WO2021123597A1 - Échangeur de chaleur à passages de fluide optimisés - Google Patents

Échangeur de chaleur à passages de fluide optimisés Download PDF

Info

Publication number
WO2021123597A1
WO2021123597A1 PCT/FR2020/052436 FR2020052436W WO2021123597A1 WO 2021123597 A1 WO2021123597 A1 WO 2021123597A1 FR 2020052436 W FR2020052436 W FR 2020052436W WO 2021123597 A1 WO2021123597 A1 WO 2021123597A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
heat exchanger
fluid
passage
circulation
Prior art date
Application number
PCT/FR2020/052436
Other languages
English (en)
Inventor
Johanna INGENITO
Romain ANGELIQUE
Florian BONNIVARD
Mickael BREGOLI
Grégoire HANSS
Jérôme ROCCHI
Original Assignee
Liebherr-Aerospace Toulouse Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr-Aerospace Toulouse Sas filed Critical Liebherr-Aerospace Toulouse Sas
Priority to CN202080087136.4A priority Critical patent/CN114829863A/zh
Priority to US17/783,068 priority patent/US20230023640A1/en
Priority to EP20845201.1A priority patent/EP4078058A1/fr
Publication of WO2021123597A1 publication Critical patent/WO2021123597A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element

Definitions

  • the invention relates to a heat exchanger.
  • the invention relates to a plate and fin heat exchanger which can be used in an air conditioning system, for example in an air, rail or land vehicle.
  • Heat exchangers are used to allow heat exchange between two or more fluids, in particular to cool or heat one of the fluids using another fluid. Heat exchangers are used in many contexts, and in particular in air conditioning systems for air, rail or land vehicles, in which they make it possible in particular to regulate the temperature of the air conditioned by the air conditioning system. air at different stages of conditioning.
  • plate-fin heat exchangers form a type of design that uses plates and finned chambers to transfer heat between fluids.
  • the circulation channels formed by the plates and fins allow the circulation of each fluid without mixing with the other fluids, while maximizing the surface / volume ratio of heat transfer.
  • These types of exchangers are particularly popular in the transport industries, especially in the air, for their compact size and lightness, while having good performance.
  • plate heat exchangers have been made from a succession of flat plates, between which are arranged fins formed by a corrugated plate forming circulation channels for each fluid.
  • the plates and fins are manufactured independently and then brazed together to form the heat exchangers.
  • Flat plates and corrugated plates are metallic, for example aluminum or aluminum alloy, or stainless steel.
  • the geometries of the fins formed by the corrugated plate can be of various forms, for example rectangular, triangular, in waves, etc. Different configurations are used according to the needs in terms of heat exchange surface, pressure drop, etc.
  • the inventors sought to maximize the heat exchange between the fluids by minimizing the pressure drop due to the passage of each fluid through the exchanger, in particular for the fluid which heats up as it passes through the exchanger.
  • the invention aims to provide an optimized heat exchanger.
  • the invention aims in particular to provide, in at least one embodiment, a heat exchanger maximizing the heat exchange.
  • the invention also aims to provide, in at least one embodiment of the invention, a heat exchanger minimizing pressure drops.
  • the invention also aims to provide, in at least one embodiment of the invention, a less bulky and lighter heat exchanger.
  • the invention also aims to provide, in at least one embodiment of the invention, a compact heat exchanger that can be used in an air, rail or land vehicle, in particular in an air conditioning system.
  • the invention relates to a heat exchanger, configured to allow heat exchange between a first fluid and a second fluid circulating respectively in at least a first passageway and a second passageway, said passageways being formed by plates and fins of the heat exchanger and being configured to lead each fluid from a fluid inlet to a fluid outlet, the fluids circulating in a multitude of passage channels each formed by a closed space delimited by two plates adjacent fins and two adjacent fins, characterized in that each plate extends along a non-planar surface defined between the fluid inlet and the fluid outlet of the passageway associated, said non-planar surface following at least a first oscillating curve in at least a first main direction around an average surface of the plate, and in that each fin comprises an upper edge configured to be in contact with one of the adjacent plates , said upper plate, and a lower edge configured to be in contact with the other adjacent plate, called lower plate, each fin further following at least one second oscillating curve in at least a second main direction around an average surface of the fin, so that
