EP2032928B1 - Echangeurs thermiques a plaquettes creuses - Google Patents

Echangeurs thermiques a plaquettes creuses Download PDF

Info

Publication number
EP2032928B1
EP2032928B1 EP07788872A EP07788872A EP2032928B1 EP 2032928 B1 EP2032928 B1 EP 2032928B1 EP 07788872 A EP07788872 A EP 07788872A EP 07788872 A EP07788872 A EP 07788872A EP 2032928 B1 EP2032928 B1 EP 2032928B1
Authority
EP
European Patent Office
Prior art keywords
plates
walls
hollow
faces
bosses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07788872A
Other languages
German (de)
English (en)
Other versions
EP2032928A2 (fr
Inventor
Jean-Paul Domen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technologies De L'echange Thermique (tet)
Original Assignee
Technologies De L'echange Thermique (tet)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technologies De L'echange Thermique (tet) filed Critical Technologies De L'echange Thermique (tet)
Publication of EP2032928A2 publication Critical patent/EP2032928A2/fr
Application granted granted Critical
Publication of EP2032928B1 publication Critical patent/EP2032928B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the invention relates primarily to a heat exchanger, consisting of a stack of hollow plates, which has very high performance, that is to say a very large volume conductance associated with a reduced frontal area, a need for low power mechanical means for the propulsion of the fluids concerned and the possibility of treating liquid and / or gaseous fluids, at differential pressures and relatively high temperatures.
  • the invention also relates, secondly, heat exchangers similar to the previous, generally less powerful than him but may be better suited to certain particular applications.
  • Hollow-plate heat exchangers have a much higher performance than full-metal finned heat exchangers. Indeed, for the same volume conductance, in such a liquid / gas heat exchanger, the gap between contiguous hollow plates is much greater than that between full fins. In this way, the weight of the former, their size, their frontal surface and the power consumed (pumping liquid (s) and / or gas ventilation), are significantly lower than those of the latter. And yet, solid metal fin heat exchangers remain of universal use in many fields.
  • Heat exchangers constituted by a one-piece stack of hollow wafers made of polymer, glass or metal, are described in the European patent. EP 1 579 163 B1 , granted to TET.
  • the method for producing one of these exchangers is to manufacture, by thermo-blowing a polymer parison, an accordion-shaped blank, provided with biconvex bellows, embossed walls by alternating bosses with steep slopes, then to perform a controlled compression. As a result of this compression, these bellows take the definitive form of a one-piece stack rigid hollow inserts, with a thin internal channel, connected to two internal collectors.
  • Such monobloc polymer heat exchangers provide completely satisfactory results for many applications, as long as the desired volume conductance remains average (at most 20 W / ° C / dm 3 ) and the treated fluids are at moderate differential pressure. (at most 0.1 MPa) and at low temperature ( ⁇ 100 ° C). Indeed, in many particular cases, their advantages of weight, cost, size and power consumed (3 to 5% of the thermal power to be evacuated) largely compensate for these limited performances, especially when the initial temperature difference between the two fluids concerned is relatively low ( ⁇ 60 ° C).
  • This monobloc heat exchanger formed of hollow wafers with corrugated walls of polymer, is of multiple interest. Its walls conciliate a certain stiffness and a certain finesse, which are two antinomic characters, so that its weight, its cost, its size are small. Its thin internal channel makes it possible, despite a laminar flow of the coolant, to obtain a good thermal conductance between this liquid and the wall of the hollow wafer.
  • its embossed walls generate a relatively large turbulence in the flow of air between platelets, which makes it possible to substantially increase the distance between them. This considerably reduces the energy required to propel air between these pads. In addition, this significant turbulence of the air circulating between the plates increases the apparent thermal conductivity of this air and therefore the overall thermal conductance of the exchanger.
  • thermo-blow and controlled compression biconvex bellows a polymer blank stum on limited results, as soon as we seek to increase the level of performance sought and including the volume conductance of the heat exchanger thus produced.
  • this technique it is impossible to completely control the two-step manufacturing process of a one-piece stack of hollow wafers, as regards the thicknesses of the internal channel and those of the wafer walls, although these thicknesses are determining parameters for the value of the volume conductance of the exchanger.
  • the average value is of the order of a millimeter and the dispersion of about fifty percent, this dispersion being essentially due to the irregular thinning of the wall during the thermo-blow of the blank .
  • the radiators are heat exchangers made according to the method of the European patent of TET.
  • the cooling of the exhaust gases of a diesel engine with a view to recycling them it is provided in this application to use a single-block heat exchanger with metal hollow plates, capable of withstanding a differential pressure. and a temperature much higher than those to which a polymer monobloc exchanger can be subjected.
  • the metal accordion blank of this heat exchanger had to be manufactured by hydroforming.
  • the new heat exchangers in particular designed for this particular use, must be equipped with metal hollow plates, provided with an internal channel as fine and precise as possible and walls both rigid and very thin.
  • metal hollow plates provided with an internal channel as fine and precise as possible and walls both rigid and very thin.
  • This device will be borrowed from a heavy and bulky heat exchange device, developed for the cooling of electrical transformers of distribution networks, described in the patents US 3,153,447 of 1964 and US 3,849,851 of 1974 .
  • This device consists of large hollow-walled metal plates welded to two external collectors, adapted to be vertically arranged and cooled by air circulating by natural convection.
  • the first object of the invention is a high performance heat exchanger, formed of hollow plates with thin metal walls stiffened by an appropriate embossing, having both weight, compactness and reduced frontal area, low mechanical power consumption and very high volumetric conductance. , while being well adapted to a reliable industrialization easily controllable and, furthermore, capable of treating liquid and / or gaseous fluids, at high temperatures and / or differential pressures.
  • the second subject of the invention relates to improved heat exchangers, similar to the previous one, which are less efficient than it, but better adapted to particular specific applications, different from those of this previous one, comprising a stack of hollow wafers, with thin polymer walls. or glass, stiffened by an appropriate embossing.
  • the third object of the invention is a compact radiator with a reduced frontal surface, made from these improved heat exchangers, having a high thermal conductance and requiring very low pumping and ventilation powers.
  • the thickness of the walls of the plates does not need to be thin and their rigidity is not a particular problem, so that the embossing of the central zone of these walls is not the solution to a problem of stiffness which, in this case, practically does not exist. Indeed, an adequate thickness of walls made of a conventional metal provides without difficulty. It is only a question of increasing the heat exchange surface of the plates without increasing their dimensions. This is done by longitudinal undulations that result from relatively small depressions, made at constant pitch in the walls. The particular profile of these ripples is represented: it is commonplace and can hardly be characterized by any originality, this aspect of things having no interest in this type of exchangers. On the other hand, because of these corrugations, the internal channel of the hollow plates has an undulating thickness which varies symmetrically about a relatively large average value. And the walls of this internal channel do not have facets sloping facing.
  • the first provision of the invention it is first of all very thin-walled plates (for example, 0.15 mm for some steels) to which their hardening, obtained "as a bonus" on the occasion of a standard stamping (cold), gives a hardness and an elastic limit particularly large: each facet of these hollows and bumps acts as a stiff lamella and, in addition, each sharp edge behaves like a beam in which these lamellae are recessed. These slats can therefore take only a very limited arrow, under the action of differential pressures applied.
  • this arrow when the overpressure is external, this arrow always remains substantially less than half the internal thickness of the hollow plates, which thickness, measured between the facets of the bosses, is by construction exactly known and particularly reduced (0.3 mm, for example). This avoids any contact between opposite facet walls so that the heat exchange function between the two fluids is always correctly ensured.
  • each hollow bossed plate according to the invention owes its remarkable primary stiffness to the fact that the metal constituting its walls is hardened and that, in addition, its alternating bosses significantly increase the moment of inertia.
  • These very thin doubly stiff strips are then able to perfectly play a role of effective heat exchanger between the two fluids that circulate along their two faces, even if there is a high differential pressure between these fluids.
  • the immediate characteristics of these embossed alternating bosses, which must ensure this stiffness, define the base of the invention.
  • this internal partition thus formed between two contiguous alignments of alternating bosses constitutes a barrier for the flow of liquid entering the hollow wafer.
  • Each barrier has the first effect of preventing a large direct flow between the two external collectors, along a smooth wall of small area and therefore not very effective for the desired heat exchange, especially since this surface is not swept by a strong current of air since it is in the wake of the upstream collector.
  • this barrier has the second effect of directing the incoming current towards the two alignments of alternating bosses with high heat exchange efficiency and thus maximizing the heat exchange effected.
  • the facets facing a wafer have parallel walls and the gap separating these walls is constant and of the same order of magnitude as their thickness.
  • the embossed central zone of each hollow plate is connected to the external collectors by two connection zones provided with lateral edges having a high obliquity and smooth walls comprising portions of conical frustums.
  • the external collectors have an aerodynamic profile adapted to minimize their drag.
  • symmetrical bosses facets appear as cut diamonds and have several secondary facets, with complementary sharp edges.
  • the volume conductance of the heat exchanger thus produced is particularly high. And this, for several reasons: (1) platelets have metal walls that have negligible thermal resistance, (2) the thermal resistance of the very thin layer of water or oil inside these platelets is low , despite the laminar flow of this layer and the relatively high thermal resistivity of these liquids and (3) the turbulence and the apparent thermal conductivity of the air, which flows between the platelets, increase with the height of the bosses and the total number sharp edges they contain. With at least two alignments each comprising some alternative bosses, with facets inclined at approximately 45 °, an effective compromise is made between the various parameters concerned.
