EP0438738B1 - Quasi-optische Komponente für Mikrowellenstrahlung - Google Patents

Quasi-optische Komponente für Mikrowellenstrahlung Download PDF

Info

Publication number
EP0438738B1
EP0438738B1 EP90124755A EP90124755A EP0438738B1 EP 0438738 B1 EP0438738 B1 EP 0438738B1 EP 90124755 A EP90124755 A EP 90124755A EP 90124755 A EP90124755 A EP 90124755A EP 0438738 B1 EP0438738 B1 EP 0438738B1
Authority
EP
European Patent Office
Prior art keywords
microwave radiation
quasi
electron beam
microwaves
gyrotron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124755A
Other languages
English (en)
French (fr)
Other versions
EP0438738A1 (de
Inventor
Bernd Dr. Jödicke
Hans-Günter Dr. Mathews
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON ELEKTRONENROEHREN AG
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0438738A1 publication Critical patent/EP0438738A1/de
Application granted granted Critical
Publication of EP0438738B1 publication Critical patent/EP0438738B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/30Damping arrangements associated with slow-wave structures, e.g. for suppression of unwanted oscillations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/20Quasi-optical arrangements for guiding a wave, e.g. focusing by dielectric lenses

Definitions

  • the invention relates to a quasi-optical component for microwave radiation with a quasi-optical element which emits incident microwave radiation along a main axis and which has a characteristic transverse dimension which is less than 50 times a wavelength.
  • such quasi-optical components can be used at different points, for example in the microwave source (quasi-optical or cylindrical gyrotron) or in the transmission path (cf. "Design of the CIT Gyrotron ECRH Transmission System") , JA Casey et al., 13th Int. Conf. On Infrared and Millimeter Waves, 5-9 Dec 1988, pp. 123-124).
  • the so-called Vlasov converter is of particular importance in connection with the cylindrical gyrotron.
  • Such a quasi-optical element is described, for example, in the publications "An X-Band Vlasov-Type Mode Convertor", BG Ruth et al., 13th Int. Conf.
  • an electron beam gun In the gyrotron, an electron beam gun generates an electron beam that reaches a resonator via a drift path. There part of the kinetic energy of the electrons is converted into the desired microwave radiation.
  • the quality of the electron beam plays a central role in the optimal excitation of the microwaves. In order to impair the beam quality on the drift path as little as possible, it must be ensured that the electrons there always sense an electrical potential. In principle, this can be achieved by means of a cylindrical or possibly conical metal tube that is a few millimeters larger in diameter than the electron beam.
  • this tube can also resonate in addition to the correct resonator. This would result in a drastic deterioration in the beam quality. It must therefore be ensured with suitable means that no microwaves can be generated in this area. In addition, this area has the task of damping microwaves that run from the resonator to the cannon.
  • the second solution is known from patent CH-664,044 A5.
  • the electrically conductive surface of the beam guide is achieved here by a metal grid enclosing the electron beam.
  • the structure receives the property of resonance damping through the openings in the grating. They are dimensioned so that they allow the microwaves to be attenuated.
  • One problem with this solution is the undefined absorption of the microwaves.
  • the object of the invention is to provide quasi-optical components of the type mentioned at the outset which avoid the problems existing in the prior art.
  • the solution is that the component comprises a cooled absorption device which is arranged close to the quasi-optical element in such a way that at least one powerful secondary maximum of the diffraction caused by the characteristic transverse dimension is destroyed.
  • the damping body is preferably attached at the locations of the expected secondary maxima. It should be able to dissipate the high power (typically between 1% and 10% of the beam power).
  • the damping body essentially consists of a dielectric vessel with relatively small losses for the microwaves (transparent) and a dielectric liquid (absorption).
  • the absorption capacity of the liquid is on the one hand not too great, so that film boiling cannot occur, and on the other hand not too small, so that the secondary maxima can still be essentially destroyed.
  • Such liquids are known, for example, from the technology of microwave calorimeters.
  • the absorption device comprises a vessel which is transparent to microwaves, in particular made of ceramic (e.g. aluminum oxide ceramic), which is filled with a cooling liquid, in particular water, which absorbs the microwaves.
  • the quasi-optical element is preferably a focusing mirror or a Vlasov converter.
  • a gyrotron according to the invention is characterized in that a cooled absorption device enclosing the beam guide is provided for absorbing the microwave radiation emerging through the openings of the beam guide.
  • a major advantage of this embodiment is that the microwaves are first radially scattered away, which results in the attenuation of the microwave radiation in the interior, and are then absorbed by separate means. Because of their spatial separation from the actual beam guidance, the latter means can be designed in a simple manner for the required cooling capacity. The microwave energy is also destroyed in a well-defined room. Finally, the absorbent structure can be actively cooled in the invention.
  • the beam guide has a plurality of metal rings axially spaced apart on the axis mentioned.
  • the beam guidance has a section with metal rings and a section with a jacket around it said axis arranged metal rods. Then both TE and TM modes can be decoupled well.
  • the cooled absorption device is formed by a double-walled hollow cylinder, the inner and outer walls of which consist entirely of a material which is transparent to microwaves, preferably of an aluminum oxide ceramic, and which is flowed through by a cooling medium, preferably water, which absorbs the microwaves.
  • the vessel is completely housed in the evacuated tube vessel.
  • Such an absorption device can be integrated without problems in a gyrotron of a known type. The cost of this absorption device is much lower than that of a solution known from the prior art.
  • the metal rings are preferably copper rings which are kept at a distance by means of pins.
  • the optimal axial distance between the metal rings and thus the space between two metal rings is at least half a wavelength of the microwave radiation to be attenuated.
  • the distance mentioned does not necessarily have to correspond to half a wavelength, but can also be smaller. In this case, however, make sure that the supporting metal pins are at least half a wavelength apart.
  • the microwaves are then coupled out by gaps in the form of long (transverse to the axis), thin (longitudinal to the axis) slots.
  • metal rods are also suitable, which likewise surround the electron beam in a jacket-like manner and are kept at a distance by suitable holding rings.
  • the grid beam guide known per se from the patent specification CH-664,044 A5 is also suitable.
  • the inner wall of the cooled absorption device forms a section of the wall of the evacuated vessel and the outer wall (made of metal) of the hollow cylinder is placed on the outside of the said vessel.
  • the outer wall (made of metal) of the hollow cylinder is placed on the outside of the said vessel.
  • the quasi-optical component shown comprises a focusing mirror 16a as a quasi-optical element and a hollow cylindrical vessel 17 as an absorption device.
  • the microwaves are incident along a predetermined direction of incidence 18.
  • the wavelength in turn is in the millimeter or submillimeter range, i.e. approximately between 10 and 0.1 mm.
  • the relatively small transverse dimension results in diffraction at the mirror as a whole.
  • the corresponding secondary maxima which contain between 1% and 10% of the total beam power (1-30 MW), are no longer negligible (e.g. at 1 MW without further ado 20 kW and more).
  • the absorbent vessel 17 is arranged as close as possible to the quasi-optical component, ie the mirror 16a, in such a way that the undesired secondary maxima are absorbed.
  • the energy distribution in the microwave beam is indicated in the figure. The first, in this case strongest secondary maximum 20 is just damped. Other secondary maxima also disappear in vessel 17.
  • FIG 3 shows the general case where the direction of incidence and the direction of failure (main axis) do not coincide. This case occurs, for example, during the quasi-optical transmission of the microwave radiation from a source (gyrotron) to a consumer (fusion reactor). At certain intervals, focusing mirrors are set up that focus the diverging beam again. In this way it is e.g. possible to transport the microwaves over a longer distance (104-105 times the wavelength).
  • Two mirrors 16a and 16b are provided, which bring about the desired focusing of the radiation. They are e.g. housed in a transport line 22, which itself does not act as a waveguide (quasi-optical case), but only provides protection against accidental interruption of the beam path.
  • the wall of the transport line 22 is shielded with absorption devices 21a, ..., 21d.
  • absorption devices 21a, ..., 21d can be flat, disc-shaped vessels or curved (sectors of a double-walled hollow cylinder). They are preferably flushed with water as the cooling medium. The undesired secondary maxima are therefore eliminated immediately after they have arisen.
  • a Vlasov converter 23 emits the modes guided in the tube as a Gaussian wave in the direction of a main axis 19.