  • a heat exchanger according to the invention therefore makes it possible, thanks to the particular geometry of the passage channels carried by a generating curve which is a combination of at least two oscillating curves, to maximize the exchange surface between the fluids while maintaining good performance in terms of pressure drop compared to a conventional plate-fin heat exchanger.
  • the combination of oscillating curves makes it possible to obtain generating curves of different shapes, allowing any type of geometry to be formed.
  • the plates and fins each follow an oscillating curve allowing an increase in exchange surfaces without noticeable impact on pressure drops.
  • the heat exchange efficiency is improved by around 35% for a reduction of at least 40% in mass and 20% in effective volume.
  • channels in the heat exchanger allows in particular a much lower pressure drop than the heat exchangers with multiple paths, where the fluid can follow several paths via bifurcations, said bifurcations being formed by a channel comprising the other fluid of the exchanger.
  • an oscillating curve is a curve lying alternately on one side and on the other from an average curve to this oscillating curve.
  • the oscillating curves can be periodic: the curves can for example be sinusoidal, triangular, etc.
  • the first curve and the second curve have the following characteristics:
  • the curve 20b extends in the X direction, comprises peaks or vertices, each forming a ridge line and has valleys, each forming a trough line.
  • the peak portions and the trough portions are arranged alternately in the Y direction, which is characteristic of a curve oscillating around the X axis.
  • Each point of the curve can be expressed as a coordinate which can be expressed as a function of of the X and Y axes.
  • a single coordinate value along the X axis is associated with each unique point of the curve, but several points of the curve have the same coordinate value along the Y axis due to the oscillation of the curve.
  • curve 20a oscillates around the X axis with oscillations along the Z axis.
  • the reference mark is expressed at each point of the curve by a principal direction X which corresponds to the tangent to the mean curve at this point of the curve.
  • the difference in height between a peak and a trough represents the amplitude.
  • the term average amplitude is also understood to mean the average height difference between a peak and a trough.
  • the distance between two adjacent vertices with respect to the Y axis represents the period, by average period is meant the average distance between two successive peaks.
  • the distance between two adjacent passage channels is defined by the pitch.
  • the term average pitch is also understood to mean the average distance between two channels.
  • these characteristics make it possible to ensure a low pressure drop while allowing an increase in the heat exchange surface. Too large an average amplitude compared to the period or the pitch would lead to significant pressure drops, despite the significant increase in the heat exchange surface. These characteristics allow a good compromise between the increase in the exchange surface and the pressure losses.
  • the first curve and / or the second curve is continuous.
  • the first curve and / or the second curve is discontinuous.
  • each curve can be either discontinuous or continuous.
  • the discontinuous curves allow to further increase the heat exchange surface, while the continuous curves have less impact on the pressure drops.
  • the first curve and / or the second curve oscillate with variable amplitude and / or frequency.
  • the amplitude or frequency of oscillation of the curves are variable, which makes it possible to adjust the pressure drop or the heat exchange of the fluid, for example upstream or downstream of the channels.
  • the fluids are gaseous or liquid.
  • the heat exchanger can be used in different contexts.
  • the heat exchanger can be used in the field of transport (aeronautics, rail, land, etc.) where heat exchanges take place between gas and gas, between gas and liquid or between liquid and liquid.
  • Each of these different types of fluids can be a hot source or a cold source.
  • the axes of circulation of the channels of the first passage are substantially parallel to the axes of circulation of the channels of the second passage.
  • the exchangers thus formed are co-current or counter-current.
  • the axes of circulation of the channels of the first passage are substantially orthogonal to the axes of circulation of the channels of the second passage.
  • the exchangers thus formed are cross-pass.
  • the exchanger is manufactured by additive manufacturing.
  • the material used can be metal, in particular a nickel alloy (NÎ625, NG718), an aluminum alloy (AS7G06, AS10), titanium (TA6V) or stainless steel (15-5Ph, 316L). , 17-4Ph) or else plastic materials such as polymers of the PAEK type (PEEK, PEKK, etc.) or the family of Silicon Carbides.
  • the plates and fins can be made together by additive manufacturing and form a whole.
  • the distinction between the plates and the fins set out above and below describes a differentiation of functions, in particular in the definition of the passageways and channels, but the entire exchanger can be manufactured in one go by additive manufacturing without having to manufacture the plates and fins separately.