  • embossing bosses whose slope facets is less than about 50 ° is a standard operation that poses no problem of realization and a minimum angle of 30 ° between the normal two adjacent facets ensures a good turbulence in the flow of air and a minimum width for each of the alignments of the bosses in the central area of the pads, since the height of these hollows and bumps is fixed.
  • a minimum angle of 30 ° between the adjacent two-faceted normals gives the edge concerned sufficient stiffness to be comparable to a beam, all of these edges being then comparable to a trellis of beams. .
  • metals used for the manufacture of the walls of the hollow wafers according to the invention are not very numerous but well known to the stamping specialists and that finally the choice (aluminum or steel, for example) example) will be primarily determined by the mechanical behavior of these metals in the operating temperature range of the heat exchangers that will incorporate these platelets.
  • FIG 1 there is shown a first embodiment of a thin metal wall 10 of a hollow wafer.
  • This wall has been stamped and then cut so as to have a central embossed zone 13, disposed between two connection zones.
  • this wall is made of aluminum and has a thickness of 0.3 mm and its embossed central zone is 60 mm wide and 76 mm long.
  • This central zone 13 is formed by two identical, contiguous alignments 12 and 14 of alternating bosses, separated by a narrow rectilinear zone 16, 4 mm wide.
  • the two connection areas 18 and 20 have smooth walls.
  • Each alignment comprises two identical alternating bosses, formed of bumps and valleys, that is, for the alignments 12-14, four bumps 22 1-2 and 24 1-2 , on the one hand, and four recesses 22 ' 1-2 and 24 ' 1-2 , on the other hand, the latter being represented in gray.
  • Each bump 22 1-2 -24 1-2 or each recess 22 ' 1-2 -24' 1-2 has the form of a roof with four slopes having four sharp edges steeply inclined, or for each alternating boss of the alignment 12: (1) own, two symmetrical trapezoids 26 1 -2 and 28 1-2 for the bumps, and 26 ' 1-2 and 28' 1-2 for the hollows, all with a large base of 19 mm, (2) shared with the adjoining boss of the same alignment, two isosceles triangles 1-2 and 32 1-2 for the bumps, and 30 ' 1-2 and 32' 1-2 for the depressions, all with a base of 28 mm, (3) a longitudinal crest 34 1-2 for the bumps and 34 ' 1-2 for the hollows, all 5 mm long, and (4) the same height of 5 mm. It will be noted that the two pairs of isosceles triangles 30 2 -30 ' 1 and 30' 2 -32 1 of the alignment 12 (and likewise at 14), which belong to two consecutive alternations of the
  • the lines 38-40 and the flanges 42-44 are 1 mm wide and form a small step of 0.2 mm high, which determines half of the internal thickness of a plate at the peaks of its bosses.
  • These two flat lines 38-40 end at the two flat portions 46-48 of the two connection areas 18-20 of the wall 10 and these two parallel flanges 42-44 end with the two pairs of oblique outer flanges 50 1 -50 2 and 52 1 -52 2 of these same connection areas; they form the other part of the joint plane of the walls of the wafer.
  • Each flange 50 1 - 2 or 52 1 - 2 forms an angle of 60 ° with the longitudinal line of symmetry of the wall 10.
  • each connection zone 18-20 comprises a portion of almost flat truncated cone 54- 56, 87.5 ° half-angle at the top.
  • This frustoconical portion is delimited by two pairs of circular arcs 58 1 - 2 and 60 1 - 2 , the latter pair being 8 mm long.
  • their ends are connected to each other by two steps of 1.5 mm high, so that the surface of each of the mouths upstream or downstream, thus arranged for a hollow plate, measure 24 mm 2 , substantially the cross-sectional area of the inner space of the embossed central zone 13 of the wafer.
  • This wall 11 differs from the previous wall 10 only by its embossed central zone, which has only one alignment of bosses 15 wide by 26 mm, and by the shape of its alternating bosses.
  • This unique alignment comprises three bumps 22b 1-3 and three recesses 22'b 1-3 , the latter being represented in gray.
  • Each boss 22b 1-3 and each recess 22'b 1-3 has the shape of a roof with four steeply inclined slopes.
  • Figures 2B and 2C are represented, as variants of the facets of the bosses of the figures 1 and 2A , two of the main facets of the Figure 2A presenting secondary facets.
  • the Figure 2B has a lateral triangle facet 25, having three secondary facets 37 1-3 forming a relatively flat trihedron with three sharp edges, provided with a diamond tip 39, located at the center of gravity of this triangle.
  • the Figure 2C has a longitudinal facet in hexagon 31, having six triangles with coplanar sides 41 1-6 , provided with a central diamond tip 43 1-6 , similar to that 39 of the Figure 2B .
  • the height of these tips is determined by the limitations of stamping technology of metal sheets.
  • the figures 1 and 2A illustrate two possible forms that can take the bosses of the embossed walls of the hollow plates according to the invention. And the Figures 2B and 2C illustrate the possible variants that the main facets of these bosses can experience, in order to improve their ability to produce turbulence in the air currents between platelets.
  • the figure 3 represents an enlargement of a longitudinal section along an axis AA '(see fig.1 ) of one end of a portion of a hollow wafer before it is connected to a collector.
  • This wafer is the result of the welding of the two walls 10a and 10b, this wall 10b being the wall 10a turned upside down, about the transverse axis of symmetry BB '(see fig.1 ).
  • This AA 'cut is made along the crests 35 2 and 35 ' 2 of the alternating boss formed by the boss 24 2 and the hollow 24' 2 of the alignment 14 and it passes through the connection zone 18 of the wall 10a of this wafer.
  • the figure 4 represents an enlargement of a section of this same end of plate, carried out along the longitudinal line of symmetry CC '(see fig.1 ) alignments 12 and 14 of alternating bosses and connection areas 18 and 20 of the wall 10a.
  • the bumps and depressions of the first embodiment of the lower wall 10b and the upper wall 10a of a plate are reversed, so that the references 24 2 and 24 ' 2 of the top wall 10a, seen in profile on this figure 3 , respectively appear as a hollow and a bump.
  • this hollow is nested the boss 24 ' 1 and in this bump, the hollow 24 1 of the wall 10b defined above.
  • the thickness of the portion 62 of the internal channel of a hollow wafer, located between the nested crests 34 1 -35 ' 2 or 34' 1 -35 2 of the embossed zone of this wafer, is 0.4 mm and that of the portion 64 of this internal channel, located between the slopes at 45 ° of the rising or falling flanks of these bosses, is 0.28 mm.
  • the thickness of the inner channel 66, between the planar portions of the connection areas 18 and 20, is 0.4 mm.
  • the right part of the section along the line AA ' represents (1) the beginning 68 of the progressive separation of the walls of the two conical sections opposite 54-56 of the walls 10a-10b, which terminate these two connection zones (2) the two symmetrical steps of these walls which start with the circles 58 2 and 58 1 and (3) the two symmetrical external flanges 52 2 and 50 1 which define the joint plane of the walls 10a and 10b.
  • the section shown is made along the longitudinal axis of symmetry CC 'of a hollow wafer end engaged and welded by a weld bead 70, in the edges and ends of a slot 72, in the form of 120 ° arc of circle formed in the connecting shell 74 of an external collector 75, formed by two elongate shells, welded to one another.
  • the section shown shows two parallel sections 16a and 16b of the narrow central zones of the walls 10a and 10b, separated by a gap 66 of 0.4 mm and two other divergent sections 54 and 56 corresponding to the conical sections facing the connecting zones of the two walls 10a and 10b of the hollow wafer.
  • an elemental heat exchanger 76 which comprises fifteen thin hollow metal fins 78 1-15 with embossed walls. The ends of these hollow plates are engaged and welded as indicated above in slots with circular edges, having 3.5 mm wide and a pitch of 8 mm, made in the walls of the external collectors 80-82, aerodynamic profile.
  • the collectors 80-82 are constituted by two elongate shells, with a U-shaped cross-section, welded to one another along a line 83. They are made from metal strips cut from sheets identical to those used for the manufacture of the stamped walls of the wafers.
  • FIG. 6 is shown the top view of a compact radiator 81.
  • a compact radiator 81 On either side of two flat head collectors 84-86, shaped trapezoidal rectangles arranged upside down, can be connected in parallel six identical heat exchangers 76 1 -6 , so as to constitute a compact radiator with appropriate overall thermal conductance.
  • These flat collectors 84-86 have parallel sides 88 1-2 and 90 1-2 and a thickness substantially equal to the maximum dimension of the straight sections of the external collectors 80 1-2 .
  • Two adjacent exchangers are mounted so that the side edges of their pads are substantially contiguous or slightly interposed.
  • the feet of the upstream 80 1 -6 and downstream 82 1-6 external manifolds are engaged to the same depth in appropriate circular openings, 94 1-6 and 96 1-6 , at constant intervals along the 92-93 long sides of the main headers 84-86 and then they are welded.
  • the sink depths of the collectors are different for the even and odd-numbered exchangers.
  • the length of the largest 88 2 - 90 2 of the parallel sides of the two main manifolds 84-86 is determined by the number of heat exchangers 76 to be mounted.
  • the short sides of the two main manifolds 84-86 have lengths determined by the spacing of the outer collectors 80-82 and by the gap 100 (typically 5 mm) which separates their oblique sides.
  • Such an assembly of heat exchangers formed by stacks of thin hollow metal plates with very thin walls stiffened by embossing makes it possible to form a compact radiator which is particularly useful for cooling high power thermal engines (> 100 kW). They have in fact a very low torque master, a very high thermal conductance, reduced pumping and ventilation powers, limited space and weight. It is also suitable for the treatment of exhaust gases of diesel engines, used cooled to improve the low-speed operation of these engines. More generally, any heat exchange between two fluids, in particular between a liquid and a gas, having a high temperature and / or differential pressure (up to about 600 ° C. and 1 MPa) can be effectively achieved by means of such a device. compact metal set.
  • the invention is not limited to the examples described.
  • the length and width of the hollow wafers may be significantly larger than those illustrated in FIG. figure 1 and measure several decimetres. It is the same for the number of alternative bosses in each alignment and the number of alignments in each plate.
  • the maximum dimensions of a wafer are in practice determined by those of the plate of the stamping press available. As for the number of hollow plates in a heat exchanger, it can go up to a few tens. It is the same for the total number of exchangers assembled in a compact radiator.
  • glass heat exchangers with high performance and better than any other, perfectly adapted to their conditions of use.
  • these glass heat exchangers will have high volumetric conductances, but however halfway to those indicated above for hollow-plate exchangers either monoblock polymer or metal of the type according to the invention (20 or 100 W / ° C / dm 3 ).
  • the maximum temperatures and differential pressures that may be applied to these glass heat exchangers, they will be lower than those that support the metal heat exchangers according to the present invention and higher than those for the polymer monoblock exchangers according to the patent TET.
  • polymer heat exchangers having a volume conductance of about 50% greater than that of these monobloc exchangers, while maintaining their ranges of differential pressures and temperatures. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • External Artificial Organs (AREA)
  • Fuel Cell (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Laminated Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