  • a rotationally symmetrical absorption device 21e (for example, a water-filled vessel) that surrounds the main axis destroys the disturbing secondary maxima 20.
  • the invention is also applied with great advantage to a gyrotron.
  • the first is the problems related to the electron beam.
  • a gyrotron with a grating beam guidance is known from the already mentioned patent specification CH-664,044 A5.
  • the invention now provides an improved possibility for beam guidance.
  • the agents according to the invention are accommodated in the gyrotron at the same location as the beam guidance in the prior art. It is therefore sufficient if the known features of the gyrotron are only mentioned briefly.
  • an electron beam gun e.g. a magnetron injection cannon (MIG for short) known as such. It creates e.g. annular electron beam 2 with a diameter of a few millimeters. This runs along an electron beam axis 3, passes through a resonator 4 and finally ends in a collector 13.
  • a strong static magnetic field compresses the electron beam 3 and forces the electrons to gyrate.
  • the resonator 4 In the resonator 4, the electrons running on spiral paths excite a desired alternating electromagnetic field. The microwave radiation thus obtained from the kinetic energy of the electrons is coupled out of the resonator 4 and fed to a consumer.
  • the resonator 4 In Fig. 1, the resonator 4 is designed in a quasi-optical manner, i.e. it essentially consists of two mirrors opposite one another on a resonator axis, the resonator axis being perpendicular to the electron beam axis 3.
  • the invention is equally suitable for a cylindrical gyrotron.
  • the resonator in the form of a waveguide lies coaxially with the electron beam axis 3.
  • a beam guide 5 according to the invention as described below is used for this.
  • metal rings 6.1, 6.2, ..., 6.5 are arranged coaxially to the electron beam axis 3. With their inside they form the metallic inner surface necessary for guiding the electron beam. They have a given mutual distance d. The gaps created by this are empty. They represent the openings (diffraction gaps) in the inner surface of the beam guide, which ensure that the microwave radiation is coupled out, which has been undesirably excited in the area within the metal rings.
  • the metal rings 6.1, 6.2, ..., 6.5 are preferably made of copper. They should also be thin in the radial direction in order to facilitate the coupling out of the microwave radiation.
  • the number of metal rings results from the required length of the beam guidance (e.g. approx. 300 mm for a quasi-optical gyrotron with an operating frequency of 100 GHz), the distance d and the width of the rings.
  • the metal rings 6.1, 6.2, ..., 6.5 are kept at a distance by means of metal pins 7.1, 7.2.
  • the thin metal pins 7.1, 7.2 have the advantage that the passage of the outcoupled microwave radiation is largely unimpeded.
  • the space between the metal rings must be dimensioned so that the unwanted microwave radiation can pass through well. This is the case when the openings in at least have a dimension of about half a wavelength or more in one direction. Mainly at small wavelengths, it is the distance d between the rings that is greater than half the wavelength of the microwaves generated in the gyrotron. If, on the other hand, the wavelength is relatively large (frequency less than 70 GHz), it is sufficient if the metal pins are at a distance of at least half a wavelength from one another. The axial distance between the rings may then be smaller.
  • the second shows a beam guide for low frequencies. It has at least two sections, of which the first metal rings 6.1, 6.2, 6.3 of the type described and the second comprises a plurality of parallel metal bars 14.1, 14.2, ..., 14.5.
  • the metal rods 14.1, 14.2, ..., 14.5 of the second section are fixed by suitable retaining rings 15.1, 15.2 and also surround the electron beam (electron beam axis 3) in a jacket-like manner (i.e. like the metal rings).
  • the mutual distance between the metal rods 14.1, 14.2, ..., 14.5 may be less than half a wavelength.
  • the retaining rings 15.1, 15.2, however, should not be less than this minimum distance.
  • the TE modes are coupled out particularly well in the first section and the TM modes in the second section. If necessary, several such sections can be alternately connected in series.
  • the beam guidance can then either consist only of rings or only rods.
  • the distance d It is determined by half the difference between the inner radius of the beam guidance, i.e. the relevant metal rings, and radius of the electron beam 2.
  • the inner radius of the beam guide is determined by the maximum possible drop in potential of the electron beam. Once the inner radius is fixed, the distance d between the metal rings in the frame shown can be selected.
  • the microwave radiation passing through the intermediate spaces is now destroyed by a cooled absorption device 8 which surrounds the beam guide.
  • the absorption device 8 encloses the beam guide 5 in the form of a jacket.
  • it is embodied by a double-walled hollow cylinder.
  • the hollow cylinder has an inner wall 9 which consists of a ceramic which is transparent to microwaves.
  • the outer wall 10 and the ceiling and floor of the hollow cylinder are made of metal.
  • the hollow cylinder is flushed with a cooling medium 11 (e.g. water) which absorbs the microwaves.
  • the microwave radiation scattered radially from the beam guide 5 is absorbed by the cooling medium 11 in the hollow cylinder.
  • the metallic outer wall ensures that the unwanted electromagnetic radiation cannot escape from the gyrotron. It should be noted that there is no risk of thermal overloading of the ceramic due to the flow cooling. It is therefore not critical if the ceramic is not optimally transparent to the microwaves and absorbs part of it. The commercially available and inexpensive aluminum oxide ceramics are therefore quite suitable for the present purposes.
  • the electron beam gun 1, beam guide 5 and resonator 4 must be accommodated in an evacuated vessel 12. This is, at least in the area of the drift section, mostly cylindrical or possibly conical.
  • the absorption device is accommodated in the vessel 12, which must be provided with suitable passages for the coolant supply and removal.
  • Fig. 6 shows a corresponding embodiment.
  • the absorption device 8 is a completely ceramic (double-walled) hollow cylinder, which is accommodated in the space between the beam guide 5 and the metallic wall of the vessel 12.
  • another such absorption device 8b can be located behind the resonator 4, i.e. be installed on the electron beam axis 3 between the resonator 4 and the collector 13. This space can also be "contaminated” by microwaves which have a disruptive effect on the electron beam 2.
  • the absorption device 8a therefore has a double function: on the one hand, it attenuates the radiation coupled out from the beam guide 5 and, on the other hand, the radiation coming out of the resonator.
  • FIG. 6 also shows the use of the quasi-optical component according to the invention in the resonator 4. It each comprises a mirror 16c, 16d (of the resonator) and a cylindrical, double-walled vessel 17c, 17d. These vessels 17c, 17d are in trained in the manner already described and absorb the powerful secondary maxima.
  • the inner wall of the hollow cylinder forms part of the wall of the evacuated vessel 12.
  • the vessel 12 thus has a cylindrical ceramic insert in the area of the drift path. This means that the vessel 12 is transparent to microwaves in the area of the drift path.
  • the outer wall of the hollow cylinder is then simply placed on the outside of the vessel 12. This embodiment is based on the experience that watertight connections are easier to implement than vacuum-tight connections. In the present case, only two vacuum-tight seams are necessary. Additional openings in the evacuated vessel 12 are completely eliminated.
  • a lattice beam guide can also be used, as is known as such from the cited patent CH-664,044 A5.
  • the beam guidance is generally not limited to the section between the electron beam gun and the resonator. Rather, it can be continued after the resonator. Accordingly, an absorption device of the type described can also be located after the resonator, so that at least the microwave radiation is also absorbed in this area (cf. FIG. 6).
  • the beam guidance according to the invention considerably improves the pump path compared to the prior art.
  • the gaps also allow radial pumping, which is not possible with pipes made of metal and ceramic rings.
  • a highly conductive metal wall can also be provided as a reflector be. The microwave power is then led to the absorber via this metal wall (and possibly via further reflectors).
  • the invention creates the prerequisites which are necessary in order to be able to generate microwaves of high power and to transmit them safely.
  • the diffraction losses are approximately 20 kW.
  • This performance would hit the liquid nitrogen shield of the cryostat unhindered, which would have to carry this performance away. This would result in a disproportionately high consumption of liquid nitrogen.
  • the microwave power wandering in an uncontrolled manner in the gyrotron could be absorbed or coupled in at further, undesirable points, such as e.g.
  • microwaves could also emerge from the gyrotron at undesirable locations and thus endanger people and devices in the vicinity.
  • the invention has created the possibility of guiding a high-quality electron beam in a gyrotron.
  • 1 - electron beam gun 2 - electron beam; 3 - electron beam axis; 4 - resonator; 5 - beam guidance; 6.1, ..., 6.5 - metal rings; 7.1, 7.2 - metal pins; 8 - absorption device; 9 - inner wall; 10 - outer wall; 11 - cooling medium; 12 - vessel; 13 - collector; 14.1, ..., 14.5 - metal rods; 15.1, 15.2 - retaining rings.