  • the invention also relates to a system comprising a heat exchanger according to the invention, and an aircraft comprising a heat exchanger according to the invention.
  • the invention also relates to a heat exchanger, an air conditioning system and an aircraft, characterized in combination by all or some of the characteristics mentioned above or below.
  • FIG. 1 is a schematic perspective view showing a single passage channel of a passage path of a heat exchanger according to a first embodiment of the invention.
  • FIG. 2 is a schematic view of the curves carrying the passage channel of the passage path of a heat exchanger according to the first embodiment of the invention.
  • FIG. 3 is a schematic perspective view showing a passage path of a heat exchanger according to one embodiment of the invention.
  • FIG. 4 is a schematic perspective view showing a heat exchanger according to one embodiment of the invention.
  • Figure 1 schematically illustrates in perspective a single passage channel 10 of a passage path of a heat exchanger according to one embodiment of the invention.
  • the channel 10 is formed by an empty space 12 delimited by two plates 14a and 14b and two adjacent fins 16a and 16b of the heat exchanger.
  • the channel extends in a main direction called the axis 18 of circulation, representing the direction in which a fluid passing through the exchanger moves in the channel.
  • a section perpendicular to the steering axis forms a planar passage section closed by the walls formed by the two plates 14a and 14b and the two adjacent fins 16a and 16b.
  • the plate 14a forms a plate called the upper plate and the plate 14b forms a plate called the lower plate.
  • the fins are in contact with these two plates.
  • FIG. 2 schematically illustrates two oscillating curves 20a and 20b followed respectively by the plates 14a and 14b, and by the fins 16a and 16b, making it possible to obtain the undulating shape of the passage channel.
  • the curves are here continuous and sinusoidal, but the curves can take different shapes, for example triangular, etc.
  • the curves are oscillating.
  • the two curves oscillate and are periodic (that is to say of constant frequency and constant maximum and minimum amplitude between each period).
  • the first oscillating curve 20a represents the oscillation applied to the plates 14a and 14b and the second curve 20b represents the oscillation applied to the fins 16a and 16b.
  • the combination at all points of the two curves 20a and 20b corresponds to a generating curve representing the circulation of the fluid in the passage channel 10.
  • FIG. 3 shows a passage path 30 of a heat exchanger according to one embodiment of the invention.
  • a passage path 30 comprises several passage channels 110 and allows the circulation of a fluid, the fluid passing through the various passage channels 110 of the passage path 30.
  • the passageway is formed by two plates (only one plate 114 being visible in the figure) and a plurality of fins 116, so as to compose the different channels 110 all oriented along axes 118 of parallel directions.
  • one of the curves 20c followed by the plates forming the passage channels 110 is included in a plane orthogonal to the mean plane 32 of the plate 114 and thus forms the oscillating curve followed by the plate.
  • the curve 20c oscillates around the mean plane 32 and therefore influences all the channels.
  • each fin of the passage channels 110 is included in a plane comprising the axis of direction of each passage channel 110.
  • FIG. 4 represents a heat exchanger 200 according to one embodiment of the invention.
  • the heat exchanger consists of four paths of passage, two passage paths 210a and 210b being intended for a first fluid and two passage paths 220a and 220b intended for a second fluid.
  • the passageways are arranged alternately so as to allow heat exchange between the first and the second fluid.
  • the passageways are arranged so that the circulation axes are substantially perpendicular, so as to form a cross-passage heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un échangeur de chaleur, configuré pour permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulants dans des chemins de passage formés par des plaques (14a, 14b) et ailettes (16a, 16b) de l'échangeur de chaleur, les fluides circulant dans une multitude de canaux (10) de passage chacun formés par un espace (12) fermé délimité par deux plaques adjacentes et deux ailettes adjacentes, caractérisé en ce que chaque plaque s'étend en suivant une surface non- plane suivant au moins une première courbe oscillante, et chaque ailette suivant en outre au moins une deuxième courbe oscillante selon au moins une deuxième direction principale, de sorte à ce que chaque chemin de passage permette la circulation du fluide dans l'espace fermé selon une direction de fluide définie par une courbe génératrice combinaison au moins de la première courbe oscillante et de la deuxième courbe oscillante.