  • L'invention concerne à titre principal un échangeur thermique, constitué par un empilement de plaquettes creuses, qui possède de très hautes performances, c'est-à-dire une très grande conductance volumique associée à une surface frontale réduite, un besoin de faibles puissances mécaniques pour la propulsion des fluides concernés et la possibilité de traiter des fluides liquides et/ou gazeux, à pressions différentielles et températures relativement élevées.
  • L'invention concerne également, à titre second, des échangeurs thermiques semblables au précédent, globalement moins performants que lui mais susceptibles de mieux convenir à certaines applications particulières.
  • Les échangeurs thermiques à plaquettes creuses ont des performances très supérieures à celles des échangeurs à ailettes métalliques pleines des radiateurs pour moteurs thermiques. En effet, pour une même conductance volumique, dans un tel échangeur thermique liquide/gaz, l'écart entre plaquettes creuses contiguës est beaucoup plus grand que celui entre ailettes pleines. De la sorte, le poids des premiers, leur encombrement, leur surface frontale et les puissances consommées (pompage de liquide(s) et/ou ventilation de gaz), sont nettement inférieurs à ceux des seconds. Et cependant, les échangeurs thermiques à ailettes métalliques pleines demeurent d'un usage universel dans de nombreux domaines. Dans ces conditions, lorsque les moteurs thermiques sont équipés de radiateurs eau/air usuels, la surface frontale (maître couple) de ces radiateurs mesure environ 0,3 dm2 par kW à évacuer, cependant que leur mise en oeuvre consomme une puissance mécanique (ventilation et pompage) qui égale jusqu'à 10% de la puissance thermique à dissiper, voire plus si les écarts de température sont faibles. Ce qui montre tout l'intérêt des échangeurs thermiques à plaquettes creuses.
  • Des échangeurs thermiques, constitués par un empilement monobloc de plaquettes creuses en polymère, en verre ou en métal, sont décrits dans le brevet européen EP 1 579 163 B1 , accordé à TET. Le procédé pour réaliser l'un de ces échangeurs consiste à fabriquer, par thermo-soufflage d'une paraison en polymère, une ébauche en forme d'accordéon, dotée de soufflets biconvexes, à parois gaufrées par des bossages alternatifs à fortes pentes, puis à en effectuer une compression contrôlée. A la suite de cette compression, ces soufflets prennent la forme définitive d'un empilement monobloc de plaquettes creuses rigides, à canal interne mince, raccordées à deux collecteurs internes. De tels échangeurs thermiques monoblocs en polymère fournissent des résultats tout à fait satisfaisants pour de nombreuses applications, aussi longtemps que la conductance volumique recherchée demeure moyenne (au plus 20 W/°C/dm3) et que les fluides traités sont à pression différentielle modérée (au plus 0,1 MPa) et à température peu élevée (< 100°C). En effet, dans de nombreux cas particuliers, leurs avantages de poids, de coût, d'encombrement et de puissances consommées (3 à 5% de la puissance thermique à évacuer) compensent largement ces performances limitées, notamment lorsque l'écart de température initial entre les deux fluides concernés est relativement faible (< 60°C).
  • Cet échangeur thermique monobloc, formé de plaquettes creuses à parois gaufrées en polymère, présente un intérêt multiple. Ses parois concilient une certaine raideur et une certaine finesse, qui sont deux caractères antinomiques, de sorte que son poids, son coût, son encombrement sont faibles. Son canal interne mince permet, malgré un écoulement laminaire du liquide de refroidissement, d'obtenir une bonne conductance thermique entre ce liquide et la paroi de la plaquette creuse. En revanche, ses parois gaufrées engendrent une turbulence relativement importante dans l'écoulement de l'air entre plaquettes qui permet de notablement augmenter l'écart entre elles. Ce qui diminue considérablement l'énergie nécessaire pour propulser de l'air entre ces plaquettes. De plus, cette turbulence importante de l'air circulant entre les plaquettes augmente la conductivité thermique apparente de cet air et donc la conductance thermique globale de l'échangeur.
  • Mais l'expérience a montré que cette technique en deux étapes, thermo-soufflage puis compression contrôlée des soufflets biconvexes d'une ébauche en polymère, bute sur des résultats limités, dès que l'on cherche à augmenter le niveau des performances recherchées et notamment la conductance volumique de l'échangeur thermique ainsi réalisé. En effet, avec cette technique, il est impossible de complètement maîtriser le processus de fabrication en deux étapes d'un empilement monobloc de plaquettes creuses, pour ce qui concerne les épaisseurs du canal interne et celles des parois des plaquettes, bien que ces épaisseurs soient des paramètres déterminants pour la valeur de la conductance volumique de l'échangeur. En pratique, cela se traduit, pour le canal interne des plaquettes creuses, par une épaisseur ayant une valeur moyenne d'environ deux millimètres, avec une dispersion d'au moins trente pour cent. Pour ce qui concerne l'épaisseur de leurs parois, la valeur moyenne est de l'ordre du millimètre et la dispersion d'environ cinquante pour cent, cette dispersion étant essentiellement due à l'amincissement irrégulier de la paroi au cours du thermo-soufflage de l'ébauche.
  • En plus de cette limitation de performances imputable à ces problèmes d'épaisseur, il faut noter que la présence des collecteurs internes des plaquettes creuses empilées ajoute un autre volet à cette limitation : la création d'un canal central, commun à toutes ces plaquettes creuses, qui permet un écoulement direct rapide du liquide entre ces deux collecteurs. De ce fait, ce canal central relativement large ne participe guère à l'échange thermique recherché.
  • Des dispositifs de refroidissement à hautes performances, pour applications diverses, sont décrits dans la demande allemande DE 102 18 274 et la demande internationale publiée WO 2006/010822 , déposée par TET. Dans les dispositifs connus de la demande internationale, les radiateurs sont des échangeurs thermiques réalisés selon le procédé du brevet européen de TET. Pour une application particulière (le refroidissement des gaz d'échappement d'un moteur Diesel en vue de leur recyclage), il est prévu dans cette demande d'utiliser un échangeur thermique mono-bloc à plaquettes creuses métalliques, susceptible de supporter une pression différentielle et une température beaucoup plus élevées que celles auxquelles un échangeur monobloc en polymère peut être soumis. A cet effet, l'ébauche métallique en accordéon de cet échangeur thermique devait être fabriquée par hydroformage. Cette technique connue semble prometteuse dans le domaine des échangeurs thermiques monoblocs à plaquettes métalliques creuses mais, pour le moment, elle n'a pas encore pu être correctement mise en oeuvre et, en outre, elle est elle-même limitée quant à son efficacité théorique. En effet, comme la résistivité thermique des liquides de refroidissement, eau ou huile, est élevée, la résistance thermique de la couche de liquide, en écoulement laminaire dans de telles plaquettes creuses, est inévitablement importante, compte tenu d'une épaisseur moyenne d'au moins 2 mm. Ce qui enlève une grande part d'intérêt à la faible résistance thermique qui serait apportée par les parois métalliques envisagées.
  • En conséquence, une autre façon de réaliser des échangeurs thermiques métalliques a dû être développée pour plusieurs applications particulières, notamment pour celle initialement prévue et, plus généralement, pour tout dispositif impliquant de pouvoir disposer d'échangeurs thermiques à très hautes performances. A cet effet, ces nouveaux échangeurs métalliques devront posséder poids, encombrement, surface frontale et puissances mécaniques consommées, aussi réduits que ceux des échangeurs monoblocs visés plus haut. Et cela, tout en ayant une conductance volumique beaucoup plus élevée (au moins 100 W/°C/dm3, par exemple) et, surtout, la possibilité de correctement fonctionner à des pressions différentielles et des températures importantes, par exemple de 1 MPa et 600°C. Et, dérivés de ces premiers échangeurs métalliques, d'autres moins performants en polymère ou en verre sont également possibles, qui concernent des applications particulières spécifiques, notamment celles utilisant des fluides corrosifs.
  • Pour ce faire, contrairement aux échangeurs métalliques monoblocs, initialement prévus pour un refroidissement des gaz d'échappement des moteurs Diesel, les nouveaux échangeurs thermiques, notamment prévus pour cet emploi particulier, devront être dotés de plaquettes creuses métalliques, pourvues d'un canal interne aussi fin et précis que possible et de parois à la fois rigides et très fines. Quant aux caractéristiques générales d'un tel échangeur thermique, elles seront bien évidemment totalement différentes de celles des précédents. Elles seront empruntées à un dispositif d'échange thermique lourd et encombrant, développé pour le refroidissement des transformateurs électriques des réseaux de distribution, décrit dans les brevets US 3 153 447 de 1964 et US 3 849 851 de 1974 . Ce dispositif est constitué par de grandes plaques métalliques creuses à parois gaufrées, raccordées par soudure à deux collecteurs externes, adaptées à être verticalement disposées et refroidies par de l'air circulant par convection naturelle.
  • Le premier objet de l'invention est un échangeur thermique à hautes performances, formé de plaquettes creuses à fines parois métalliques raidies par un gaufrage approprié, ayant à la fois poids, encombrement et surface frontale réduits, puissances mécaniques consommées faibles et conductance volumique très élevée, tout en étant bien adapté à une industrialisation fiable aisément maîtrisable et, en outre, susceptible de traiter des fluides liquides et/ou gazeux, à températures et/ou pressions différentielles importantes.
  • Le deuxième objet de l'invention concerne des échangeurs thermiques perfectionnés, semblables au précédent, moins performants que lui, mais mieux adaptés à des applications particulières déterminées, différentes de celles de ce précédent, comportant un empilement de plaquettes creuses, à parois minces en polymère ou en verre, raidies par un gaufrage approprié.
  • Le troisième objet de l'invention est un radiateur compact à surface frontale réduite, réalisé à partir de ces échangeurs thermiques perfectionnés, possédant une conductance thermique élevée et nécessitant des puissances de pompage et de ventilation très faibles.
  • Selon l'invention, un échangeur thermique à poids et encombrement réduits et à conductance volumique très élevée, adapté à traiter des fluides à grandes pressions différentielles et hautes températures, dans lequel:
    • des plaquettes métalliques creuses, à canal interne mince, sont empilées à pas constant et raccordées à des collecteurs externes ;
    • ces plaquettes comportent une zone centrale gaufrée, située entre deux zones de raccordement dotées d'embouchures étroites à surface sensiblement égale à celle d'une section transversale de la zone centrale ;
    • les parois de ces plaquettes ont été réalisées par emboutissage et découpe d'une feuille de métal;
    • les bords latéraux des deux parois d'une plaquette creuse sont soudés ;
    • l'écart entre les facettes en regard est uniforme, très étroit, exactement connu et pratiquement constant, dans la plage des pressions différentielles prévues ;
    • les espaces de séparation des plaquettes sont relativement étroits;