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine quasi-optische Komponente für Mikrowellenstrahlung mit einem quasi-optischen Element, welches einfallende Mikrowellenstrahlung entlang einer Hauptachse ausstrahlt und welches eine charakteristische Querabmessung hat, die kleiner als das 50-fache einer Wellenlänge ist.
  • Stand der Technik
  • Für den Einsatz von Mikrowellen zur Heizung von Fusionsplasmen werden im Bereich ab ca. 50 GHz sehr hohe Leistungen (1-30 MW) benötigt. Wie Studien gezeigt haben, lassen sich diese Leistungen am besten mit sog. quasi-optischen Komponenten beherrschen. Der Begriff quasi-optisch bezeichnet das Prinzip, dass die Mikrowellen nicht mehr durch leitende Wände geführt werden, sondern sich näherungsweise unter Freiraum-Bedingungen ausbreiten.
  • Bei der Heizung von Plasmen mit Mikrowellen, können an unterschiedlichen Stellen solche quasi-optische Komponenten eingesetzt werden, z.B. in der Mikrowellenquelle (quasi-optisches oder auch zylindrisches Gyrotron) oder in der Uebertragungsstrecke (vgl. "Design of the CIT Gyrotron ECRH Transmission System", J.A. Casey et al., 13th Int. Conf. on Infrared and Millimeter Waves, 5-9 Dec 1988,pp. 123-124). Im Zusammenhang mit dem zylindrischen Gyrotron ist vorallem der sog. Vlasov-Konverter von Bedeutung. Ein solches quasi-optisches Element wird z.B. in den Veröffentlichungen "An X-Band Vlasov-Type Mode Convertor", B.G. Ruth et al., 13th Int. Conf. on Infrared and Millimeter Waves, 5-9 Dec 1988, pp. 119-120, und "A quasi-optical convertor for efficient conversion of whispering gallery modes into narrow beam waves", A. Möbius et al., 13th Int. Conf. on Infrared and Millimeter Waves, 5-9 Dec 1988, pp. 121-122, beschrieben. Dass quasi-optische Komponenten aber auch Probleme mit sich bringen, soll am Beispiel des Gyrotrons erläutert werden.
  • Im Gyrotron erzeugt eine Elektronenstrahlkanone einen Elektronenstrahl, der über eine Driftstrecke in einen Resonator gelangt. Dort wird ein Teil der kinetischen Energie der Elektronen in die gewünschte Mikrowellenstrahlung umgesetzt.
  • Die Qualität des Elektronenstrahls spielt für die optimale Anregung der Mikrowellen eine zentrale Rolle. Um nun die Strahlqualität auf der Driftstrecke möglichst wenig zu beeinträchtigen, muss dafür gesorgt werden, dass dort die Elektronen stets ein elektrisches Potential spüren. Dies kann im Prinzip durch ein zylindrisches oder möglicherweise konisches Metallrohr erreicht werden, das einen um einige Millimeter grösseren Durchmesser hat als der Elektronenstrahl.
  • Dieses Rohr kann jedoch neben dem richtigen Resonator ebenfalls in Resonanz kommen. Dies hätte eine drastische Verschlechterung der Strahlqualität zur Folge. Deshalb muss mit geeigneten Mitteln dafür gesorgt werden, dass keine Mikrowellen in diesem Bereich erzeugt werden können. Daneben hat dieser Bereich die Aufgabe, Mikrowellen, die vom Resonator zur Kanone laufen, zu dämpfen.
  • Zur Zeit existieren für dieses Problem zwei Lösungen. Die eine geht aus der veröffentlichten Patentanmeldung EP-0 301 929 A1 hervor. Bei einem zylindrischen Gyrotron ist dabei in der Driftstrecke eine konische Strahlführung mit gerippter metallischer Innenfläche angeordnet. Zwischen den nach innen vorstehenden Metallrippen sind absorbierende Ringe aus Magnesiumoxid angeordnet.
  • Diese Lösung hat folgendes Wirkungsprinzip. Der etwas nach innen vorstehende Kupferring bildet die elektrische Oberfläche. Der dahinterliegende Dämpfungsring beeinflusst die Elektronenbewegung nicht, dämpft aber die Mikrowellen. Der Nachteil dieser zumeist angewendeten Lösung ist der hohe Preis der Dämpfungskeramik und die schlechte Wärmeankopplung der Keramik an einen Kühlkörper. Ausserdem ist das Innere dieses Strahlleiters schlecht pumpbar.
  • Die zweite Lösung ist aus dem Patent CH-664,044 A5 bekannt. Die elektrisch leitende Oberfläche der Strahlführung wird hier durch ein den Elektronenstrahl umschliessendes Metallgitter erzielt. Die Eigenschaft der Resonanzdämpfung erhält das Gebilde durch die Durchbrüche im Gitter. Sie sind so dimensioniert, dass sie die zu dämpfenden Mikrowellen durchlassen. Ein Problem stellt bei dieser Lösung die undefinierte Absorption der Mikrowellen dar.
  • Weitere Probleme treten im Zusammenhang mit Mikrowellen auf, die aus dem Resonator in den Elektronenstrahlraum zurückkoppeln und ähnlich störende Wirkung entfalten können.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, quasi-optische Komponenten der eingangs genannten Art anzugeben, welche die beim Stand der Technik vorhandenen Probleme vermeiden.
  • Insbesondere ist es auch Aufgabe der Erfindung, ein Gyrotron anzugeben, bei welchem in einem evakuierten Gefäss auf einer Elektronenstrahlachse hintereinander
    • a) eine Elektronenkanone zum Erzeugen eines Elektronenstrahls,
    • b) eine Driftstrecke mit einer Strahlführung für den erzeugten Elektronenstrahl, welche eine den Elektronenstrahl umschliessende, elektrisch leitende Innenfläche mit Oeffnungen zum Dämpfen unerwünschter Mikrowellenstrahlung aufweist,
    • c) und ein Resonator angeordnet sind, in welchem kinetische Energie des Elektronenstrahls in gewünschte Mikrowellenstrahlung umgewandelt wird,
    in welchem Gyrotron der Elektronenstrahl auf der Driftstrecke ohne Beeinträchtigung der Qualität geführt wird.
  • Erfindungsgemäss besteht die Lösung darin, dass die Komponente eine gekühlte Absorptionsvorrichtung umfasst, die nahe vor dem quasi-optischen Element so angeordnet ist, dass zumindest ein leistungsstarkes Nebenmaximum der durch die charakteristische Querabmessung bedingten Beugung vernichtet wird.
  • Der Kern der Erfindung besteht darin, dass die störenden Mikrowellen möglichst nahe bei ihrem Entstehungsort (Spiegel, Konverter etc.) gedämpft resp. vernichtet werden, bevor sie in unkontrollierter Weise auf den Elektronenstrahl oder auf irgendwelche empfindlichen Bauteile des Gyrotrons einwirken können. Gemäss der Erfindung ist der Dämpfungskörper vorzugsweise an den Stellen der erwarteten Nebenmaxima angebracht. Er soll in der Lage sein, die hohe Leistung (typischerweise zwischen 1% und 10% der Strahlleistung) abzuführen. Der Dämpfungskörper besteht im wesentlichen aus einem dielektrischen Gefäss mit relativ kleinen Verlusten für die Mikrowellen (transparent) und einer dielektrischen Flüssigkeit (Absorption). Die Absorptionsfähigkeit der Flüssigkeit ist einerseits nicht zu gross, damit nicht Filmsieden auftreten kann, und andererseits nicht zu klein, damit die Nebenmaxima im wesentlichen trotzdem vernichtet werden können. Solche Flüssigkeiten sind z.B. aus der Technik von Mikrowellenkalorimeter bekannt.
  • Die Absorptionsvorrichtung umfasst ein für Mikrowellen transparentes Gefäss, insbesondere aus Keramik (z.B. Aluminiumoxidkeramik), das mit einer die Mikrowellen absorbierenden Kühlflüssigkeit, insbesondere Wasser gefüllt ist. Das quasi-optische Element ist vorzugsweise ein fokussierender Spiegel oder ein Vlasov-Konverter.