Description

ÉCHANGEUR DE CHALEUR À PASSAGES DE FLUIDE OPTIMISÉS
Domaine technique de l’invention
L’invention concerne un échangeur de chaleur. En particulier, l’invention concerne un échangeur de chaleur à plaques et ailettes pouvant être utilisé dans un système de conditionnement d’air, par exemple dans un véhicule aérien, ferroviaire ou terrestre.
Arrière-plan technologique
Les échangeurs de chaleurs sont utilisés pour permettre un échange de chaleur entre au moins deux fluides, en particulier pour refroidir ou réchauffer l’un des fluides à l’aide d’un autre fluide. Les échangeurs de chaleur sont utilisés dans de nombreux contextes, et notamment dans les systèmes de conditionnement d’air pour véhicule aérien, ferroviaire ou terrestre, dans lesquels ils permettent notamment de réguler la température de l’air conditionné par le système de conditionnement d’air à différentes étapes du conditionnement.
Parmi les différents types d’échangeurs de chaleur, les échangeurs de chaleur à plaques et ailettes forment un type de conception qui utilisent des plaques et des chambres à ailettes pour transférer la chaleur entre les fluides. Les canaux de circulation formés par les plaques et les ailettes permettent la circulation de chaque fluide sans mélange avec les autres fluides, tout en maximisant le rapport surface/volume de transfert de chaleur. Ces types d’échangeurs sont notamment plébiscités dans les industries des transports, notamment aérien, pour leur taille compacte et sa légèreté, tout en présentant de bonnes performances.
Depuis plusieurs décennies, les échangeurs à plaques sont fabriqués à partir d’une succession de plaques planes, entre lesquelles sont disposées des ailettes formées par une plaque ondulée formant des canaux de circulation pour chaque fluide. Les plaques et les ailettes sont fabriquées indépendamment puis brasées ensemble pour former les échangeurs de chaleur. Les plaques planes et plaques ondulées sont métalliques, par exemple en aluminium ou alliage d’aluminium, ou en acier inoxydable.
Les géométries des ailettes formées par la plaque ondulée peuvent être de fomies variées, par exemple rectangulaire, triangulaire, en vagues, etc. Différentes configurations sont utilisées selon les besoins en termes de surface d’échange, de perte de charge, etc.
Les inventeurs ont cherché à maximiser l’échange de chaleur entre les fluides en minimisant la perte de charge du fait du passage de chaque fluide dans l’échangeur, en particulier pour le fluide qui se réchauffe lors du passage dans l’échangeur.
Objectifs de l’invention
L’invention vise à fournir un échangeur de chaleur optimisé.
L’invention vise en particulier à fournir, dans au moins un mode de réalisation, un échangeur de chaleur maximisant l’échange de chaleur.
L’invention vise aussi à fournir, dans au moins un mode de réalisation de l’invention, un échangeur de chaleur minimisant les pertes de charges.
L’invention vise aussi à fournir, dans au moins un mode de réalisation de l’invention, un échangeur de chaleur moins encombrant et plus léger.
L’invention vise aussi à fournir, dans au moins un mode de réalisation de l’invention, un échangeur de chaleur compact pouvant être utilisé dans un véhicule aérien, ferroviaire ou terrestre, notamment dans un système de conditionnement d’air.
Exposé de l’invention
Pour ce faire, l’invention concerne un échangeur de chaleur, configuré pour permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulants respectivement dans au moins un premier chemin de passage et un deuxième chemin de passage, lesdits chemins de passage étant formés par des plaques et ailettes de l’échangeur de chaleur et étant configurés pour mener chaque fluide depuis une entrée du fluide vers une sortie du fluide, les fluides circulant dans une multitude de canaux de passage chacun formés par un espace fermé délimité par deux plaques adjacentes et deux ailettes adjacentes, caractérisé en ce que chaque plaque s’étend en suivant une surface non- plane définie entre l’entrée du fluide et la sortie du fluide du chemin de passage associé, ladite surface non plane suivant au moins une première courbe oscillante selon au moins une première direction principale autour d’une surface moyenne de la plaque, et en ce que chaque ailette comprend une arête supérieure configurée pour être en contact avec une des plaques adjacentes, dit plaque supérieure, et une arête inférieure configurée pour être en contact avec l’autre plaque adjacente, dite plaque inférieure, chaque ailette suivant en outre au moins une deuxième courbe oscillante selon au moins une deuxième direction principale autour d’une surface moyenne de l’ailette, de sorte à ce que chaque chemin de passage permette la circulation du fluide dans l’espace fermé selon une direction de fluide entre l’entrée du fluide et la sortie du fluide, dite axe de circulation, définie en tout point de la courbe par une courbe génératrice qui est une combinaison en chaque point au moins de la première courbe oscillante et de la deuxième courbe oscillante.
Un échangeur de chaleur selon l’invention permet donc, grâce à la géométrie particulière des canaux de passage portés par une courbe génératrice qui est une combinaison d’au moins deux courbes oscillantes, de maximiser la surface d’échange entre les fluides tout en conservant des bonnes performances en termes de pertes de charge, par rapport à un échangeur plaque-ailettes classique. La combinaison des courbes oscillantes permet l’obtention de courbes génératrices de forme différentes, permettant de former tout type de géométrie.
