux différents changements de directions du premier fluide F1.
  • En référence à la figure 11, il est représenté un procédé de fabrication 100 d'un échangeur de chaleur 1 tel que décrit précédemment. Le procédé de fabrication 100 comprend une étape de réalisation E1 de protubérances 5 creuses sur au moins une face d'un élément creux 31. Au moins une partie de ces protubérances 5 creuses présente une ouverture disposée au niveau de leur deuxième extrémité libre 53 opposée à leur première extrémité 51 disposée au contact du premier élément creux 31a. Ces protubérances 5 creuses peuvent notamment être réalisées par emboutissage de l'au moins une face de cet élément creux 31.
  • Le procédé de fabrication 100 met ensuite en oeuvre une étape de préparation d'un empilement E2. Cet empilement comprend au moins un premier 31a et un deuxième 31b éléments creux superposés. De plus, la face du premier élément creux 31a présentant les protubérances 5 creuses est disposée en regard de la face du deuxième élément creux 31b présentant des orifices et de manière à ce que les protubérances 5 creuses coopèrent avec les orifices afin de permettre une communication fluidique entre les premier 31a et deuxième 31b éléments creux. Selon un mode de réalisation particulier, les orifices du deuxième élément creux 31b correspondent à l'ouverture des deuxièmes extrémités libres 53 des protubérances portées par le deuxième élément creux 31b. Ainsi, il est possible de fabriquer des éléments creux 31 identiques et de les faire coopérer ensuite pour former le faisceau d'échange thermique 3, ce qui permet notamment de faciliter le procédé de fabrication 100 de cet échangeur de chaleur 1.
  • Le procédé de fabrication 100 met ensuite en oeuvre une étape de chauffe et compression E3 de l'empilement afin de permettre la liaison mécanique par brasage au moins des protubérances 5 creuses portées par le premier élément creux 31a avec le pourtour des orifices portés par le deuxième élément creux 31b afin de former une liaison mécanique étanche entre les premier 31a et deuxième 31b éléments creux. Ainsi, le procédé de fabrication 100 est simple et rapide à mettre en oeuvre, notamment du fait de la diminution des éléments constitutifs du faisceau d'échange thermique 3 de l'échangeur de chaleur 1.
  • Selon une alternative, l'empilement peut comporter en outre deux éléments d'extrémités 38, 39 (visibles sur la figure 1) disposés de part et d'autre de la superposition d'éléments creux 31 et parallèlement à ces éléments creux 31. Chaque élément d'extrémité 38, 39 présente une face disposée en regard d'une face d'un élément creux 31. Cette face des éléments d'extrémités 38, 39 est lisse et destinée à être brasée avec les éléments creux 31 dans l'empilement. Selon un mode de réalisation particulier, la face des éléments creux 31 disposée en regard des éléments d'extrémités 38, 39 présente des protubérances 5 creuses afin de former l'espace 37' pour le passage du deuxième fluide F2 et le brasage des éléments d'extrémités 38, 39 avec les éléments creux 31 adjacent. Ces protubérances 5 creuses peuvent présenter une ouverture pour le passage du premier fluide F1. Cette ouverture est obstruée par les éléments d'extrémités 38, 39 lors de la formation de la liaison mécanique étanche par brasage entre les éléments 31, 38, 39 adjacents.
  • Le procédé de fabrication 100 peut comprendre une dernière étape de fixation (non représentée) des entrée 11 et sortie 13 (visibles sur la figure 1) pour le premier fluide F1.
  • Les différents modes de réalisation décrits précédemment sont des exemples fournis à titre illustratif et non limitatif. En effet, il est tout à fait possible pour l'homme de l'art d'envisager d'autres formes pour les protubérances 5 que celles décrites précédemment sans sortir du cadre de la présente description. D'autre part, l'homme de l'art pourra envisager un nombre supérieur d'éléments creux 31 en communication fluidique les uns avec les autres sans sortir du cadre de la présente description.
  • Ainsi, l'obtention d'un échangeur de chaleur 1 présentant des capacités d'échanges thermiques améliorées par rapport à ceux connus de l'art antérieur et présentant une bonne tenue mécanique tout en présentant un nombre de pièces limité est possible grâce à l'échangeur de chaleur 1 présentant un faisceau d'échange thermique 3 tel que défini précédemment. En particulier, la présence de protubérances 5 permet la solidarisation au moins des différents éléments creux 31 adjacents du faisceau d'échange thermique 3 et permet une augmentation de la surface d'échange thermique améliorant les échanges entre les premier F1 et deuxième F2 fluides. D'autre part, la solidarisation des différents éléments creux 31 adjacents de ce faisceau d'échange thermique 3 par brasage au niveau des protubérances 5 permet de simplifier la structure du faisceau d'échange thermique 3 et également d'assurer une bonne tenue mécanique de ce faisceau d'échange thermique 3 et donc de l'échangeur de chaleur 1. De plus, la présence de protubérances 5 creuses permettant la communication fluidique entre au moins un premier 31a et un deuxième 31b éléments creux permet une amélioration de l'homogénéisation de la température du premier fluide F1 et donc une amélioration de ses échanges thermiques avec le deuxième fluide F2.