    est caractérisé en ce que :
    • les parois de chaque plaquette creuse sont à la fois rigides et très fines, leur zone centrale gaufrée présentant une ou plusieurs suites de bossages alternatifs alignés, dotés de facettes écrouies à fortes pentes, créant un nombre important d'arêtes vives, orientées dans des directions obliques ou perpendiculaires à l'alignement des bossages.
  • Avant de commenter l'intérêt de ces dispositions nouvelles, on notera que dans les brevets US concernés, l'épaisseur des parois des plaques n'a pas besoin d'être fine et leur rigidité n'est pas un problème particulier, de sorte que le gaufrage de la zone centrale de ces parois n'est pas la solution à un problème de raideur qui, dans ce cas, n'existe pratiquement pas. En effet, une épaisseur adéquate de parois réalisées en un métal usuel y pourvoit sans difficulté. Il s'agit seulement d'augmenter la surface d'échange thermique des plaques sans en augmenter les dimensions. Cela est fait par des ondulations longitudinales qui résultent d'enfoncements relativement faibles, réalisés à pas constant dans les parois. Le profil particulier des ces ondulations est représenté: il est banal et ne peut guère être caractérisé par une originalité quelconque, cet aspect des choses n'ayant aucun intérêt dans ce type d'échangeurs. En revanche, du fait de ces ondulations, le canal interne des plaques creuses possède une épaisseur ondulante qui varie symétriquement autour d'une valeur moyenne relativement importante. Et les parois de ce canal interne ne comportent pas de facettes pentues en regard.
  • Selon la première disposition de l'invention, il s'agit tout d'abord de plaquettes à parois rigides très fines (par exemple, 0,15 mm pour certains aciers) auxquelles leur écrouissage, obtenu « en prime » à l'occasion d'un emboutissage standard (à froid), confère une dureté et une limite d'élasticité particulièrement grandes : chaque facette de ces creux et bosses intervient comme une lamelle raide et, en outre, chaque arête vive se comporte comme une poutrelle dans laquelle ces lamelles sont encastrées. Ces lamelles ne peuvent donc prendre qu'une flèche très limitée, sous l'action des pressions différentielles appliquées. En particulier lorsque la surpression est externe, cette flèche demeure toujours nettement inférieure à la moitié de l'épaisseur interne des plaquettes creuses, laquelle épaisseur, mesurée entre les facettes des bossages, est par construction exactement connue et particulièrement réduite (0,3 mm, par exemple). Cela évite tout contact entre parois de facettes en regard de sorte que la fonction d'échange thermique entre les deux fluides est toujours correctement assurée.
  • Dans ces conditions, chaque plaquette creuse bosselée selon l'invention doit sa remarquable raideur primaire au fait que le métal constitutif de ses parois est écroui et que, en outre, ses bossages alternatifs en augmentent notablement le moment d'inertie. Ces lamelles très fines doublement raides sont alors en mesure de parfaitement jouer un rôle d'échangeur efficace de chaleur entre les deux fluides qui circulent le long de leurs deux faces, même s'il existe une forte pression différentielle entre ces fluides. Les caractéristiques immédiates de ces bossages alternatifs emboutis, qui doivent assurer cette raideur, défmissent le socle de l'invention. Elles se traduisent par des facettes écrouies à fortes pentes, engendrées par des allongements locaux importants de la feuille plane initiale, qui créent ainsi de nombreuses lamelles très fines et très raides dont tous les bords sont encastrés dans des poutrelles constituées par les arêtes vives des bossages.
  • Les arêtes vives des dièdres, que forment entre elles ces facettes fortement pentues, ont un second effet connu, celui d'augmenter la conductivité thermique apparente de l'air : les arêtes, à orientations obliques et/ou perpendiculaires au sens d'écoulement de cet air, ont pour effet d'engendrer des turbulences importantes dans les courants d'air à vitesse généralement élevée qui traversent les espaces relativement étroits de séparation des plaquettes. Cette disposition n'aurait aucun sens dans le cas des plaques ondulées, verticalement disposées, des brevets US concernés, dont les espaces de séparation aux dimensions non précisées sont parcourus par des courants d'air lents, circulant par convection naturelle.
  • Si maintenant, pour conclure cette argumentation, on se réfère au brevet européen de TET, on peut noter que toutes les causes des limitations de performances énumérées plus haut sont supprimées dans ce nouvel échangeur thermique et remplacées par leurs contraires : les parois et le canal interne ont des épaisseurs très fines, précises, bien connues et, comme cela sera précisé ci-après, le canal central peut disparaître. En revanche, toutes les caractéristiques à effet positif, afférentes aux parois gaufrées des plaquettes creuses de l'échangeur thermique monobloc en polymère décrit dans ce brevet européen, sont maintenues. A ces caractéristiques, s'ajoutent celles découlant de l'écrouissage des feuilles de métal utilisées. Et grâce à leur combinaison avec les avantages de l'échangeur décrit dans les brevets US ainsi qu'à l'usage (a priori mal venu, dans le cadre des pressions différentielles élevées prévues) de parois très fines et à la création d'un canal interne particulièrement étroit, un échangeur thermique nouveau et non évident est réalisé. Et ce nouvel échangeur possède en conséquence des performances qui transcendent très fortement celles déjà très efficaces des échangeurs thermiques monoblocs en polymère, selon le brevet européen de TET.
  • Selon des caractéristiques particulières, complémentaires des caractéristiques principales ci-dessus,
    • chaque plaquette creuse comporte au moins deux alignements de bossages alternatifs ;
    • deux alignements contigus sont séparés par une cloison rectiligne étroite, formée par deux reliefs internes emboutis, assemblés par soudure;
    • la hauteur de ces reliefs égale à la moitié de la valeur de l'épaisseur interne des plaquettes, au niveau des crêtes de leurs bossages.
  • Grâce à ces dernières dispositions, reprises d'une possibilité prévue dans les brevets US concernés pour améliorer la rigidité des plaques lorsqu'elles sont de grandes dimensions (m2), deux résultats particulièrement intéressants sont obtenus pour l'échangeur thermique selon l'invention. Tout d'abord, sous l'action d'une surpression interne relativement élevée, appliquée aux plaquettes creuses d'un tel échangeur thermique, la cloison rectiligne interne maintient l'épaisseur interne des zones centrales gaufrées à une valeur pratiquement indépendante de la pression différentielle subie par les fines parois des plaquettes. Ce qui a pour résultat de permettre à ces plaquettes creuses, à parois très fines raidies par un gaufrage approprié, de pouvoir supporter sans dommage une surpression interne relativement élevée. En effet, en l'absence de tels reliefs internes soudés, les alignements contigus de bossages alternatifs à raideur élevée seraient séparés par une zone souple faisant charnière. En réponse à une telle surpression, cela entraînerait un léger gonflement des plaquettes provoquant une diminution notable des échanges thermiques dans leurs espaces de séparation ou même une rapide détérioration de ces plaquettes. En revanche, grâce à une telle cloison formée par ces deux reliefs internes soudés, il n'est pas nécessaire de systématiquement augmenter l'épaisseur des parois très fines des plaquettes creuses pour pouvoir faire face à une surpression interne transitoire élevée. Ce qui permet de réaliser des échangeurs thermiques plus légers et moins onéreux.
  • Le second avantage de ces reliefs internes soudés se traduit par une plus grande efficacité de l'échange thermique recherché. En effet, cette cloison interne ainsi formée entre deux alignements contigus de bossages alternatifs constitue une barrière pour le courant de liquide entrant dans la plaquette creuse. Chaque barrière a pour premier effet d'empêcher un important écoulement direct entre les deux collecteurs externes, le long d'une paroi lisse de faible surface et donc peu efficace pour l'échange thermique recherché, d'autant que cette surface n'est pas balayée par un fort courant d'air puisqu'elle se trouve dans le sillage du collecteur amont. En revanche, cette barrière a pour effet second de diriger le courant entrant vers les deux alignements de bossages alternatifs à grande efficacité d'échange thermique et ainsi de maximiser les échanges thermiques effectués.
  • On notera que ces deux avantages n'ont guère d'intérêt pour l'échangeur thermique à grandes plaques creuses, à parois relativement épaisses, décrit dans les brevets US concernés. En effet, dans cet échangeur, la pression différentielle maximale, qui apparaît au pied des grandes plaques verticales, est la surpression hydrostatique relativement peu élevée engendrée par l'huile de refroidissement. Ce qui ne concerne pas l'échangeur thermique selon l'invention, qui peut bien évidemment être installé dans toute position intéressante et surtout pouvoir fonctionner avec des pressions différentielles très élevées. En outre, comme cette huile circule de haut en bas par convection naturelle dans des plaques creuses beaucoup plus larges que les collecteurs externes, sa faible pression dynamique amont, due à une vitesse de circulation réduite, lui évite de pouvoir beaucoup privilégier un parcours direct rapide d'un collecteur à l'autre.
  • Selon des caractéristiques complémentaires des précédentes :
    • les angles formés par les normales à deux facettes adjacentes des bossages alternatifs mesurent au moins 30°, pour que les arêtes vives de ces facettes puissent être efficaces dans la création de turbulences et être assimilables à des poutrelles dans lesquelles sont encastrées les facettes de ces bossages;
    • l'angle maximal des normales à deux facettes adjacentes est limité par les restrictions imposées aux conditions d'emboutissage de la feuille de métal concernée.
  • Selon une caractéristique complémentaire des précédentes, les facettes en regard d'une plaquette ont des parois parallèles et l'écart séparant ces parois est constant et du même ordre de grandeur que leur épaisseur.
  • Selon des caractéristiques complémentaires des précédentes :
    • les bossages alternatifs ont, en propre, deux facettes en forme de trapèze isocèle, possédant une arête longitudinale commune, et, en partage, deux facettes en forme de losange ;
    • la grande diagonale des facettes en losange peut mesurer quelques dizaines de fois l'épaisseur de la paroi des plaquettes.
  • Selon des caractéristiques alternatives aux précédentes :
    • les bossages alternatifs ont, en propre, deux facettes en forme de triangle et, en partage, deux facettes en forme d'hexagone, possédant une arête transversale commune ;
    • l'écart entre les arêtes transversales des facettes en hexagone peut mesurer quelques dizaines de fois l'épaisseur de la paroi des plaquettes.
  • Selon une caractéristique complémentaire des précédentes, la zone centrale gaufrée de chaque plaquette creuse est reliée aux collecteurs externes par deux zones de raccordement dotées de bords latéraux présentant une forte obliquité et de parois lisses comportant des portions de troncs de cône.
  • Selon une caractéristique complémentaire des précédentes, les collecteurs externes ont un profil aérodynamique adapté à minimiser leur traînée.