  • Ein erfindungsgemässes Gyrotron zeichnet sich dadurch aus, dass zur Absorption der durch die Oeffnungen der Strahlführung austretenden Mikrowellenstrahlung eine die Strahlführung umschliessende, gekühlte Absorptionsvorrichtung vorgesehen ist.
  • Ein wesentlicher Vorteil dieser Ausführungsform liegt darin, dass die Mikrowellen zuerst radial weggestreut werden, was die Dämpfung der Mikrowellenstrahlung im Innenraum zur Folge hat, und dann mit separaten Mitteln absorbiert werden. Die letztgenannten Mitteln können wegen ihrer räumlichen Trennung von der eigentlichen Strahlführung in einfacher Weise auf die benötigte Kühlkapazität hin ausgelegt werden. Die Mikrowellenenergie wird ausserdem in einem wohldefinierten Raum vernichtet. Schliesslich kann bei der Erfindung die absorbierende Struktur aktiv gekühlt werden.
  • Gemäss einer vorteilhaften Ausführungsform weist die Strahlführung mehrere auf der genannten Achse mit Zwischenräumen axial beabstandete Metallringe auf. Ein Vorteil dieser Ausführungsform liegt darin, dass der Innenraum der Strahlführung gut abgepumpt werden kann.
  • Bei niedrigen Frequenzen (kleiner als etwa 70 GHz) ist es besonders vorteilhaft, wenn die Strahlführung einen Abschnitt mit Metallringen und einen Abschnitt mit mantelförmig um die genannte Achse angeordneten Metallstäben aufweist. Dann können sowohl TE- als auch TM-Moden gut ausgekoppelt werden.
  • Besonders vorteilhaft ist es, wenn die gekühlte Absorptionsvorrichtung durch einen doppelwandigen Hohlzylinder gebildet ist, dessen Innen- und Aussenwand vollständig aus einem für Mikrowellen transparenten Material, vorzugsweise aus einer Aluminiumoxidkeramik besteht und der von einem die Mikrowellen absorbierenden Kühlmedium, vorzugsweise Wasser, durchflossen ist. Das Gefäss ist vollständig im evakuierten Röhrengefäss untergebracht. Eine solche Absorptionsvorrichtung lässt sich ohne Probleme in einem Gyrotron bekannter Bauart integrieren. Die Kosten dieser Absorptionsvorrichtung sind viel niedriger als diejenigen einer aus dem Stand der Technik bekannten Lösung.
  • Die Metallringe sind vorzugsweise Kupferringe, die mit Hilfe von Stiften auf Abstand gehalten sind. Der optimale axiale Abstand der Metallringe und damit der Zwischenraum zwischen je zwei Metallringen beträgt jeweils mindestens eine halbe Wellenlänge der zu dämpfenden Mikrowellenstrahlung. Diese Massnahmen gewährleisten die gewünschten guten Dämpfungseigenschaften der Strahlführung. Die Zwischenräume sind weitgehend frei von hindernden Teilen.
  • Bei geringen Frequenzen (<70 GHz), d.h. bei grossen Wellenlängen, braucht der genannte Abstand nicht unbedingt einer halben Wellenlänge zu entsprechen, sondern kann auch kleiner sein. In diesem Fall ist aber darauf zu achten, dass die stützenden Metallstifte einen gegenseitigen Abstand von mindestens einer halben Wellenlänge haben. Die Mikrowellen werden dann durch Zwischenräume von der Form langer (quer zur Achse), dünner (längs zur Achse) Schlitze ausgekoppelt.
  • Anstelle von Metallringen eignen sich auch Metallstäbe, die den Elektronenstrahl ebenfalls mantelförmig umgeben und von geeigneten Halteringen auf Abstand gehalten werden.
  • Neben dem erfindungsgemässen Strahlleiter aus Metallringen eignet sich auch der aus der Patentschrift CH-664,044 A5 an sich bekannte Gitterstrahlleiter.
  • Besonders vorteilhaft ist es, wenn bei einem erfindungsgemässen Gyrotron die Innenwand der gekühlten Absorptionsvorrichtung einen Abschnitt der Wand des evakuierten Gefässes bildet und die Aussenwand (aus Metall) des Hohlzylinders aussen am genannten Gefäss aufgesetzt ist. Bei einer solchen Ausführungsform treten weniger Dichtungsprobleme auf, weil keine Kühlmittelzuleitungen ins evakuierte Gefäss 12 hineingeführt werden müssen und nur zwei vakuumdichte Verbindungen (an beiden Enden des keramischen Zylinders) auftreten.
  • Aus der Gesamtheit der abhängigen Patentansprüchen ergeben sich weitere vorteilhafte Ausführungsformen.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen und im Zusammenhang mit den Zeichnungen näher erläutert werden.
  • Es zeigen:
  • Fig. 1
    schematisch einen Axialschnitt durch ein erfindungsgemässes Gyrotron mit integrierter Absorptionsvorrichtung;
    Fig. 2
    eine Strahlführung für kleine Frequenzen;
    Fig. 3
    eine quasi-optische Komponente umfassend einen fokussierenden Spiegel;
    Fig. 4
    eine Transportleitung mit zwei quasi-optischen Komponenten;
    Fig. 5
    eine quasi-optische Komponente mit einem Vlasov-Konverter; und
    Fig. 6
    schematische einen Axialschnitt durch ein Gyrotron mit Absorptionsstrukturen im Resonator.
  • Die in der Zeichnung verwendeten Bezugszeichen und deren Bedeutung sind in der Bezeichnungsliste zusammenfassend aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
  • Wege zur Ausführung der Erfindung
  • Das Prinzip der Erfindung lässt sich am einfachsten anhand der Fig. 3 erläutern. Die gezeigte quasi-optische Komponente umfasst als quasi-optisches Element einen fokussierenden Spiegel 16a und als Absorptionsvorrichtung ein hohlzylinderförmiges Gefäss 17. Die Mikrowellen fallen entlang einer vorgegebenen Einfallsrichtung 18 ein. Der Spiegel 16a reflektiert die Mikrowellen im wesentlichen in Richtung einer Hauptachse 19. Er hat einen Durchmesser D (= Querabmessung), der typischerweise kleiner als das 50-fache einer Wellenlänge ist. Die Wellenlänge ihrerseits liegt im Millimeter- oder Submillimeterbereich, d.h. etwa zwischen 10 und 0.1 mm. Die relativ geringe Querabmessung hat Beugung am Spiegel als Ganzes zur Folge. Die entsprechenden Nebenmaxima, die zwischen 1% und 10% der gesamten Strahlleistung (1-30 MW) beinhalten, sind nicht mehr vernachlässigbar (z.B. bei 1 MW ohne weiteres 20 kW und mehr).
  • Gemäss der Erfindung ist das absorbierende Gefäss 17 so nahe wie möglich bei der quasi-optischen Komponente, d.h. dem Spiegel 16a angeordnet, dass die unerwünschten Nebenmaxima absorbiert werden. In der Figur ist die Energieverteilung im Mikrowellenstrahl angedeutet. Das erste, in diesem Fall stärkste Nebenmaximum 20 wird gerade noch gedämpft. Weitere Nebenmaxima verschwinden ebenfalls im Gefäss 17.
  • In Fig. 3 wird der allgemeine Fall gezeigt, wo Einfalls- und Ausfallsrichtung (Hauptachse) nicht zusammenfallen. Dieser Fall tritt beispielsweise bei der quasi-optischen Uebertragung der Mikrowellenstrahlung von einer Quelle (Gyrotron) zu einem Verbraucher (Fusionsreaktor) auf. In bestimmten Abständen sind fokussierende Spiegel aufgestellt, die den auseinanderlaufenden Strahl wieder bündeln. Auf diese Weise ist es z.B. möglich, die Mikrowellen über eine längere Strecke (10⁴-10⁵-fache Wellenlänge) zu transportieren.