Claims (9)

  1. Echangeur de chaleur (1), notamment pour véhicule automobile, comprenant un faisceau d'échange thermique (3) entre au moins un premier fluide (F1) et un deuxième fluide (F2), ledit faisceau d'échange thermique (3) étant composé par au moins deux éléments creux (31) superposés et configurés pour former respectivement un canal (35) à l'intérieur duquel le premier fluide (F1) est destiné à circuler et pour permettre la circulation du deuxième fluide (F2) dans un espace (37) entre les éléments creux (31) superposés, tel que au moins un élément creux (31) du faisceau d'échange thermique (3) présente une pluralité de protubérances (5) s'étendant dans l'espace (37) pour la circulation du deuxième fluide (F2), lesdites protubérances (5) faisant la liaison entre deux éléments creux (31) adjacents, et caractérisé en ce que au moins un premier élément creux (31a) et un deuxième élément creux (31b) disposés en regard l'un de l'autre sont en communication fluidique l'un avec l'autre par au moins une protubérance (5) creuse portée par au moins un des premier (31a) et/ou deuxième (31b) éléments creux, lesdits éléments creux (31) comportant des cloisons transversales (9) obstruant une section du canal (35) afin que le premier fluide (F1) circule entre deux éléments creux (31) adjacents en communication fluidique.
  2. Echangeur de chaleur (1) selon la revendication précédente, caractérisé en ce que le premier élément creux (31a) porte au moins une protubérance (5) creuse coopérant avec un orifice réalisé dans le deuxième élément creux (31b) disposé en regard de l'au moins une protubérance (5) creuse du premier élément creux (31a), ladite protubérance (5) creuse assurant la communication fluidique entre les premier (31a) et deuxième (31b) éléments creux et formant une liaison étanche avec l'orifice.
  3. Echangeur de chaleur (1) selon la revendication 1, caractérisé en ce que le premier (31a) et le deuxième (31b) éléments creux présentent chacun au moins une protubérance (5) creuse, la protubérance (5) creuse portée par le premier élément creux (31a) présentant une extrémité coopérant avec une extrémité de la protubérance (5) creuse portée par le deuxième élément creux (31b) et formant une liaison étanche avec cette protubérance (5) creuse du deuxième élément creux (31b) de manière à permettre la communication fluidique entre les premier (31a) et deuxième (31b) éléments creux.
  4. Echangeur de chaleur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la pluralité de protubérances (5) portée par l'au moins un élément creux (31) sont des protubérances (5) creuses permettant la communication fluidique entre le premier (31a) et le deuxième (31b) éléments creux.
  5. Echangeur de chaleur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que les protubérances (5) creuses présentent une forme de section constante dont une première extrémité (51) est disposée au contact d'une face de l'élément creux (31) portant la protubérance (5) et une deuxième extrémité libre (53), disposée à l'opposé de la première extrémité (51) et au contact de l'élément creux (31) adjacent.
  6. Echangeur de chaleur (1) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les protubérances (5) creuses présentent une forme de section variable dont une première extrémité (51) est disposée au contact d'une face de l'élément creux (31) portant la protubérance (5) creuse et une deuxième extrémité libre (53), opposée à la première extrémité (51) et disposée au contact de l'élément creux (31) adjacent, ladite première extrémité (51) présentant une section dont l'aire est supérieure à celle de la deuxième extrémité libre (53).
  7. Echangeur de chaleur (1) selon la revendication 6, caractérisé en ce que les protubérances (5) creuses présentent une paroi d'attaque (55) et une paroi de fin (57), la paroi d'attaque (55) étant la première en contact avec le premier fluide (F1) lors de son passage au niveau de la protubérance (5) creuse.
  8. Echangeur de chaleur (1) selon la revendication 7, caractérisé en ce que la paroi d'attaque (55) de la protubérance (5) creuse et le canal (35) de l'élément creux (31) forment un angle (α) compris entre 0° et 90° (bornes exclues), et notamment compris entre 15° et 60°.
  9. Echangeur de chaleur (1) selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que la paroi de fin (57) de la protubérance (5) creuse et le canal (35) de l'élément creux (31) forment un angle (β) compris entre 90° et 180° (bornes exclues), et notamment compris entre 105° et 150°.
EP20760495.0A 2019-08-23 2020-07-28 Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur Active EP4018146B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909370A FR3100058B1 (fr) 2019-08-23 2019-08-23 Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d’un tel échangeur de chaleur
PCT/FR2020/051393 WO2021038152A1 (fr) 2019-08-23 2020-07-28 Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur

Publications (2)

Publication Number Publication Date
EP4018146A1 EP4018146A1 (fr) 2022-06-29
EP4018146B1 true EP4018146B1 (fr) 2024-09-04

Family

ID=72178826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20760495.0A Active EP4018146B1 (fr) 2019-08-23 2020-07-28 Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur

Country Status (3)

Country Link
EP (1) EP4018146B1 (fr)
FR (1) FR3100058B1 (fr)
WO (1) WO2021038152A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757856A (en) 1971-10-15 1973-09-11 Union Carbide Corp Primary surface heat exchanger and manufacture thereof
JPH09196591A (ja) * 1996-01-23 1997-07-31 Sanden Corp 熱交換チューブエレメント及びそれを用いた熱交換器
WO1998044305A1 (fr) * 1997-04-02 1998-10-08 Creare Inc. Echangeur thermique a flux radial
KR100950689B1 (ko) * 2009-04-16 2010-03-31 한국델파이주식회사 플레이트 열교환기
EP2869015B1 (fr) 2013-11-05 2017-09-20 MAHLE International GmbH Méthode d'utilisation d'ailettes ondulées asymétriques avec des persiennes

Also Published As

Publication number Publication date
FR3100058B1 (fr) 2022-03-25
FR3100058A1 (fr) 2021-02-26
WO2021038152A1 (fr) 2021-03-04
EP4018146A1 (fr) 2022-06-29

Similar Documents

Publication Publication Date Title
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
EP0430752B1 (fr) Echangeur de chaleur à écoulement circonférentiel
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
FR2681419A1 (fr) Echangeur de chaleur a faisceau tubulaire comportant plusieurs circuits de fluides.
EP1063486B1 (fr) Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP3553445A1 (fr) Caloduc a pompage capillaire a rainures reentrantres offrant un fonctionnement ameliore
WO2020178536A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
EP4018146B1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
EP3394553B1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR2837917A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
EP1063488B1 (fr) Echangeur de chaleur à plaques, notamment pour refroidir une huile d'un véhicule automobile
EP4004472A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
WO2014095575A1 (fr) Élement d'echange thermique, et echangeur thermique correspondant
EP4004475A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
EP4004473A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP3394546B1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3045804A1 (fr) Echangeur thermique, notamment pour vehicule automobile
FR3045802A1 (fr) Echangeur thermique, notamment pour vehicule automobile
FR3089612A1 (fr) Boîte collectrice pour echangeur de chaleur et echangeur de chaleur comprenant une telle boîte collectrice
FR3082929A1 (fr) Boite collectrice et echangeur thermique correspondant
FR3045806A1 (fr) Echangeur thermique, notamment pour vehicule automobile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020037141

Country of ref document: DE