  • Selon une caractéristique complémentaire possible des précédentes, des facettes symétriques de bossage apparaissent comme taillées en diamants et comportent plusieurs facettes secondaires, dotées d'arêtes vives complémentaires.
  • Grâce à ces différentes dispositions, la conductance volumique de l'échangeur thermique ainsi réalisé est particulièrement élevée. Et cela, pour plusieurs raisons : (1) les plaquettes ont des parois métalliques qui ont une résistance thermique négligeable, (2) la résistance thermique de la très fine couche d'eau ou d'huile à l'intérieur de ces plaquettes est faible, malgré l'écoulement laminaire de cette couche et la relativement forte résistivité thermique de ces liquides et (3) la turbulence et la conductivité thermique apparente de l'air, qui circule entre les plaquettes, augmentent avec la hauteur des bossages et le nombre total d'arêtes vives qu'ils comportent. Avec au moins deux alignements comprenant chacun quelques bossages alternatifs, dotés de facettes inclinées à environ 45°, un compromis efficace est réalisé entre les différents paramètres concernés. En effet, l'emboutissage de bossages dont la pente des facettes est inférieure à environ 50° est une opération standard qui ne pose aucun problème de réalisation et un angle minimal de 30° entre les normales à deux facettes adjacentes assure une bonne turbulence dans l'écoulement de l'air et une largeur minimale pour chacun des alignements des bossages dans la zone centrale des plaquettes, dès lors que la hauteur de ces creux et bosses est fixée. En outre un angle minimal de 30°, entre les normales à deux facettes adjacentes, confère à l'arête concernée une raideur suffisante pour qu'elle soit assimilable à une poutrelle, l'ensemble de ces arêtes étant alors assimilable à un treillis de poutrelles.
  • En outre, avec un échangeur thermique formé par l'empilement d'un grand nombre de telles plaquettes identiques, branchées sur deux collecteurs externes, on peut considérablement diminuer les pertes de charge d'un liquide y circulant à débit constant et en écoulement laminaire, lequel peut, le cas échéant, être relativement rapide. Dans tous les cas, un tel empilement réduit notablement la puissance nécessaire au pompage de ce liquide. Et, en plus de l'utilisation de collecteurs externes à profil aérodynamique, malgré l'écart relativement important séparant les plaquettes, leur plus grande dimension, installée parallèle à la vitesse d'écoulement des deux fluides qui se croisent, conduit à notablement diminuer la traînée aérodynamique du radiateur et/ou la puissance nécessaire à sa ventilation.
  • Pour ce qui concerne les métaux utilisables pour la fabrication des parois des plaquettes creuses selon l'invention, on notera qu'ils ne sont pas très nombreux mais bien connus des spécialistes de l'emboutissage et que finalement le choix (aluminium ou acier, par exemple) sera principalement déterminé par le comportement mécanique de ces métaux dans la plage des températures de fonctionnement des échangeurs thermiques qui incorporeront ces plaquettes.
  • Grâce à ces diverses dispositions, la fabrication industrielle des échangeurs thermiques à très hautes performances, selon l'invention, comprend un ensemble d'opérations parfaitement maîtrisables et relativement aisées à automatiser, qui conduit à un prix de revient intéressant pour la production en série de ces échangeurs. En effet, ces opérations sont les suivantes :
    1. 1) emboutissage et découpe de parois identiques de plaquettes dans une feuille métallique fine ;
    2. 2) retournement tête-bêche d'une paroi ;
    3. 3) assemblage de deux parois conjuguées, par soudure de leurs rebords latéraux et des reliefs de leur cloison centrale interne,
    4. 4) montage et fixation par soudure de ces plaquettes creuses sur leurs deux collecteurs externes.
  • Selon l'invention, un radiateur compact, à très haute conductance volumique, est caractérisé en ce que :
    • il comprend deux groupes identiques d'échangeurs thermiques métalliques à plaquettes creuses, associés à deux collecteurs principaux amont et aval, à épaisseur réduite, dotés de faces planes en forme de trapèzes rectangles, légèrement écartés l'un de l'autre et disposés de manière que leurs coins carrés soient opposés;
    • les collecteurs individuels amont et aval des échangeurs de chaque groupe sont respectivement raccordés, à intervalle constant peu supérieur à la largeur de la zone centrale des échangeurs, aux deux faces de ces deux collecteurs principaux amont et aval.
  • Grâce à ces dispositions, on peut construire un radiateur à très haute conductance volumique qui présente un maître couple aussi réduit que possible (jusqu'à 0,10 dm2 par kW à évacuer). On peut en effet, aisément assembler de part et d'autre des deux collecteurs principaux plats, un nombre important d'échangeurs thermiques eux-mêmes formés par un grand nombre de plaquettes creuses métalliques empilées selon l'invention. Ce radiateur compact demande en outre des puissances de pompage et de ventilation particulièrement faibles, environ cinq fois plus faibles que les puissances exigées par les radiateurs à ailettes pleines ayant la même conductance thermique.
  • Les caractéristiques et avantages de l'invention ressortiront d'une manière plus précise de la description ci-après d'une forme de réalisation non limitative de l'invention, faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue de dessus d'une première paroi gaufrée de plaquette creuse selon l'invention ;
    • la figure 2A est une vue de dessus d'une seconde paroi gaufrée de plaquette creuse selon l'invention et les figures 2B et 2C, des vues de facettes particulières de cette paroi ;
    • la figure 3 est une section longitudinale des bossages alternatifs de cette première paroi;
    • la figure 4 est une section longitudinale d'une extrémité de plaquette creuse, soudée à un collecteur ;
    • la figure 5 est une perspective cavalière d'un échangeur thermique à quinze plaquettes creuses ;
    • la figure 6 est une vue de dessus d'un radiateur, selon l'invention, construit au moyen de ces échangeurs thermiques.
  • Selon la figure 1, est représentée une première forme de réalisation d'une paroi métallique mince 10 d'une plaquette creuse. Cette paroi a été emboutie puis découpée de manière à présenter une zone centrale gaufrée 13, disposée entre deux zones de raccordement. A titre d'exemple, cette paroi est en aluminium et elle a une épaisseur de 0,3 mm et sa zone centrale gaufrée a 60 mm de large et 76 mm de long. Cette zone centrale 13 est formée par deux alignements identiques contigus 12 et 14 de bossages alternatifs, séparés par une zone rectiligne étroite 16, de 4 mm de large. Les deux zones de raccordement 18 et 20 ont des parois lisses. Chaque alignement comprend deux bossages alternatifs identiques, formés de bosses et de creux, soit, pour les alignements 12-14, quatre bosses 221-2 et 241-2, d'une part, et quatre creux 22'1-2 et 24'1-2, d'autre part, ces derniers étant représentés en gris. Chaque bosse 221-2-241-2 ou chaque creux 22'1-2-24'1-2 a la forme d'un toit à quatre pentes présentant quatre arêtes vives fortement inclinées, soit pour chaque bossage alternatif de l'alignement 12: (1) en propre, deux trapèzes symétriques 261-2 et 281-2 pour les bosses, et 26'1-2 et 28'1-2 pour les creux, tous avec une grande base de 19 mm, (2) en partage avec le bossage contigu du même alignement, deux triangles isocèles 301-2 et 321-2 pour les bosses, et 30'1-2 et 32'1-2 pour les creux, tous avec une base de 28 mm, (3) une crête longitudinale 341-2 pour les bosses et 34'1-2 pour les creux, toutes longues de 5 mm, et (4) une même hauteur de 5 mm. On notera que les deux paires de triangles isocèles 302-30'1 et 30'2-321 de l'alignement 12 (et de même en 14), qui appartiennent à deux alternances consécutives du bossage alternatif, forment deux losanges plans.
  • Au centre de la zone rectiligne étroite 16, qui partage en deux la zone centrale gaufrée 13 de la paroi 10 représentée, est réalisée par emboutissage un relief interne 36 de 2 mm de large, à flancs symétriques aussi raides que le permet la technologie de l'emboutissage. Un tel relief 36 a une hauteur égale à la moitié de l'écart maximal séparant les crêtes des bossages des deux parois de la plaquette creuse réalisée (soit 0,2 mm, comme cela sera précisé ci-après). Deux lignes 38-40 séparent les bords externes parallèles des deux alignements 12-14 de bossages alternatifs d'une paroi de plaquette creuse, de la paire de rebords externes parallèles 42-44, qui forment une partie du plan de joint de deux parois de plaquette. Les lignes 38-40 et les rebords 42-44 ont 1 mm de large et forment une petite marche de 0,2 mm de haut, qui détermine la moitié de l'épaisseur interne d'une plaquette au niveau des crêtes de ses bossages. Ces deux lignes planes 38-40 aboutissent aux deux parties planes 46-48 des deux zones de raccordement 18-20 de la paroi 10 et ces deux rebords parallèles 42-44 se terminent par les deux paires de rebords externes obliques 501-502 et 521-522 de ces mêmes zones de raccordement ; ils forment l'autre partie du plan de joint des parois de la plaquette. Chaque rebord 501-2 ou 521-2 forme un angle de 60° avec la ligne de symétrie longitudinale de la paroi 10. L'extrémité de chaque zone de raccordement 18-20 comporte une portion de tronc de cône presque plat 54-56, de 87,5° de demi angle au sommet. Cette portion tronconique est délimitée par deux paires d'arcs de cercle 581-2 et 601-2, cette dernière paire ayant 8 mm de long. Et leurs extrémités sont reliées l'une à l'autre par deux marches de 1,5 mm de haut, de telle façon que la surface de chacune des embouchures amont ou aval, ainsi aménagées pour une plaquette creuse, mesure 24 mm2, soit sensiblement la surface de la section transversale de l'espace interne de la zone centrale gaufrée 13 de la plaquette.
  • Selon la figure 2A, est représentée une paroi métallique mince 11, emboutie puis découpée, qui constitue une deuxième forme de réalisation d'une paroi de plaquette creuse selon l'invention. Cette paroi 11 ne diffère de la paroi 10 précédente, que par sa zone centrale gaufrée, qui ne comporte qu'un seul alignement de bossages 15 large de 26 mm, et par la forme de ses bossages alternatifs. Cet alignement unique comprend trois bosses 22b1-3 et trois creux 22'b1-3, ces derniers étant représentés en gris. Chaque bosse 22b1-3 et chaque creux 22'b1-3 a la forme d'un toit à quatre pentes fortement inclinées. Pour les trois bossages alternatifs de l'alignement 15 cela donne pour chacun: (1) en propre, des paires de triangles latéraux symétriques 25b1-2, 27b1-2, 29b1-2 pour les bosses, et de même 25'b1-2, 27'b1-2, 29'b1-2 pour les creux, tous avec une grande base de 14 mm, et (2) en partage avec le bossage contigu, des hexagones centraux 311-5, tous avec une crête transversale longue de 18 mm, et une même hauteur de 5 mm.
  • Selon les figures 2B et 2C, sont représentées, à titre de variantes aux facettes des bossages des figures 1 et 2A, deux des facettes principales de la figure 2A présentant des facettes secondaires. La figure 2B présente une facette latérale en triangle 25, dotée de trois facettes secondaires 371-3 formant un trièdre relativement plat à trois arêtes vives, pourvu d'une pointe en diamant 39, située au centre de gravité de ce triangle. La figure 2C présente une facette longitudinale en hexagone 31, dotée de six triangles à côtés coplanaires 411-6 , pourvus d'une pointe centrale en diamant 431-6, semblable à celle 39 de la figure 2B. La hauteur de ces pointes est déterminée par les limites de la technologie d'emboutissage des feuilles de métal.