Les plaques et les ailettes suivent chacun une courbe oscillante permettant l’augmentation des surfaces des échanges sans impact notable sur les pertes de charges.
En particulier, l’efficacité d’échange thermique est améliorée de l’ordre de 35% pour une diminution d’au moins 40% de la masse et de 20% du volume efficace.
La formation de canaux dans l’échangeur thermique permet notamment une perte de charge beaucoup moins important que les échangeurs thermiques à chemins multiples, où le fluide peut suivre plusieurs chemins via des bifurcations, lesdites bifurcations étant formées par un canal comprenant l’autre fluide de l’échangeur.
Une courbe oscillante est une courbe se trouvant alternativement d’un côté et de l’autre d’une courbe moyenne à cette courbe oscillante. Selon certaines variantes de l’invention, les courbes oscillantes peuvent être périodiques : les courbes peuvent par exemple être sinusoïdales, triangulaires, etc.
Avantageusement et selon l’invention, la première courbe et la deuxième courbe ont les caractéristiques suivantes :
- 0,1 < y < 1
- 0,2 < e < 5 avec g étant égal à l’amplitude moyenne de la courbe divisé par la période moyenne de la courbe, et e étant égal au pas moyen de la courbe divisé par l’amplitude de la courbe.
Dans l’exemple de la figure 2 représentant deux courbes sinusoïdales formant la courbe génératrice d’un canal de passage tel que représenté en référence avec la figure 1, la courbe 20b s’étend dans la direction X, comporte des crêtes ou sommets, chacun formant une ligne de crête et comporte des creux, chacun formant une ligne de creux. Les portions de crête et les portions de creux sont disposées alternativement dans la direction Y, ce qui est caractéristique d’une courbe oscillante autour de l’axe X. Chaque point de la courbe peut être exprimé selon une coordonnée qui peut être exprimée en fonction des axes X et Y. Une seule valeur de coordonnée selon l’axe X est associée à chaque point unique de la courbe, mais plusieurs points de la courbe ont la même valeur de coordonnée selon l’axe Y du fait de l’oscillation de la courbe.
De la même façon, la courbe 20a oscille autour de l’axe X avec des oscillations selon l’axe Z.
Lorsque la courbe moyenne autour de laquelle les courbes 20a ou 20b oscillent ne sont pas droites, le repère est exprimé en chaque point de la courbe par une direction principale X qui correspond à la tangente à la courbe moyenne en ce point de la courbe.
La différence de hauteur entre un sommet et un creux représente l’amplitude. On entend également par amplitude moyenne la différence moyenne de hauteur entre un sommet et un creux.
La distance entre deux sommets adjacents par rapport à l’axe Y représente la période, on entend par période moyenne la distance moyenne entre deux sommets successifs.
La distance entre deux canaux de passage adjacents est définie par le pas. On entend également par pas moyen la distance moyenne entre deux canaux.
Selon cet aspect de l’invention, ces caractéristiques permettent d’assurer une perte de charge faible toute en permettant une augmentation de la surface d’échange thermique. Une amplitude moyenne trop importante par rapport à la période ou au pas entraînerait des pertes de charges importantes, malgré l’augmentation significative de la surface d’échange thermique. Ces caractéristiques permettent un bon compromis entre l’augmentation de la surface d’échange et les pertes de charges.
Avantageusement et selon l’invention, la première courbe et/ou la deuxième courbe est continue.
Avantageusement et selon l’invention, la première courbe et/ou la deuxième courbe est discontinue.
Selon ces aspects de l’invention, chaque courbe peut être soit discontinue, soit continue. Les courbes discontinues permettent d’augmenter davantage la surface d’échange thermique, tandis que les courbes continues impactent moins les pertes de charges.
Avantageusement et selon l’invention, la première courbe et/ou la deuxième courbe sont oscillantes à amplitude et/ou fréquence variable.
Selon cet aspect de l’invention, l’amplitude ou la fréquence d’oscillation des courbes sont variables ce qui permet d’ajuster la perte de charge ou l’échange thermique du fluide, par exemple en amont ou en aval des canaux.
Avantageusement et selon l’invention, les fluides sont gazeux ou liquides.
Selon cet aspect de l’invention, l’échangeur de chaleur peut être utilisé dans différents contextes. En particulier, l’échangeur de chaleur peut être utilisé dans le domaine du transport (aéronautique, ferroviaire, terrestre, etc.) où des échanges de chaleurs ont lieu entre gaz et gaz, entre gaz et liquide ou entre liquide et liquide. Chacun de ces différents types de fluides peut être une source chaude ou une source froide. Avantageusement et selon l’invention, les axes de circulation des canaux du premier passage sont sensiblement parallèles aux axes de circulation des canaux du deuxième passage.
Selon cet aspect de l’invention, les échangeurs ainsi formés sont à co courant ou contre-courant.
Avantageusement et selon l’invention, les axes de circulation des canaux du premier passage sont sensiblement orthogonaux aux axes de circulation des canaux du deuxième passage.
Selon cet aspect de l’invention, les échangeurs ainsi formés sont à passes croisées.
Avantageusement et selon l’invention, l’échangeur est fabriqué par fabrication additive.