  • Fig. 4 zeigt eine für die Uebertragung der Mikrowellen geeignete Ausführungsform. Es sind zwei Spiegel 16a und 16b vorgesehen, die die erwünschte Bündelung der Strahlung bewirken. Sie sind z.B. in einer Transportleitung 22 untergebracht, welche selbst nicht als Wellenleiter wirkt (quasi-optischer Fall), sondern nur einen Schutz gegen versehentliche Unterbrechung des Strahlenganges bildet. Nahe bei den Spiegeln 16a, 16b ist die Wand der Transportleitung 22 erfindungsgemäss mit Absorptionsvorrichtungen 21a,...,21d abgeschirmt. Je nach Form der Wand kann es sich um flache, scheibenförmige Gefässe oder um gekrümmte handeln (Sektoren eines doppelwandigen Hohlzylinders). Sie werden vorzugsweise mit Wasser als Kühlmedium durchspült. Die unerwünschten Nebenmaxima werden also unmittelbar nach ihrer Entstehung eliminiert.
  • Fig. 5 zeigt ein weiteres Beispiel einer erfindungsgemässen quasi-optischen Komponente. Ein Vlasov-Konverter 23 strahlt die im Rohr geführten Moden als Gauss'sche Welle in Richtung einer Hauptachse 19 ab. Eine die Hauptachse umschliessende, z.B. rotationssymmetrische Absorptionsvorrichtung 21e (z.B. wassergefülltes Gefäss) vernichtet die störenden Nebenmaxima 20.
  • Die Erfindung wird ferner mit grossem Vorteil bei einem Gyrotron angewendet. Grundsätzlich kann man dabei zwei Aspekte unterscheiden. Zum einen geht es darum, den Elektronenstrahl gegen "herumvagabundierende" Mikrowellen zu schützen, und zum anderen darum, Streustrahlung im Resonator zu unterdrücken. Als erstes wird auf die den Elektronenstrahl betreffenden Probleme eingegangen.
  • Aus der bereits genannten Patentschrift CH-664,044 A5 ist ein Gyrotron mit einer Gitterstrahlführung bekannt. Die Erfindung gibt nun eine verbesserte Möglichkeit zur Strahlführung an. Die erfindungsgemässen Mittel sind aber im Prinzip an der gleichen Stelle im Gyrotron untergebracht, wie die Strahlführung beim Stand der Technik. Es genügt deshalb, wenn hier die bekannten Merkmale des Gyrotrons nur andeutungsweise erwähnt werden.
  • In der Fig. 1 ist eine Elektronenstrahlkanone 1, z.B. eine als solche bekannte Magnetron-Injektionskanone (kurz MIG), angedeutet. Sie erzeugt einen z.B. ringförmigen Elektronenstrahl 2 mit einem Durchmesser von einigen Millimetern. Dieser läuft entlang einer Elektronenstrahlachse 3, durchsetzt einen Resonator 4 und endet schliesslich in einem Kollektor 13. Ein starkes statisches Magnetfeld komprimiert den Elektronenstrahl 3 und zwingt die Elektronen zur Gyration.
  • Im Resonator 4 regen die auf spiralförmigen Bahnen laufenden Elektronen ein gewünschtes elektromagnetisches Wechselfeld an. Die so aus der kinetischen Energie der Elektronen gewonnene Mikrowellenstrahlung wird aus dem Resonator 4 ausgekoppelt und einem Verbraucher zugeführt. In Fig. 1 ist der Resonator 4 in quasi-optischer Weise ausgebildet, d.h. er besteht im wesentlichen aus zwei einander auf einer Resonatorachse gegenüberliegenden Spiegeln, wobei die Resonatorachse senkrecht zur Elektronenstrahlachse 3 liegt.
  • Es sei gleich an dieser Stelle festgehalten, dass sich die Erfindung ebensogut eignet für ein zylindrisches Gyrotron. Bei diesem liegt bekanntlich der Resonator in Form eines Wellenleiters koaxial zur Elektronenstrahlachse 3.
  • Zwischen Elektronenstrahlachse 3 und Resonator 4 befindet sich eine Driftstrecke. Auf dieser muss der Elektronenstrahl 2 möglichst ohne Verschlechterung seiner Qualität (insbesondere seiner Energieschärfe) geführt werden. Dazu dient eine erfindungsgemässe Strahlführung 5, wie sie im folgenden beschrieben wird.
  • Koaxial zur Elektronenstrahlachse 3 sind mehrere Metallringe 6.1, 6.2, ..., 6.5 angeordnet. Mit ihrer Innenseite bilden sie die zur Führung des Elektronenstrahls nötige metallische Innenfläche. Sie haben einen gegebenen gegenseitigen Abstand d. Die dadurch geschaffenen Zwischenräume sind leer. Sie stellen die Oeffnungen (Beugungsspalte) in der Innenfläche der Strahlführung dar, die dafür sorgen, dass die Mikrowellenstrahlung ausgekoppelt wird, die unerwünschterweise im Bereich innerhalb der Metallringe angeregt worden ist.
  • Die Metallringe 6.1, 6.2, ..., 6.5 bestehen vorzugsweise aus Kupfer. Sie sollten ausserdem in radialer Richtung dünn sein, um das Auskoppeln der Mikrowellenstrahlung zu erleichtern. Die Zahl der Metallringe ergibt sich aus der geforderten Länge der Strahlführung (z.B. ca. 300 mm für ein quasi-optisches Gyrotron mit einer Betriebsfrequenz von 100 GHz), dem Abstand d und der Breite der Ringe.
  • Gemäss einer bevorzugten Ausführungsform werden die Metallringe 6.1, 6.2, ..., 6.5 mit Hilfe von Metallstiften 7.1, 7.2 auf Abstand gehalten. Die dünnen Metallstifte 7.1, 7.2 haben den Vorteil, dass der Durchgang der ausgekoppelten Mikrowellenstrahlung weitgehend ungehindert verläuft.
  • Der Zwischenraum zwischen den Metallringen muss so bemessen sein, dass die unerwünschte Mikrowellenstrahlung gut passieren kann. Dies ist dann der Fall, wenn die Oeffnungen in mindestens einer Richtung eine Abmessung von etwa einer halben Wellenlänge oder mehr haben. Vorwiegend bei kleinen Wellenlängen ist es der Abstand d der Ringe, der grösser als eine halbe Wellenlänge der im Gyrotron erzeugten Mikrowellen ist. Wenn dagegen die Wellenlänge verhältnismässig gross ist (Frequenz kleiner als 70 GHz), dann genügt es, wenn die Metallstifte einen gegenseitigen Abstand von mindestens einer halben Wellenlänge haben. Der axiale Abstand der Ringe darf dann durchaus kleiner sein.
  • Damit vorallem bei niedrigen Frequenzen (< 70 GHz) sowohl TE-als auch TM-Moden die Strahlführung gut verlassen können, empfiehlt es sich, letztere in der nachfolgend beschriebenen Weise auszubilden.
  • Fig. 2 zeigt eine Strahlführung für niedrige Frequenzen. Sie weist mindestens zwei Abschnitte auf, wovon der erste Metallringe 6.1, 6.2, 6.3 der beschriebenen Art und der zweite mehrere parallele Metallstäbe 14.1, 14.2, ..., 14.5 umfasst. Die Metallstäbe 14.1, 14.2, ..., 14.5 des zweiten Abschnitts werden durch geeignete Halteringe 15.1, 15.2 fixiert und umschliessen den Elektronenstrahl (Elektronenstrahlachse 3) ebenfalls mantelförmig (d.h. wie die Metallringe). Der gegenseitige Abstand der Metallstäbe 14.1, 14.2, ..., 14.5 darf kleiner sein als eine halbe Wellenlänge. Die Halteringe 15.1, 15.2 dagegen sollten diesen minimalen Abstand nicht unterschreiten.
  • Bei der beschriebenen Strahlführung werden im ersten Abschnitt die TE-Moden besonders gut ausgekoppelt und im zweiten Abschnitt die TM-Moden. Bei Bedarf können mehrere solche Abschnitte abwechslungsweise hintereinandergeschaltet werden.
  • Bei hohen Frequenzen (> 70 GHz) besteht kein selektives Auskoppeln bestimmter Moden. Die Strahlführung kann dann wahlweise nur aus Ringen oder nur aus Stäben bestehen.
  • Für den Abstand d gibt es eine bevorzugte obere Grenze. Sie wird durch die Hälfte der Differenz zwischen Innenradius der Strahlführung, d.h. der betreffenden Metallringe, und Radius des Elektronenstrahls 2 gegeben.