  • Les figures 1 et 2A illustrent deux des formes possibles que peuvent prendre les bossages des parois gaufrées des plaquettes creuses selon l'invention. Et les figures 2B et 2C illustrent les variantes possibles que peuvent connaître les facettes principales de ces bossages, afin d'améliorer leur capacité à produire des turbulences dans les courants d'air entre plaquettes.
  • La figure 3 représente un agrandissement d'une coupe longitudinale le long d'un axe AA' (voir fig.1) de l'une des extrémités d'une partie d'une plaquette creuse avant son raccordement à un collecteur. Cette plaquette est le résultat de la soudure des deux parois 10a et 10b, cette paroi 10b étant la paroi 10a retournée tête-bêche, autour de l'axe de symétrie transversale BB' (voir fig.1). Cette coupe AA' est effectuée le long des crêtes 352 et 35'2 du bossage alternatif formé par la bosse 242 et le creux 24'2 de l'alignement 14 et elle traverse la zone de raccordement 18 de la paroi 10a de cette plaquette. La figure 4 représente un agrandissement d'une coupe de cette même extrémité de plaquette, effectuée le long de la ligne de symétrie longitudinale CC' (voir fig.1) des alignements 12 et 14 de bossages alternatifs et des zones de raccordement 18 et 20 de la paroi 10a.
  • Sur la figure 3, les bosses et creux de la première forme de réalisation de la paroi basse 10b et de la paroi haute 10a d'une plaquette sont inversés, de sorte que les références 242 et 24'2 de la paroi haute 10a, vue de profil sur cette figure 3, apparaissent respectivement comme un creux et une bosse. Dans ce creux est emboîtée la bosse 24'1 et dans cette bosse, le creux 241 de la paroi 10b définie plus haut. L'épaisseur de la partie 62 du canal interne d'une plaquette creuse, située entre les crêtes emboîtées 341-35'2 ou 34'1-352 de la zone gaufrée de cette plaquette, est de 0,4 mm et celle de la partie 64 de ce canal interne, située entre les pentes à 45° des flancs ascendants ou descendants de ces bossages, est de 0,28 mm. L'épaisseur du canal interne 66, entre les parties planes des zones de raccordement 18 et 20, est de 0,4 mm.
  • Selon la figure 3, la partie droite de la coupe le long de la ligne AA' représente (1) le début 68 de l'écartement progressif des parois des deux sections coniques en regard 54-56 des parois 10a-10b, qui terminent ces deux zones de raccordement, (2) les deux marches symétriques de ces parois qui débutent avec les cercles 582 et 581 et (3) les deux rebords externes symétriques 522 et 501 qui définissent le plan de joint des parois 10a et 10b.
  • Selon la figure 4, la coupe représentée est effectuée le long de l'axe de symétrie longitudinale CC' d'une extrémité de plaquette creuse engagée et soudée par un cordon de soudure 70, dans les bords et les extrémités d'une fente 72, en forme d'arc de cercle de 120°, pratiquée dans la coquille de raccordement 74 d'un collecteur externe 75, formé par deux coquilles allongées, soudées l'une à l'autre. La coupe représentée montre deux tronçons parallèles 16a et 16b des zones centrales étroites des parois 10a et 10b, séparés par un écart 66 de 0,4 mm et deux autres tronçons divergents 54 et 56 correspondant aux sections coniques en regard des zones de raccordement des deux parois 10a et 10b de la plaquette creuse. L'écart entre les bords extrêmes de ces deux tronçons divergents est de 3 mm et la longueur des arcs 602 et 601 (voir fig.1) de 120°, de 8 mm. De la sorte, l'étendue des sections droites du canal interne à parois gaufrées et celle des ouvertures des extrémités de l'ailette sont sensiblement égales.
  • Selon la figure 5, un échangeur thermique élémentaire 76 est représenté qui comprend quinze ailettes métalliques creuses minces 781-15 à parois gaufrées. Les extrémités de ces plaquettes creuses sont engagées et soudées comme indiqué plus haut dans des fentes à bords circulaires, ayant 3,5 mm de large et un pas de 8 mm, pratiquées dans les parois des collecteurs externes 80-82, à profil aérodynamique. Pour permettre la réalisation aisée de telles soudures, les collecteurs 80-82 sont constitués par deux coquilles allongées, à section transversale en forme de U, soudées l'une à l'autre le long d'une ligne 83. Elles sont réalisées à partir de bandes métalliques découpées dans des feuilles identiques à celles utilisées pour la fabrication des parois embouties des plaquettes. Des fentes de largeur, longueur et pas appropriés sont pratiquées dans la moitié de ces bandes, puis les deux types de bandes ainsi préparés sont transformés en coquilles de fermeture frontale et de raccordement 75, au moyen de deux calibres conjugués, à profils en relief et en creux. Puis, les embouchures des différentes plaquettes creuses sont soudées aux fentes des coquilles de raccordement. Ensuite, deux coquilles de fermeture frontale sont à leur tour soudées aux deux précédentes et l'une de leurs extrémités est obturée, pour constituer à la fois les deux collecteurs externes profilés et l'échangeur lui-même.
  • Selon la figure 6, est représentée la vue de dessus d'un radiateur compact 81. De part et d'autre de deux collecteurs principaux plats 84-86, en forme de trapèzes rectangles disposés tête-bêche, peuvent être montés en parallèle six échangeurs thermiques identiques 761-6, de manière à constituer un radiateur compact à conductance thermique globale appropriée. Ces collecteurs plats 84-86 ont des côtés parallèles 881-2 et 901-2 et une épaisseur sensiblement égale à la dimension maximale des sections droites des collecteurs externes 801-2. Deux échangeurs contigus sont montés de façon que les bords latéraux de leurs plaquettes soient pratiquement jointifs ou légèrement intercalés. Dans le premier cas, les pieds des collecteurs externes amont 801-6 et aval 821-6 sont engagés de la même profondeur dans des ouvertures circulaires appropriées, 941-6 et 961-6, pratiquées à intervalles constants le long des grands côtés 92-93 des faces des collecteurs principaux 84-86 puis ils sont soudés. Dans le second cas, les profondeurs d'enfoncement des collecteurs sont différentes pour les échangeurs de rang pair et impair. La longueur du plus grand 882 - 902 des côtés parallèles des deux collecteurs principaux 84-86 est déterminée par le nombre d'échangeurs thermiques 76 devant être montés. Les petits côtés des deux collecteurs principaux 84-86 ont des longueurs déterminées par l'écartement des collecteurs externes 80-82 et par l'écart 100 (typiquement 5 mm) qui sépare leurs côtés obliques.
  • Un tel assemblage d'échangeurs thermiques formés par des empilements de plaquettes métalliques creuses minces, à parois très fines raidies par gaufrage, permet de constitue un radiateur compact particulièrement intéressant pour le refroidissement des moteurs thermiques à puissance élevée (> 100 kW). Ils possèdent en effet un maître couple très diminué, une conductance thermique très élevée, des puissances de pompage et de ventilation réduites, un encombrement et un poids limités. Il convient également au traitement des gaz d'échappement des moteurs Diesel, utilisés refroidis pour améliorer le fonctionnement à bas régime de ces moteurs. Plus généralement, tout échange thermique entre deux fluides, notamment entre un liquide et un gaz, présentant une température et/ou une pression différentielle élevées (jusqu'à environ 600°C et 1 MPa) peut être efficacement réalisé au moyen d'un tel ensemble métallique compact.
  • L'invention n'est pas limitée aux exemples décrits. La longueur et la largeur des plaquettes creuses peuvent être notablement plus grandes que celles illustrées à la figure 1 et mesurer plusieurs décimètres. Il en est de même pour le nombre de bossages alternatifs dans chaque alignement et le nombre d'alignements dans chaque plaquette. Les dimensions maximales d'une plaquette sont en pratique déterminées par celles du plateau de la presse à emboutir disponible. Quant au nombre de plaquettes creuses dans un échangeur thermique, il peut monter jusqu'à quelques dizaines. Il en est de même pour le nombre total d'échangeurs assemblés dans un radiateur compact.
  • On notera également qu'il est possible de fabriquer une plaquette creuse selon l'invention en utilisant deux parois gaufrées appropriées semblables mais non identiques du fait de leurs bords latéraux différents. Au lieu de deux parois identiques, à rebords latéraux comportant une petite marche définissant la demie épaisseur du canal interne de la zone centrale, on aura une paroi dont les rebords présentent une marche deux fois plus haute que la précédente et une autre paroi sans marche aucune. Cela imposera l'utilisation de deux paires différentes de moules d'emboutissage mais n'aura guère d'importance économique lorsque la production est importante.
  • Les figures ci-dessus illustrent des plaquettes creuses pour échangeur thermique liquide/gaz. Et, dans ces plaquettes métalliques, à canal interne très étroit (0,3 mm), le liquide circule. Dans le cas d'un échangeur thermique gaz/gaz, l'épaisseur de ce canal interne est bien évidemment beaucoup plus importante (typiquement > 1 mm) et l'écart entre plaquettes est quant à lui généralement réduit par rapport à celui de l'échangeur représenté. Cela, pour que les débits massiques et les vitesses des deux gaz soient comparables de chaque côté des parois des plaquettes creuses.
  • Par ailleurs, pour des applications particulières, notamment en chimie et dans tout domaine où des fluides corrosifs sont concernés, il est souvent souhaitable et parfois nécessaire de pouvoir disposer d'échangeurs thermiques en verre, dotés de hautes performances et, mieux que tous autres, parfaitement adaptés à leurs conditions d'emploi. A cet effet, ces échangeurs thermiques en verre seront dotés de conductances volumiques élevées, mais cependant à mi-chemin de celles indiquées plus haut pour des échangeurs à plaquettes creuses soit en polymère monobloc soit en métal du type selon l'invention (20 ou 100 W/°C/dm3). Pour ce qui concerne les températures et les pressions différentielles maximales qui pourront être appliquées à ces échangeurs thermiques en verre, elles seront inférieures à celles que supportent les échangeurs en métal selon la présente invention et supérieures à celles concernant les échangeurs monoblocs en polymère selon le brevet européen de TET. Pour ce même type d'applications, il peut être également intéressant de pouvoir disposer d'échangeurs thermiques en polymère ayant une conductance volumique d'environ 50% supérieure à celle de ces échangeurs monoblocs, tout en conservant leurs plages de pressions différentielles et de températures.
  • Pour ce faire, on pourra adopter et adapter la technologie nouvelle des échangeurs thermiques métalliques selon l'invention et, à la place d'une feuille de métal, simplement utiliser une feuille de verre ou de polymère et la traiter par emboutissage à chaud ou par thermoformage. Les procédés de fabrication, mis en oeuvre dans ces deux techniques de mise en forme d'une feuille, sont proches l'un de l'autre : le premier utilise une pression mécanique et deux moules conjugués comportant creux et/ou reliefs, et le second, une pression pneumatique et un moule unique avec creux et/ou reliefs ; Et toutes deux font appel à un chauffage approprié. Mais, aucun écrouissage n'est produit.
  • Les épaisseurs des parois et des canaux internes d'un tel échangeur thermique à plaquettes creuses en verre ou en polymère, à parois gaufrées et à collecteurs externes, seront inévitablement augmentées, en accord avec les caractéristiques mécaniques particulières du type de verre ou du polymère utilisé. Leurs performances en découlent directement, comme cela a été expliqué plus haut.