Selon cet aspect de l’invention, la fabrication additive permet d’obtenir facilement les géométries complexes formés par les canaux. Avantageusement, le matériau utilisé peut être du métal, en particulier un alliage de Nickel (NÎ625, NG718), un alliage d’ Aluminium (AS7G06, AS10), du Titane (TA6V) ou de l’acier Inox (15-5Ph, 316L, 17-4Ph) ou bien des matériaux plastiques comme des polymères du type PAEK (PEEK, PEKK, ...) ou la famille des Carbures de Silicium.
Les plaques et les ailettes peuvent être réalisées ensemble par fabrication additive et former un tout. Ainsi, la distinction entre les plaques et les ailettes énoncée précédemment et ci-après décrit une différenciation de fonctions, notamment dans la définition des chemins et canaux de passage, mais l’échangeur entier peut être fabriqué d’une seule traite par fabrication additive sans avoir à fabriquer séparément les plaques et les ailettes.
L’invention concerne également un système comprenant un échangeur de chaleur selon l’invention, et un aéronef comprenant un échangeur de chaleur selon l’invention.
L’invention concerne également un échangeur de chaleur, un système de conditionnement d’air et un aéronef, caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après. Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
[Fig. 1] est une vue schématique en perspective représentant un unique canal de passage d’un chemin de passage d’un échangeur de chaleur selon un premier mode de réalisation de l’invention.
[Fig. 2] est une vue schématique des courbes portant le canal de passage du chemin de passage d’un échangeur de chaleur selon le premier mode de réalisation de l’invention.
[Fig. 3] est une vue schématique en perspective représentant un chemin de passage d’un échangeur de chaleur selon un mode de réalisation de l’invention.
[Fig. 4] est une vue schématique en perspective représentant un échangeur de chaleur selon un mode de réalisation de l’invention.
Description détaillée d’un mode de réalisation de l’invention
Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d’illustration et de clarté.
En outre, les éléments identiques, similaires ou analogues sont désignés par les mêmes références dans toutes les figures.
La figure 1 illustre schématiquement en perspective un unique canal 10 de passage d’un chemin de passage d’un échangeur de chaleur selon un mode de réalisation de l’invention.
Le canal 10 est formé d’un espace vide 12 délimité par deux plaques 14a et 14b et deux ailettes 16a et 16b adjacentes de l’échangeur de chaleur. Le canal s’étend dans une direction principale dite axe 18 de circulation, représentant la direction selon lequel un fluide traversant l’échangeur se déplace dans le canal. Une coupe perpendiculaire à l’axe de direction forme une section plane de passage fermé par les parois formées par les deux plaques 14a et 14b et les deux ailettes 16a et 16b adjacentes. La plaque 14a forme une plaque dite plaque supérieure et la plaque 14b forme une plaque dite plaque inférieure. Les ailettes sont en contact avec ces deux plaques. La figure 2 illustre schématiquement deux courbes 20a et 20b oscillantes suivis respectivement par les plaques 14a et 14b, et par les ailettes 16a et 16b, permettant d’obtenir la forme ondulée du canal de passage.
Les courbes sont ici continues et sinusoïdales, mais les courbes peuvent prendre des formes différentes, par exemple triangulaires, etc. Les courbes sont oscillantes. Dans ce mode de réalisation, les deux courbes oscillent et sont périodiques (c’est-à-dire de fréquence constante et d’amplitude maximale et minimale constante entre chaque période). La première courbe 20a oscillante représente l’oscillation appliquée aux plaques 14a et 14b et la deuxième courbe 20b représente l’oscillation appliquée aux ailettes 16a et 16b. La combinaison en tout point des deux courbes 20a et 20b correspond à une courbe génératrice représentant la circulation du fluide dans le canal 10 de passage.
Les courbes oscillent ici autour de l’axe de circulation, mais peuvent osciller dans des directions différentes, comme représenté sur la figure 3.
La figure 3 représente un chemin 30 de passage d’un échangeur de chaleur selon un mode de réalisation de l’invention.
Un chemin 30 de passage comprend plusieurs canaux 110 de passage et permet la circulation d’un fluide, le fluide traversant les différents canaux 110 de passage du chemin 30 de passage. Le chemin de passage est formé par deux plaques (seule une plaque 114 étant visible sur la figure) et d’une pluralité d’ailettes 116, de sorte à composer les différents canaux 110 tous orientés selon des axes 118 de directions parallèles.
Dans ce mode de réalisation, une des courbes 20c suivi par les plaques formant les canaux 110 de passage est comprise dans un plan orthogonal au plan 32 moyen de la plaque 114 et forme ainsi la courbe oscillante suivie par la plaque. La courbe 20c oscille autour du plan 32 moyen et influe donc sur tous les canaux.
L’autre courbe suivie par chaque ailette des canaux 110 de passage, est comprise dans un plan comprenant l’axe de direction de chaque canal 110 de passage.
La figure 4 représente un échangeur 200 de chaleur selon un mode de réalisation de l’invention. L’échangeur de chaleur comprend quatre chemins de passage, deux chemins 210a et 210b de passage étant destinés à un premier fluide et deux chemins 220a et 220b de passage destinés à un deuxième fluide.
Les chemins de passages sont disposés alternativement de sorte à permettre un échange de chaleur entre le premier et le deuxième fluide. Dans ce mode de réalisation, les chemins de passages sont disposés de sorte à ce que les axes de circulations sont sensiblement perpendiculaires, de sorte à former un échangeur à passes croisées.