  • Der Innenradius der Strahlführung wird durch die maximal mögliche Potentialabsenkung des Elektronenstrahls bestimmt. Liegt der Innenradius erst einmal fest, so kann der Abstand d der Metallringe im gezeigten Rahmen gewählt werden.
  • Die durch die Zwischenräume hindurchtretende Mikrowellenstrahlung wird nun gemäss der Erfindung durch eine die Strahlführung umschliessende, gekühlte Absorptionsvorrichtung 8 vernichtet. Die Absorptionsvorrichtung 8 umschliesst die Strahlführung 5 mantelförmig. Sie ist gemäss einer vorteilhaften Ausführungsform durch einen doppelwandigen Hohlzylinder verkörpert. Der Hohlzylinder hat eine Innenwand 9, die aus einer für Mikrowellen transparenten Keramik besteht. Aussenwand 10, sowie Decke und Boden des Hohlzylinders sind aus Metall. Der Hohlzylinder ist von einem die Mikrowellen absorbierenden Kühlmedium 11 (z.B. Wasser) durchspült.
  • Die radial aus der Strahlführung 5 gestreute Mikrowellenstrahlung wird im Hohlzylinder vom Kühlmedium 11 absorbiert. Die metallische Aussenwand sorgt dafür, dass die unerwünschte elektromagnetische Strahlung nicht aus dem Gyrotron austreten kann. Es ist zu bemerken, dass wegen der Durchflusskühlung die Gefahr einer thermischen Ueberlastung der Keramik nicht besteht. Es ist deshalb nicht kritisch, wenn die Keramik für die Mikrowellen nicht optimal transparent ist und einen Teil derselben absorbiert. Für die vorliegenden Zwecke eignen sich deshalb durchaus die handelsüblichen und preiswerten Aluminiumoxidkeramiken.
  • Elektronenstrahlkanone 1, Strahlführung 5 und Resonator 4 müssen bekanntlich in einem evakuierten Gefäss 12 untergebracht sein. Dieses ist, zumindest im Bereich der Driftstrecke, meist zylindrisch oder eventuell konisch. Im allgemeinen ist die Absorptionsvorrichtung im Gefäss 12 untergebracht, welches mit geeigneten Durchführungen für die Kühlmittelzu- und -abfuhr versehen sein muss.
  • Fig. 6 zeigt ein entsprechendes Ausführungsbeispiel. Die Absorptionsvorrichtung 8 ist ein vollständig keramischer (doppelwandiger) Hohlzylinder, der im Raum zwischen der Strahlführung 5 und der metallischen Wand des Gefässes 12 untergebracht ist. Je nach Bedarf kann eine weitere solche Absorptionsvorrichtung 8b hinter dem Resonator 4, d.h. auf der Elektronenstrahlachse 3 zwischen Resonator 4 und Kollektor 13, eingebaut werden. Auch dieser Raum kann von Mikrowellen "verseucht" sein, die auf den Elektronenstrahl 2 störend einwirken.
  • Die Vorteile einer vollständig aus Keramik bestehenden Absorptionsstruktur liegen darin, dass
    • 1. aus dem Spiegelresonator verlorengegangene Mikrowellenleistung nicht die gekühlten Wände des Kryostaten für den supraleitenden Magneten unzulässig aufheizen, sondern gezielt in einem leistungsfähigen Absorber vernichtet werden (Mikrowellenverluste aus dem Resonator lassen sich nicht ganz vermeiden), und
    • 2. die Herstellung von doppelwandigen Dämpfungskörpern aus Materialien gleicher thermischer Ausdehnung einfacher ist.
  • Die Absorptionsvorrichtung 8a hat also eine doppelte Funktion: Einerseits dämpft sie die aus dem Strahlleiter 5 ausgekoppelte Strahlung und andererseits die aus dem Resonator kommende.
  • Fig. 6 zeigt ferner die Verwendung der erfindungsgemässen quasi-optischen Komponente im Resonator 4. Sie umfasst jeweils einen Spiegel 16c, 16d (des Resonators) und ein zylindrisches, doppelwandiges Gefäss 17c, 17d. Diese Gefässe 17c, 17d sind in der bereits beschriebenen Weise ausgebildet und absorbieren die leistungsstarken Nebenmaxima.
  • Gemäss einer bevorzugten Ausführungsform (Fig. 1) bildet die Innenwand des Hohlzylinders einen Teil der Wand des evakuierten Gefässes 12. Das Gefäss 12 hat damit einen zylinderförmigen keramischen Einsatz im Bereich der Driftstrecke. Das heisst, dass das Gefäss 12 im Bereich der Driftstrecke für Mikrowellen transparent ist. Die Aussenwand des Hohlzylinders ist dann einfach äusserlich auf das Gefäss 12 aufgesetzt. Dieser Ausführungsform liegt die Erfahrung zugrunde, dass wasserdichte Verbindungen einfacher zu realisieren sind als vakuumdichte. Im vorliegenden Fall sind nämlich nur zwei vakuumdichte Nahtstellen nötig. Zusätzliche Durchbrechungen des evakuierten Gefässes 12 entfallen vollständig.
  • Anstelle der beabstandeten Metallringe kann auch ein Gitterstrahlleiter verwendet werden, wie er aus dem zitierten Patent CH-664,044 A5 als solcher bekannt ist.
  • Die Strahlführung beschränkt sich im allgemeinen nicht auf den Abschnitt zwischen Elektronenstrahlkanone und Resonator. Vielmehr kann sie nach dem Resonator fortgesetzt werden. Entsprechend kann sich eine Absorptionsvorrichtung der beschriebenen Art auch nach dem Resonator befinden, so dass zumindest die Mikrowellenstrahlung auch in diesem Bereich absorbiert wird (vgl. Fig. 6).
  • Die erfindungsgemässe Strahlführung verbessert den Pumpweg gegenüber dem Stand der Technik erheblich. Die Zwischenräume ermöglichen nämlich auch ein radiales Abpumpen, was bei Rohren aus Metall- und Keramikringen nicht möglich ist.
  • Obwohl im Optimalfall am Ort des Auftreffens eines Nebenmaximums eine Absorptionsvorrichtung angeordnet sein sollte, kann auch eine gut leitende Metallwand als Reflektor vorgesehen sein. Die Mikrowellenleistung wird dann über diese Metallwand (und allenfalls über weitere Reflektoren) zum Absorber geführt.
  • Die Erfindung schafft die Voraussetzungen, die nötig sind, um Mikrowellen hoher Leistung erzeugen und gefahrlos übertragen zu können. Bei einem 1 MW quasi-optischen Gyrotron beispielsweise betragen die Beugungsverluste ca. 20 kW. Diese Leistung würde ungehindert auf das Flüssigstickstoffschild des Kryostaten treffen, welches diese Leistung wegführen müsste. Dies würde einen unverhältnismässig hohen Verbrauch an Flüssigstickstoff zur Folge haben. Ferner könnte die im Gyrotron unkontrolliert herumirrende Mikrowellenleistung an weiteren, unerwünschten Stellen absorbiert werden bzw. einkoppeln, wie z.B. bei Elektronenkanone, Elektronenstrahl, Resonator, HF-Fenster, Vakuumdichtungen, Kabelverbindungen, Diagnostik-Systeme (für Temperatur, Füllstand etc.), Hochspannungsisolatoren, und dort zu Betriebsstörungen oder Schäden führen. Schliesslich könnten diese Mikrowellen auch an unerwünschten Stellen aus dem Gyrotron austreten und damit in der Nähe befindliche Menschen und Geräte gefährden.
  • Zusammenfassend kann festgestellt werden, dass mit der Erfindung die Möglichkeit geschaffen worden ist, einen Elektronenstrahl hoher Qualität in einem Gyrotron zu führen.
  • BEZEICHNUNGSLISTE
  • 1 - Elektronenstrahlkanone; 2 - Elektronenstrahl; 3 - Elektronenstrahlachse; 4 - Resonator; 5 - Strahlführung; 6.1, ..., 6.5 - Metallringe; 7.1, 7.2 - Metallstifte; 8 - Absorptionsvorrichtung; 9 - Innenwand; 10 - Aussenwand; 11 - Kühlmedium; 12 - Gefäss; 13 - Kollektor; 14.1,...,14.5 - Metallstäbe; 15.1, 15.2 - Halteringe.