Claims (11)

  1. Echangeur thermique (76), à poids réduit et conductance volumique élevée, adapté à traiter des fluides à grande pression différentielle et hautes températures, dans lequel:
    - des plaquettes métalliques creuses (781-15), à canal interne mince, sont empilées à pas constant et raccordées à des collecteurs externes (80-82) ;
    - ces plaquettes comportent une zone centrale gaufrée (13), située entre deux zones de raccordement (18-20) dotées d'embouchures étroites (601-2) à surface sensiblement égale à celle d'une section transversale de la zone centrale ;
    - les parois de ces plaquettes (78) ont été réalisées par emboutissage et découpe d'une feuille de métal ;
    - les bords latéraux (42-44) des deux parois (10-11) d'une plaquette creuse (78) sont soudés ;
    - l'écart (64-66) entre les facettes en regard est uniforme, très étroit, exactement connu et pratiquement constant, dans la plage des pressions différentielles prévues ;
    - les espaces de séparation des plaquettes (781-15) sont relativement étroits;
    caractérisé en ce que :
    - les parois (10-11) de chaque plaquette creuse (781-15) sont à la fois rigides et très fines, leur zone centrale gaufrée (13) présentant une ou plusieurs suites (12-14) de bossages alternatifs alignés (22-22' et 24-24'), dotés de facettes écrouies (24, 26, 28, 30) à fortes pentes, créant un nombre important d'arêtes vives, orientées dans des directions obliques et/ou perpendiculaires à l'alignement des bossages.
  2. Echangeur thermique,
    - il est constitué par des plaquettes creuses (781-15) en verre ou en polymère, à canal interne mince, empilées à pas constant et raccordées à des collecteurs externes (80-82);
    - les parois de ces plaquettes creuses (78) ont été réalisées par emboutissage à chaud
    ou thermoformage puis découpe d'une feuille de verre ou de polymère;
    - ces plaquettes (78) comportent une zone centrale gaufrée (13), située entre deux zones de raccordement (18, 20) dotées d'embouchures étroites (601-2) à surface sensiblement égale à celle d'une section transversale de la zone centrale ;
    - les bords latéraux (42, 44) des deux parois (10, 11) d'une plaquette creuse (78) sont soudés;
    - la zone centrale des plaquettes présente une ou plusieurs suites (12, 14)
    - l'écart (64, 66) entre les facettes en regard est uniforme, étroit, exactement connu et pratiquement constant dans la plage des ressions différentielles prévues ;
    - les espaces de séparation des plaquettes (78) sont relativement étroits;
    caractérisé en ce que : de bossages alternatifs alignés (22, 22' et 24, 24'), dotés de facettes (24, 26, 28, 30) à fortes pentes, créant un nombre (24, 26, 28, 30) important d'arêtes vives, orientées dans des directions obliques ou perpendiculaires à l'alignement des bossages.
  3. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que :
    - chaque plaquette creuse (78) comporte au moins deux alignements (12-14) de bossages alternatifs ;
    - deux alignements contigus sont séparés par une cloison rectiligne étroite (36), formée par deux reliefs internes emboutis ou thermoformés, assemblés par soudure;
    - la hauteur de ces reliefs est égale à la moitié de la valeur maximale de l'épaisseur interne de ces plaquettes creuses.
  4. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que :
    - les angles formés par les normales à deux facettes adjacentes des bossages alternatifs mesurent au moins 30°, pour que les arêtes vives de ces facettes puissent être efficaces pour la création de turbulences et pour la résistance aux écarts de pression entre les fluides ;
    - l'angle maximal des normales à deux facettes adjacentes est limité par les restrictions imposées aux conditions d'emboutissage ou de thermoformage de la feuille de matériau concernée.
  5. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que :
    - les bossages alternatifs ont, en propre, deux facettes latérales en forme de trapèzes isocèles (261-2, 26'1-2), possédant une arête longitudinale commune (341, 34'1), et, en partage, deux facettes centrales en forme de losange (302-30'1) ;
    - la grande diagonale des facettes en losange peut mesurer quelques dizaines de fois l'épaisseur de la paroi des plaquettes.
  6. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que :
    - les bossages alternatifs ont, en propre, deux facettes latérales en forme de triangles isocèles (251-2, 27b1-2 et 29b1-2) pour les bosses et (25'b1-2, 27'b1-2 et 29'b1-2) pour les creux et, en partage, deux facettes centrales en forme d'hexagones pour les bosses (22b1-3) et pour les creux (22'b1-3), ces facettes en hexagones possédant une arête transversale commune;
    - l'écart entre les arêtes transversales de ces facettes en hexagone peut mesurer quelques dizaines de fois l'épaisseur de la paroi des plaquettes.
  7. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que la zone centrale gaufrée (13) de chaque plaquette creuse est reliée aux collecteurs externes par deux zones de raccordement (18-20) dotées de bords latéraux présentant une forte obliquité et de parois lisses comportant des portions de troncs de cône (54-56).
  8. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que les facettes en regard des bossages d'une plaquette creuse ont des parois parallèles et l'écart (64) séparant ces parois est constant et du même ordre de grandeur que leur épaisseur.
  9. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que des facettes symétriques de bossage apparaissent comme taillées en diamant (25-31) et comportent plusieurs facettes secondaires (371-3 - 411-5) et dotées d'arêtes vives complémentaires.
  10. Echangeur thermique selon la revendication 1 ou 2, caractérisé en ce que :
    - les collecteurs externes (80-82) des plaquettes creuses ont un profil aérodynamique adapté à minimiser la traînée de l'échangeur ;
    - chaque collecteur est formé par deux coquilles allongées, l'une (75) de raccordement aux plaquettes et l'autre de fermeture frontale, leur section transversale est en forme de U et elles sont fixées l'une à l'autre par une ligne de soudure (83).
  11. Radiateur compact et léger, à haute ou très haute conductance thermique, caractérisé en ce que :
    - il comprend deux groupes identiques d'échangeurs thermiques (76) à plaquettes creuses (781-15) , en métal, en verre ou en polymère, selon la revendication 5,
    - ces deux groupes sont associés à deux collecteurs principaux amont (84) et aval (86), à épaisseur réduite, dotés de faces planes en forme de trapèzes rectangles, légèrement écartés l'un de l'autre (100) et disposés de manière que leurs coins carrés soient opposés;
    - les collecteurs individuels amont (821-6) et aval (801-6) des échangeurs de chaque groupe sont respectivement raccordés, à intervalle constant peu supérieur à la largeur de la zone centrale (13) des échangeurs, à deux faces homologues de ces deux collecteurs principaux amont et aval.
EP07788872A 2006-06-13 2007-06-12 Echangeurs thermiques a plaquettes creuses Not-in-force EP2032928B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0605248A FR2902183A1 (fr) 2006-06-13 2006-06-13 Echangeurs thermiques a ailettes metalliques creuses
PCT/FR2007/000967 WO2007144498A2 (fr) 2006-06-13 2007-06-12 Echangeurs thermiques a plaquettes creuses