Claims

REVENDICATIONS
1. Échangeur de chaleur, configuré pour permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulants respectivement dans au moins un premier chemin de passage et un deuxième chemin de passage, lesdits chemins (30, 210a, 210b, 220a, 220b) de passage étant formés par des plaques (14a, 14b, 114) et ailettes (16a, 16b, 116) de l’échangeur de chaleur et étant configurés pour mener chaque fluide depuis une entrée du fluide vers une sortie du fluide, les fluides circulant dans une multitude de canaux (10, 110) de passage chacun formés par un espace (12) fermé délimité par deux plaques adjacentes et deux ailettes adjacentes, caractérisé en ce que chaque plaque s’étend en suivant une surface non-plane définie entre l’entrée du fluide et la sortie du fluide du chemin de passage associé, ladite surface non plane suivant au moins une première courbe (20a) oscillante selon au moins une première direction principale autour d’une surface moyenne de la plaque, et en ce que chaque ailette comprend une arête supérieure configurée pour être en contact avec une des plaques adjacente, dit plaque supérieure, et une arête inférieure configurée pour être en contact avec l’autre plaque adjacente, dite plaque inférieure, chaque ailette suivant en outre au moins une deuxième courbe (20b) oscillante selon au moins une deuxième direction principale autour d’une surface moyenne de l’ailette, de sorte à ce que chaque chemin de passage permette la circulation du fluide dans l’espace fermé selon une direction de fluide entre l’entrée du fluide et la sortie du fluide, dite axe (18, 118) de circulation, définie en tout point de la courbe par une courbe génératrice qui est une combinaison en chaque point au moins de la première courbe oscillante et de la deuxième courbe oscillante.
2. Échangeur de chaleur selon la revendication 1 , caractérisé en ce que la première courbe (20a) et la deuxième courbe (20b) ont les caractéristiques suivantes :
- 0,1 < y < 1
- 0,2 < e < 5 avec g étant égal à l’amplitude moyenne de la courbe divisé par la période moyenne de la courbe, et e étant égal au pas moyen de la courbe divisé par l’amplitude de la courbe.
3. Échangeur de chaleur selon l’une des revendications 1 ou 2, caractérisé en ce que la première courbe (20a) et/ou la deuxième courbe (20b) est continue.
4. Échangeur de chaleur selon l’une des revendications 1 ou 2, caractérisé en ce que la première courbe (20a) et/ou la deuxième courbe (20b) est discontinue.
5. Échangeur de chaleur selon l’une des revendications 1 à 4, caractérisé en ce que la première courbe (20a) et/ou la deuxième courbe (20b) sont oscillantes à amplitude et/ou fréquence variable.
6. Échangeur de chaleur selon l’une des revendications 1 à 5, caractérisé en ce que les fluides sont gazeux ou liquides.
7. Échangeur de chaleur selon l’une des revendication 1 à 6, caractérisé en ce que les axes de circulation des canaux du premier passage sont sensiblement parallèles aux axes de circulation des canaux du deuxième passage.
8. Échangeur de chaleur selon l’une des revendication 1 à 6, caractérisé en ce que les axes de circulation des canaux du premier passage sont sensiblement orthogonaux aux axes de circulation des canaux du deuxième passage.
9. Échangeur de chaleur selon l’une des revendication 1 à 8, caractérisé en ce qu’il est fabriqué par fabrication additive.
10. Système de conditionnement d’air, caractérisé en ce qu’il comprend un échangeur (200) de chaleur selon l’une des revendications 1 à 9.
11. Aéronef, caractérisé en ce qu’il comprend un échangeur (200) de chaleur selon l’une des revendications 1 à 9.
PCT/FR2020/052436 2019-12-20 2020-12-15 Échangeur de chaleur à passages de fluide optimisés WO2021123597A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080087136.4A CN114829863A (zh) 2019-12-20 2020-12-15 具有优化的流体通道的热交换器
US17/783,068 US20230023640A1 (en) 2019-12-20 2020-12-15 Heat exchanger having optimized fluid passages
EP20845201.1A EP4078058A1 (fr) 2019-12-20 2020-12-15 Échangeur de chaleur à passages de fluide optimisés

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1915230 2019-12-20
FR1915230A FR3105387B1 (fr) 2019-12-20 2019-12-20 Échangeur de chaleur à passages de fluide optimisés

Publications (1)

Publication Number Publication Date
WO2021123597A1 true WO2021123597A1 (fr) 2021-06-24

Family

ID=69811322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052436 WO2021123597A1 (fr) 2019-12-20 2020-12-15 Échangeur de chaleur à passages de fluide optimisés

Country Status (5)

Country Link
US (1) US20230023640A1 (fr)
EP (1) EP4078058A1 (fr)
CN (1) CN114829863A (fr)
FR (1) FR3105387B1 (fr)
WO (1) WO2021123597A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460388A (en) * 1981-07-17 1984-07-17 Nippon Soken, Inc. Total heat exchanger
FR3028018A1 (fr) * 2014-11-04 2016-05-06 Valeo Systemes Thermiques Element d'echange de chaleur adapte pour un echange de chaleur entre un premier et un deuxieme fluide, un faisceau d'echange comprenant l'element d'echange de chaleur et un echangeur de chaleur comprenant le faisceau d'echange
EP3318832A1 (fr) * 2015-06-30 2018-05-09 Tokyo Radiator Mfg. Co., Ltd. Ailette interne pour échangeur de chaleur