Claims (10)

  1. Quasi-optische Komponente für Mikrowellenstrahlung mit einem quasi-optischen Element, welches einfallende Mikrowellenstrahlung entlang einer Hauptachse ausstrahlt und welches eine charakteristische Querabmessung hat, die kleiner als das 50-fache einer Wellenlänge ist, dadurch gekennzeichnet, dass die Komponente eine gekühlte Absorptionsvorrichtung umfasst, die nahe vor dem quasioptischen Element so angeordnet ist, dass zumindest ein leistungsstarkes Nebenmaximum der durch die charakteristische Querabmessung bedingten Beugung vernichtet wird.
  2. Quasi-optische Komponente nach Anspruch 1, dadurch gekennzeichnet, dass die Absorptionsvorrichtung ein für Mikrowellen transparentes Gefäss, insbesondere aus Keramik ist, das mit einer die Mikrowellen absorbierenden Kühlflüssigkeit, insbesondere Wasser gefüllt ist.
  3. Quasi-optische Komponente nach Anspruch 1, dadurch gekennzeichnet, dass das quasi-optische Element ein fokussierender Spiegel oder ein Vlasov-Konverter ist.
  4. Vorrichtung zur Führung eines Elektronenstrahls in einem Gyrotron auf einer Achse von einer Elektronenkanone zu einem Kollektor, wobei die Vorrichtung als Strahlführung eine den Elektronenstrahl umschliessende, elektrisch leitende Innenfläche mit Oeffnungen zum Dämpfen unerwünschter Mikrowellenstrahlung aufweist, dadurch gekennzeichnet, dass zur Absorption der durch die Oeffnungen der Strahlführung austretenden Mikrowellenstrahlung eine die Strahlführung umschliessende, gekühlte Absorptionsvorrichtung vorgesehen ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Strahlführung mehrere, auf der genannten Achse mit Zwischenräumen axial beabstandete Metallringe aufweist, die mit Hilfe von Stiften auf Abstand gehalten sind.
  6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Strahlführung einen Abschnitt mit Metallringen und einen Abschnitt mit mantelförmig um die genannte Achse angeordneten Metallstäben aufweist, so dass auch bei kleineren Frequenzen der Mikrowellenstrahlung sowohl TE-als auch TM-Moden gut ausgekoppelt werden.
  7. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die gekühlte Absorptionsvorrichtung durch einen doppelwandigen Hohlzylinder gebildet ist, dessen Innen- und Aussenwand aus einem für Mikrowellen durchlässigen Material, insbesondere aus einer Aluminiumoxidkeramik, besteht und und der von einem die Mikrowellen absorbierenden Kühlmedium, insbesonder Wasser durchflossen ist.
  8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der axiale Abstand der Metallringe und damit der Zwischenraum zwischen je zwei Metallringen jeweils mindestens eine halbe Wellenlänge der zu dämpfenden Mikrowellenstrahlung beträgt.
  9. Gyrotron, bei welchem in einem evakuierten Gefäss auf einer Elektronenstrahlachse hintereinander
    a) eine Elektronenkanone zum Erzeugen eines Elektronenstrahls,
    b) eine Driftstrecke mit einer Strahlführung für den erzeugten Elektronenstrahl, welche eine den Elektronenstrahl umschliessende, elektrisch leitende Innenfläche mit Oeffnungen zum Dämpfen unerwünschter Mikrowellenstrahlung aufweist,
    c) und ein Resonator angeordnet sind, in welchem kinetische Energie des Elektronenstrahls in gewünschte Mikrowellenstrahlung umgewandelt wird,
       dadurch gekennzeichnet, dass
    d) zur Absorption der durch die Oeffnungen der Strahlführung austretenden Mikrowellenstrahlung eine die Strahlführung umschliessende, gekühlte Absorptionsvorrichtung vorgesehen ist.
  10. Gyrotron nach Anspruch 9, dadurch gekennzeichnet, dass die Innenwand der gekühlten Absorptionsvorrichtung einen Abschnitt der Wand des evakuierten Gefässes bildet und dass die Aussenwand des Hohlzylinders aus Metall besteht und aussen am Gefäss aufgesetzt ist.
EP90124755A 1990-01-15 1990-12-19 Quasi-optische Komponente für Mikrowellenstrahlung Expired - Lifetime EP0438738B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH114/90 1990-01-15
CH11490 1990-01-15
CH181990 1990-05-29
CH1819/90 1990-05-29