Publications (2)

Publication Number Publication Date
EP2032928A2 EP2032928A2 (fr) 2009-03-11
EP2032928B1 true EP2032928B1 (fr) 2009-09-09

Family

ID=37685798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07788872A Not-in-force EP2032928B1 (fr) 2006-06-13 2007-06-12 Echangeurs thermiques a plaquettes creuses

Country Status (15)

Country Link
US (1) US20100012303A1 (fr)
EP (1) EP2032928B1 (fr)
JP (1) JP2009540264A (fr)
KR (1) KR20090048433A (fr)
CN (1) CN101466993A (fr)
AT (1) ATE442564T1 (fr)
AU (1) AU2007259127A1 (fr)
BR (1) BRPI0714038A2 (fr)
CA (1) CA2654633A1 (fr)
DE (1) DE602007002409D1 (fr)
ES (1) ES2333486T3 (fr)
FR (1) FR2902183A1 (fr)
MX (1) MX2008015912A (fr)
RU (1) RU2413152C2 (fr)
WO (1) WO2007144498A2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939879B1 (fr) * 2008-12-15 2011-03-04 Vitherm Echangeur thermique a plaques soudees
CN102812321B (zh) * 2010-04-09 2015-09-30 英格索尔-兰德公司 成型的微通道热交换器
WO2011145065A1 (fr) * 2010-05-18 2011-11-24 Tmw Plaques creuses d'echange thermique
FR2960288A1 (fr) * 2010-05-18 2011-11-25 Third Millenium Water Company Echangeurs thermiques a plaquettes creuses en polymere.
FR2967488A1 (fr) * 2010-11-17 2012-05-18 Third Millenium Water Company Plaque creuse d'echange thermique
CN101858703B (zh) * 2010-06-28 2012-07-18 天津国际机械有限公司 一种板式换热器用板片结构
DK178441B1 (en) * 2011-02-18 2016-02-29 Nissens As Method of producing a heat exchanger and a heat exchanger
CN102360739A (zh) * 2011-07-15 2012-02-22 江苏圣塔电力设备有限公司 一种斜切角式片式散热器
KR101149983B1 (ko) * 2011-09-27 2012-05-31 조형석 용접식 판형 열교환기
JP6216118B2 (ja) * 2013-01-11 2017-10-18 フタバ産業株式会社 熱交換器
WO2015089671A1 (fr) 2013-12-19 2015-06-25 Dana Canada Corporation Échangeur thermique conique
CN105091630A (zh) * 2014-05-16 2015-11-25 松下知识产权经营株式会社 热交换器和热交换单元
US10030916B2 (en) 2014-07-29 2018-07-24 Intel Corporation Fluid flow channel for enhanced heat transfer efficiency
US10533810B2 (en) 2015-05-20 2020-01-14 Other Lab, Llc Near-isothermal compressor/expander
UA116029C2 (uk) * 2016-02-25 2018-01-25 Приватне Акціонерне Товариство "Вентиляційні Системи" Пластинчастий теплообмінник
US11262142B2 (en) 2016-04-26 2022-03-01 Northrop Grumman Systems Corporation Heat exchangers, weld configurations for heat exchangers and related systems and methods
EP3428562A1 (fr) 2017-07-14 2019-01-16 Nissens A/S Échangeur de chaleur comprenant des tubes de fluide ayant une première et une seconde paroi intérieure
US11054194B2 (en) 2017-10-10 2021-07-06 Other Lab, Llc Conformable heat exchanger system and method
CN108375313B (zh) * 2018-04-26 2024-04-19 江苏宝得换热设备股份有限公司 一种多级分配板式换热器
US11173575B2 (en) 2019-01-29 2021-11-16 Treau, Inc. Film heat exchanger coupling system and method
RU191995U1 (ru) * 2019-04-16 2019-08-29 Публичное акционерное общество "КАМАЗ" Теплообменник текучей среды

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918992A (en) * 1956-03-26 1959-12-29 John Z Gelsavage Building structure
US2875986A (en) * 1957-04-12 1959-03-03 Ferrotherm Company Heat exchanger
GB1236014A (en) * 1967-04-14 1971-06-16 Nat Res Dev Heat exchangers
US3153447A (en) * 1963-09-11 1964-10-20 Tranter Mfg Inc Oil cooling heat exchange unit
US3849851A (en) * 1972-09-27 1974-11-26 Tranter Mfg Inc Method of treating welded heat transfer members to eliminate weld scale
US3866674A (en) * 1973-10-01 1975-02-18 Gen Electric Gas turbine regenerator
US4374542A (en) * 1977-10-17 1983-02-22 Bradley Joel C Undulating prismoid modules
DE7737375U1 (de) * 1977-12-08 1978-04-27 Menk Apparatebau Gmbh, 5439 Bad Marienberg Radiator fuer die kuehlung des oels oelgefuellter transformatoren
US4209064A (en) * 1978-08-25 1980-06-24 General Electric Company Panel-type radiator for electrical apparatus
US4291754A (en) * 1978-10-26 1981-09-29 The Garrett Corporation Thermal management of heat exchanger structure
HU183227B (en) * 1980-10-03 1984-04-28 Magyar Aluminium Method for producing heat exchangers particularly vehicle industrial ones from aluminium or alloyed aluminium sheets
EP0208042A1 (fr) * 1985-07-10 1987-01-14 Hamon-Industries Feuille thermoformée pour échangeur de chaleur gaz/gaz à plaques et échangeur en résultant
US4807408A (en) * 1984-12-17 1989-02-28 Jung G. Lew Geodesically reinforced honeycomb structures
JP2816750B2 (ja) * 1990-07-04 1998-10-27 株式会社ゼクセル 熱交換器
DE59309277D1 (de) * 1993-03-25 1999-02-18 Sulzer Chemtech Ag Als Wärmeübertrager ausgebildetes Packungselement für Stoffaustausch- oder Stoffumwandlungs-Verfahren
JPH07208892A (ja) * 1994-01-13 1995-08-11 Daihen Corp 油入電気機器用放熱器
JP4196308B2 (ja) * 1998-03-24 2008-12-17 株式会社ティラド 複合型熱交換器のタンク構造
FR2788123B1 (fr) * 1998-12-30 2001-05-18 Valeo Climatisation Evaporateur, appareil de chauffage et/ou de climatisation et vehicule comportant un tel evaporateur
US6289585B1 (en) * 2000-03-10 2001-09-18 Adrian Staruszkiewicz Method of attaching pipes
DE10218274A1 (de) * 2002-04-18 2003-11-06 Joma Polytec Kunststofftechnik Wärmetauscherplatte für einen Kreuzstromwärmetauscher
FR2848653B1 (fr) * 2002-12-13 2005-03-11 Technologies De L Echange Ther Echangeur thermique procedes et moyens de fabrication de cet echangeur
CA2420273A1 (fr) * 2003-02-27 2004-08-27 Peter Zurawel Plaques d'echangeur de chaleur et methode de fabrication
EP1553372A2 (fr) * 2004-01-09 2005-07-13 Xenesys Inc. Plaque d'échangeur de chaleur et unité d'échange de chaleur

Also Published As

Publication number Publication date
FR2902183A1 (fr) 2007-12-14
DE602007002409D1 (de) 2009-10-22
EP2032928A2 (fr) 2009-03-11
JP2009540264A (ja) 2009-11-19
ES2333486T3 (es) 2010-02-22
RU2008152225A (ru) 2010-08-10
CN101466993A (zh) 2009-06-24
CA2654633A1 (fr) 2007-12-21
WO2007144498A2 (fr) 2007-12-21
AU2007259127A8 (en) 2009-01-22
WO2007144498A3 (fr) 2008-02-07
BRPI0714038A2 (pt) 2013-12-17
KR20090048433A (ko) 2009-05-13
MX2008015912A (es) 2009-01-14
US20100012303A1 (en) 2010-01-21
ATE442564T1 (de) 2009-09-15
AU2007259127A1 (en) 2007-12-21
RU2413152C2 (ru) 2011-02-27

Similar Documents

Publication Publication Date Title
EP2032928B1 (fr) Echangeurs thermiques a plaquettes creuses
EP0430752B1 (fr) Echangeur de chaleur à écoulement circonférentiel
EP1709380A1 (fr) Echangeur thermique et module d&#39;echange s&#39;y rapportant
EP0625688A1 (fr) Echangeur de chaleur à plaques
EP1395787B1 (fr) Ailette a persiennes pour echangeur de chaleur
FR2869100A1 (fr) Dissipateur thermique a fluide pulse
FR2861166A1 (fr) Echangeur de chaleur utilisant un fluide d&#39;accumulation
EP2810009B1 (fr) Radiateur de refroidissement pour vehicule, notamment automobile
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP0567393B1 (fr) Evaporateur à plaques à hautes performances thermiques fonctionnant en régime d&#39;ébullition nucléée
EP3561428B1 (fr) Caloduc a pompage capillaire a fonctionnement ameliore
EP2982925B1 (fr) Echangeur thermique à plaques et à efficacité thermique améliorée pour turbomoteur
FR2929388A1 (fr) Echangeur de chaleur a puissance frigorifique elevee
EP1579163B1 (fr) Echangeur thermique procedes et moyens de fabrication de cet echangeur
WO2019025719A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
FR2944591A1 (fr) Tube de circulation de fluide refrigerant, faisceau d&#39;echange de chaleur et echangeur de chaleur comportant de tels tubes
EP2068106A1 (fr) Intercalaire ondulé muni de persiennes pour échangeur de chaleur.
EP3794299A1 (fr) Echangeur de chaleur de véhicule automobile
WO2020069880A1 (fr) Plaque pour un échangeur de chaleur à plaques
FR2704635A1 (fr) Radiateur d&#39;automobile eet procédé de fabrication.
FR3079606A1 (fr) Procede d&#39;assemblage d&#39;un echangeur thermique
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
WO2024008650A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2010046258A1 (fr) Echangeur de chaleur a plaques empilees
FR2850740A1 (fr) Echangeur de chaleur a plaques a haute tenue a la pression, en particulier pour circuit de climation de vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007002409

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333486

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

26N No opposition filed

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091210

BERE Be: lapsed

Owner name: TECHNOLOGIES DE L'ECHANGE THERMIQUE (TET)

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120703

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130626

Year of fee payment: 7

Ref country code: DE

Payment date: 20130621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130624

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130716

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002409

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002409

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140613