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2567030A (en) * 1947-07-11 1951-09-04 Air Maze Corp Filter panel
US2764257A (en) * 1953-08-19 1956-09-25 Air Maze Corp Edge filter panel with uneven face
JPS548202B2 (fr) * 1972-12-07 1979-04-13
US4333749A (en) * 1980-10-24 1982-06-08 The Marley Company Drift eliminator structure for counterflow water cooling tower
US4410427A (en) * 1981-11-02 1983-10-18 Donaldson Company, Inc. Fluid filtering device
DE8522627U1 (de) * 1985-08-06 1985-09-19 Röhm GmbH, 6100 Darmstadt Plattenwärmetauscher
US5010594A (en) * 1989-06-27 1991-04-30 Japan Air Lines Co., Ltd. Dampening mask for use in aircraft
US6273938B1 (en) * 1999-08-13 2001-08-14 3M Innovative Properties Company Channel flow filter
US6372076B1 (en) * 1999-09-28 2002-04-16 L&P Property Management Company Convoluted multi-layer pad and process
EP1590608A1 (fr) * 2003-02-03 2005-11-02 Lg Electronics Inc. Echangeur thermique de systeme de ventilation
US7159649B2 (en) * 2004-03-11 2007-01-09 Thermal Corp. Air-to-air heat exchanger
US7771517B2 (en) * 2007-05-14 2010-08-10 Global Finishing Solutions, L.L.C. Filtering method
US8021466B2 (en) * 2008-03-18 2011-09-20 Carpenter Co. Fluid flow filter and method of making and using
CN102414534A (zh) * 2009-04-28 2012-04-11 三菱电机株式会社 全热交换元件
US9630132B2 (en) * 2014-07-01 2017-04-25 Caterpillar Inc. Fluid filtering system
JP6642603B2 (ja) * 2018-02-28 2020-02-05 株式会社富士通ゼネラル 隔壁式熱交換器
EP3650799B1 (fr) * 2018-11-07 2021-12-15 Borgwarner Emissions Systems Spain, S.L.U. Corps d'ailette pour un tube d'échange de chaleur
US20200166293A1 (en) * 2018-11-27 2020-05-28 Hamilton Sundstrand Corporation Weaved cross-flow heat exchanger and method of forming a heat exchanger
KR102223356B1 (ko) * 2020-07-13 2021-03-05 송길섭 대향류 전열교환기의 제조방법
JP7333875B2 (ja) * 2020-08-11 2023-08-25 三菱電機株式会社 全熱交換素子および換気装置
US20220316807A1 (en) * 2021-03-30 2022-10-06 Mitsubishi Electric Us, Inc. Air-to-air heat recovery core and method of operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460388A (en) * 1981-07-17 1984-07-17 Nippon Soken, Inc. Total heat exchanger
FR3028018A1 (fr) * 2014-11-04 2016-05-06 Valeo Systemes Thermiques Element d'echange de chaleur adapte pour un echange de chaleur entre un premier et un deuxieme fluide, un faisceau d'echange comprenant l'element d'echange de chaleur et un echangeur de chaleur comprenant le faisceau d'echange
EP3318832A1 (fr) * 2015-06-30 2018-05-09 Tokyo Radiator Mfg. Co., Ltd. Ailette interne pour échangeur de chaleur

Also Published As

Publication number Publication date
FR3105387A1 (fr) 2021-06-25
CN114829863A (zh) 2022-07-29
EP4078058A1 (fr) 2022-10-26
FR3105387B1 (fr) 2021-11-26
US20230023640A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP2032928B1 (fr) Echangeurs thermiques a plaquettes creuses
EP0447528B1 (fr) Condenseur pour automobile
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
EP3662222B1 (fr) Echangeur de chaleur comprenant un element de distribution a canaux multiples
FR2980840A1 (fr) Plaque pour echangeur de chaleur et echangeur de chaleur muni de telles plaques
FR2995397A1 (fr) Intercalaire d&#39;echangeur de chaleur.
FR2478291A1 (fr) Echangeur de chaleur a ailettes
WO2018172644A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a portion de canal regulatrice
EP1797386B1 (fr) Echangeur de chaleur a plaques specifiques
WO2013011136A1 (fr) Echangeur thermique, tube plat et plaque correspondants
FR2806467A1 (fr) Echangeur thermique pour gaz d&#39;echappement
EP1426722A1 (fr) Plaque d&#39;un échangeur thermique et échangeur thermique à plaques
WO2021123597A1 (fr) Échangeur de chaleur à passages de fluide optimisés
EP0445006B1 (fr) Echangeur de chaleur à écoulement circulaire
EP2936031B1 (fr) Élement d&#39;echange thermique, et echangeur thermique correspondant
FR3060721B1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a geometrie de canal amelioree
FR3092906A1 (fr) Echangeur de chaleur
FR3137752A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
WO2024008649A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
FR3086380A1 (fr) Plaque constitutive d&#39;un echangeur de chaleur et echangeur de chaleur comprenant au moins une telle plaque
FR3069627A1 (fr) Echangeur de chaleur et systeme thermique pour vehicule automobile
WO2024008644A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2023072571A1 (fr) Paire de plaques d&#39;echangeur de chaleur avec rainures et creux
EP4078065A1 (fr) Dispositif mélangeur favorisant une distribution homogène d&#39;un mélange diphasique, installation d&#39;échange de chaleur et procédé de mélange associé
WO2023143841A1 (fr) Échangeur de chaleur comprenant au moins une plaque latérale d&#39;encapsulage, système de conditionnement d&#39;air et véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020845201

Country of ref document: EP

Effective date: 20220720