Publications (2)

Publication Number Publication Date
EP0438738A1 EP0438738A1 (de) 1991-07-31
EP0438738B1 true EP0438738B1 (de) 1994-07-13

Family

ID=25683558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124755A Expired - Lifetime EP0438738B1 (de) 1990-01-15 1990-12-19 Quasi-optische Komponente für Mikrowellenstrahlung

Country Status (4)

Country Link
US (1) US5187408A (de)
EP (1) EP0438738B1 (de)
JP (1) JPH04332433A (de)
DE (1) DE59006432D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220089466A1 (en) * 2018-12-06 2022-03-24 Hyosung Heavy Industries Corporation Ion-exchange resin module and deionization apparatus using same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892151B2 (ja) * 1990-11-27 1999-05-17 日本原子力研究所 ジャイロトロン装置
FR2690784B1 (fr) * 1992-04-30 1994-06-10 Thomson Tubes Electroniques Tube hyperfrequence a cavite quasi-optique muni d'un dispositif suppresseur d'oscillation parasite.
US5317234A (en) * 1992-08-05 1994-05-31 The United States Of America As Represented By The United States Department Of Energy Mode trap for absorbing transverse modes of an accelerated electron beam
US5373263A (en) * 1993-03-22 1994-12-13 The United States Of America As Represented By The United States National Aeronautics And Space Administration Transverse mode electron beam microwave generator
US5572092A (en) * 1993-06-01 1996-11-05 Communications And Power Industries, Inc. High frequency vacuum tube with closely spaced cathode and non-emissive grid
US5469024A (en) * 1994-01-21 1995-11-21 Litton Systems, Inc. Leaky wall filter for use in extended interaction klystron
JPH08102263A (ja) * 1994-08-05 1996-04-16 Japan Atom Energy Res Inst ジャイロトロン装置
US5604402A (en) * 1995-01-31 1997-02-18 Litton Systems, Inc. Harmonic gyro traveling wave tube having a multipole field exciting circuit
US7145297B2 (en) 2004-11-04 2006-12-05 Communications & Power Industries, Inc. L-band inductive output tube
US8686910B1 (en) * 2010-04-12 2014-04-01 Calabazas Creek Research, Inc. Low reflectance radio frequency load
GB201101062D0 (en) 2011-01-21 2011-03-09 E2V Tech Uk Ltd Electron tube
RU2634304C1 (ru) * 2016-06-10 2017-10-25 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Оротрон
RU202819U1 (ru) * 2020-06-08 2021-03-09 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Оротрон

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR720780A (fr) * 1930-11-05 1932-02-24 Produits artificiels destinés à remplacer le cuir et matières analogues et procédés de fabrication desdits produits
FR997494A (fr) * 1949-09-15 1952-01-07 Csf Perfectionnements aux tubes à décharge électronique à ondes progressives munis d'une atténuation localisée
BE541337A (de) * 1954-09-16
DE1541040B1 (de) * 1966-05-16 1971-08-26 Siemens Ag Wanderfeldroehre mit zwei den hochfrequenzeingang und aus gang der roehre fildenden aeusseren wellenleitern
US3636402A (en) * 1969-08-30 1972-01-18 Nippon Electric Co Coupled cavity-type slow-wave structure
US3649934A (en) * 1970-07-17 1972-03-14 Us Navy Quasi-optical low-pass absorption type filtering system
DE2043565A1 (en) * 1970-09-02 1972-03-09 Siemens Ag Wave guide attenuator - using semi-reflector and/or stub termination(s) esp of carbonyl-iron loaded epoxy resin
DE2256817A1 (de) * 1972-11-20 1974-06-06 Siemens Ag Lauffeldroehre mit selektiver daempfung
SU472598A1 (ru) * 1973-03-21 1976-05-15 Институт Радиотехники И Электроники Ан Ссср Генератор дифракционного излучени
US3983356A (en) * 1974-04-30 1976-09-28 Gerling Moore Inc. End load for microwave ovens
US4189660A (en) * 1978-11-16 1980-02-19 The United States Of America As Represented By The United States Department Of Energy Electron beam collector for a microwave power tube
SU797538A1 (ru) * 1979-07-19 1981-10-07 Ордена Трудового Красного Знамени Институт Радиофизики И Электроники Ан Усср Генератор дифракционного излучени
GB2152742B (en) * 1980-04-28 1986-02-19 Emi Varian Ltd Microwave amplifiers and oscillators
US4494039A (en) * 1982-10-19 1985-01-15 The United States Of America As Represented By The Secretary Of The Navy Gyrotron traveling-wave device including quarter wavelength anti-reflective dielectric layer to enhance microwave absorption
CH664044A5 (de) * 1984-10-02 1988-01-29 En Physiquedes Plasmas Crpp Ce Vorrichtung zur fuehrung eines elektronenstrahls.
DE8610137U1 (de) * 1986-04-14 1986-11-13 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen, De
DE3641086C1 (de) * 1986-12-02 1988-03-31 Spinner Gmbh Elektrotech Hohlleiterabsorber oder -daempfungsglied
FR2618252A1 (fr) * 1987-07-17 1989-01-20 Thomson Csf Gyrotron a ondes progressives protege contre les modes indesires.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220089466A1 (en) * 2018-12-06 2022-03-24 Hyosung Heavy Industries Corporation Ion-exchange resin module and deionization apparatus using same
US11970407B2 (en) * 2018-12-06 2024-04-30 Hyosung Heavy Industries Corporation Ion-exchange resin module and deionization apparatus using same

Also Published As

Publication number Publication date
DE59006432D1 (de) 1994-08-18
US5187408A (en) 1993-02-16
JPH04332433A (ja) 1992-11-19
EP0438738A1 (de) 1991-07-31

Similar Documents

Publication Publication Date Title
EP0438738B1 (de) Quasi-optische Komponente für Mikrowellenstrahlung
DE3641086C1 (de) Hohlleiterabsorber oder -daempfungsglied
DE19628952C5 (de) Vorrichtung zur Erzeugung von Plasma
DE3203283C2 (de)
DE3427288A1 (de) Mikrowellenlast
DE2516335B2 (de) Mikrowellenröhre
DE1297768B (de) Wanderfeldverstaerkerroehre
DE1298195B (de) Magnetronoszillatorroehre
DE1034284B (de) Rauscharme Elektronenstrahlroehre nach Art einer Wanderfeldroehre
DE2947918C2 (de)
EP0177668B1 (de) Vorrichtung zur Führung eines Elektronenstrahls
DE3525275A1 (de) Mikrowellenroehre
DE3211971C2 (de)
DE1541930B2 (de) Laufzeitrohre fur breites Frequenz band
DE2236234C3 (de) Dielektrisches Fenster für Mikrowellenenergie
DE3134583A1 (de) Gyrotron-hohlraumresonator
DE3343747A1 (de) Gyrotron-oszillator
DE2039714A1 (de) Koaxialfilter
DE3923277C2 (de)
DE2632404B2 (de) Hochfrequenz-Elektronenröhre mit einer Einrichtung zur Dämpfung von Hohlraum-Störwellen
DE1293349B (de) Mehrkammerhochleistungsklystron mit zwei in Strahlrichtung aufeinanderfolgenden, gleichachsig angeordneten Kollektoreingangsrohren
DE1491350A1 (de) Mehrstrahl-Hochfrequenzgeraet
DE1060994B (de) Elektronenroehre zur Verstaerkung sehr kurzer elektrischer Wellen nach Art einer Wanderfeldroehre mit einer wendelfoermigen Verzoegerungsleitung
CH678243A5 (de)
DE1541588C3 (de) Anordnung zur Bedämpfung höherer H tief on -Wellentypen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19911206

17Q First examination report despatched

Effective date: 19931220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 59006432

Country of ref document: DE

Date of ref document: 19940818

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940919

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: THOMSON ELEKTRONENROEHREN AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: THOMSON ELEKTRONENROEHREN AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981116

Year of fee payment: 9

Ref country code: DE

Payment date: 19981116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981229

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST