EP0435878B1 - Moteur a combustion interne a pistons rotatifs - Google Patents

Moteur a combustion interne a pistons rotatifs Download PDF

Info

Publication number
EP0435878B1
EP0435878B1 EP89909186A EP89909186A EP0435878B1 EP 0435878 B1 EP0435878 B1 EP 0435878B1 EP 89909186 A EP89909186 A EP 89909186A EP 89909186 A EP89909186 A EP 89909186A EP 0435878 B1 EP0435878 B1 EP 0435878B1
Authority
EP
European Patent Office
Prior art keywords
sealing
piston
combustion engine
seal
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89909186A
Other languages
German (de)
English (en)
Other versions
EP0435878A1 (fr
Inventor
Hans Helpap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KKM KREIS-KOLBEN-MOTOREN GmbH
Original Assignee
KKM KREIS-KOLBEN-MOTOREN GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KKM KREIS-KOLBEN-MOTOREN GmbH filed Critical KKM KREIS-KOLBEN-MOTOREN GmbH
Publication of EP0435878A1 publication Critical patent/EP0435878A1/fr
Application granted granted Critical
Publication of EP0435878B1 publication Critical patent/EP0435878B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/10Sealings for working fluids between radially and axially movable parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them

Definitions

  • the invention relates to a rotary piston internal combustion engine with a housing in the interior of which at least two multiple pistons, each with at least two partial pistons which are attached to associated piston carriers, move in a piston orbit controlled by a control gear in such a way that functional spaces between two partial pistons and the housing variable volume are formed, in each of which complete four-stroke processes take place, and with a sealing arrangement that seals the functional spaces, the peripheral seals used for sealing between the housing and the respective piston carrier, and radial and cooperating with the housing, the piston carriers and the peripheral seal comprises axially effective piston seals on each of the partial pistons, the peripheral seals being arranged in peripheral sealing gaps delimited by the housing and the piston carriers, which are provided in corner regions of the functional spaces, and wherein each piston Seal at least two circumferentially spaced, independently movable and forming sealing planes Sealing arrangements (provided in the mutually parallel grooves), each comprising at least two sealing elements.
  • the sealing elements of the piston seal move relative to one another, so that gap-like gaps are formed between the sealing elements themselves, which are not sealed and cannot be sealed with the piston seal described there. Therefore, the pressure can escape through the gaps, gaps or gaps thus formed to the adjacent functional spaces, and the functional spaces are therefore not reliably sealed off from one another. Therefore, the rotary piston internal combustion engine according to DE-OS 28 48 200 does not meet the condition of a reliable seal, and it is therefore not functional.
  • the invention aims to provide a rotary piston internal combustion engine of the generic type that is operationally reliable and in particular the functional spaces, which are delimited by at least three parts that move against one another, can be effectively and reliably sealed in a reliable and permanent manner.
  • the object is achieved in that the circumferential seals in the direction of the functional spaces are subjected to contact pressure, that the sealing elements are wedge-shaped at least on their mutually facing sides, and between the sealing elements there is a pressure wedge which acts axially and radially in the sealing direction, and that the sealing arrangements are arranged offset from one another such that a sealing element of the one sealing arrangement covers the space between two sealing elements of the respectively adjacent sealing arrangement with the pressure wedge arranged there.
  • the peripheral seal is used for system sealing in the peripheral direction of the rotary piston internal combustion engine. Due to the design of the housing and the piston carrier, this circumferential seal can be arranged in circumferential sealing gaps which are located in the corners of the functional spaces, so that the risk of wear with regard to excessive thermal stresses on the circumferential seal is avoided.
  • the respective piston seal with its sealing arrangements works with this circumferential seal, which cooperates in the housing and the respective piston carriers during the orbital movement of the partial pistons in such a way that the adjacent functional spaces are reliably sealed off from one another and also from the system.
  • sealing limits can be achieved in connection with the interacting parts, and the sealing elements are pressed in the sealing direction in the respective sealing arrangement in the respective sealing level by pressurizing the applied functional space pressure and with the help of a pressure wedge, which is located between the wedge-shaped side abutment points of the Sealing elements is arranged.
  • the piston seal is also such that the gaps or spaces formed in the area of the pressure wedges in the respective sealing arrangement of the respective sealing level are reliably sealed in that a corresponding sealing element of the adjacent sealing level completely covers this space.
  • the functional spaces formed in the area of the orbit of the partial pistons are also securely sealed against one another.
  • the circumferential sealing gaps are connected via at least one load passage connection to the functional space under the highest pressure when the rotary piston internal combustion engine is working.
  • the circumferential seal in the respective circumferential sealing gaps is acted upon by the highest pressure in the associated functional space in such a way that it is pressed on in the sealing direction, so that an immediately effective system seal is achieved.
  • the one piston carrier of the rotary piston internal combustion engine is designed as a cylinder to which the respective partial pistons are attached, while the other piston carrier is designed as a disk arranged perpendicularly thereto, which forms a side wall of the housing.
  • the piston carrier designed as a disk for the one multiple piston can also comprise two coaxially arranged, disk-shaped parts, the partial pistons each being attached to the front of the two disk-shaped parts.
  • the two opposite side walls of the rotary piston internal combustion engine can be formed by the respective disk-shaped parts of the piston carrier.
  • the housing is pot-shaped and comprises a peripheral wall which forms the piston orbit on the inside, and a front side wall formed in one piece therewith, while the disk-shaped piston carrier forms the opposite end wall of the rotary piston internal combustion engine.
  • the structural design of the housing and piston carrier in the rotary piston internal combustion engine according to the invention provides sealing limits which can be sealed reliably, controllably and reliably in order to provide a functional rotary piston internal combustion engine.
  • the sealing areas between the moving parts of the rotary piston internal combustion engine are hereby precisely defined.
  • the drive shafts of the piston carriers which cooperate with the control gear, are arranged coaxially one inside the other.
  • a drive shaft is expediently designed as a hollow shaft, and the drive shaft of the other piston carrier is mounted in its interior, for example with the aid of a ball bearing.
  • the piston seal comprises at least three sealing arrangements which are spaced apart in the circumferential direction and form sealing planes.
  • the third sealing arrangement with the respective sealing elements serves as additional security, with which operational wear and tear of the piston seals can be counteracted, so that the service life of the piston seal can be improved and increased under the actual operating conditions of the rotary piston internal combustion engine.
  • the design is preferably made such that the sealing arrangements of the respective outer sealing planes are designed to match and the sealing arrangement of the middle sealing plane is correspondingly offset from the sealing arrangements of the respective outer sealing planes .
  • This design ensures that the sealing arrangements of the respective sealing planes complement one another and cooperate overall in such a way that the intermediate space formed in the receiving area of the pressure wedge of the respective sealing arrangement is reliably sealed off by corresponding overlap of the sealing elements of the respectively adjacent sealing arrangement.
  • the sealing elements of the sealing arrangements are preferably of the same thickness or thickness in order to achieve a suitable simplified production in terms of production technology.
  • the sealing arrangements of the piston seal are preferably inserted as a sealing package in a groove formed on the respective partial piston.
  • the piston seal can be assembled relatively easily and functionally reliable because it accommodates all of the individual sealing elements the sealing arrangements only a common groove formed on the respective partial piston is required. In this way, the processing of the respective partial piston for receiving the piston seal can be simplified.
  • the peripheral seal is preferably formed by a sealing strip which has an approximately triangular cross section.
  • the peripheral seal is preferably divided into ring segments, viewed in the peripheral direction, each of which extends over at least one angular range between two adjacent partial pistons of a single piston carrier.
  • the peripheral seal is preferably one that acts between the respective piston carrier and the housing.
  • Bellows seal assigned, which prevents escape of the contact pressure necessary for the peripheral seal.
  • This bellows seal device acts as a flexible compensating seal to accommodate corresponding relative movements of the relatively movable parts when working the rotary piston internal combustion engine and to compensate so that there are no leaks in the system.
  • a technically favorable processing of the piston carrier and the partial piston in the rotary piston internal combustion engine according to the invention such a design can preferably be provided that the partial pistons of the same are manufactured separately from the respective piston carriers, the partial pistons being able to be inserted into a receiving groove on the associated piston carrier .
  • a further circumferential seal is then provided, Groove base of the respective receiving groove extends in the circumferential direction.
  • This further circumferential seal is preferably acted upon like all other seals in the sealing direction by means of spring elements.
  • the design is preferably such that the further circumferential seal is also divided into ring segments in the circumferential direction, the separating point between the successive ring segments in the region of the receiving groove of the respective piston carrier lies.
  • both circumferential seals are divided into ring segments, these two circumferential seals are assigned to one another in the sealing area in such a way that the separating points formed in each case are mutually covered.
  • the sealing surfaces of these two seals are wetted with a lubricating film.
  • the inlet and outlet regions are preferably designed such that they comprise slots which run in the circumferential direction in the housing.
  • several such slots are arranged side by side in the axial direction.
  • FIGS. 1 and 2 illustrate two alternative embodiments of a rotary piston internal combustion engine according to the invention, in which the same or similar parts are provided with the same reference numerals in these figures and to distinguish the embodiments of the rotary piston internal combustion engine according to FIG. "are also provided.
  • a rotary piston internal combustion engine is used as an example shown with two multiple pistons and four partial pistons each.
  • the rotary piston internal combustion engine is generally designated 1.
  • the rotary piston internal combustion engine 1 has a housing 2 in the form of a casing with an inner wall 3.
  • Two multiple pistons 4A, 4B are arranged in the interior space formed by the housing 2.
  • the two multiple pistons 4A and 4B are shown in the lower part of Figure 1 in an exploded view.
  • Each multiple piston 4A, 4B has an associated piston carrier 5A, 5B, to which four partial pistons 6A1, 6A2, 6A3, 6A4 or 6B1, 6B2, 6B3, 6B4 are attached in diametrically opposite arrangement.
  • the piston carrier 5A for the partial pistons 6A1 to 6A4 of the multiple piston 4A is designed as a cylinder 7, and the partial pistons 6A1 to 6A4 project radially outward from the circumference of the cylinder 7.
  • the piston carrier 5B of the partial pistons 6B1 to 6B4 of the other multiple piston 4B comprises two coaxially arranged disc-shaped parts 8a, 8b, to which the partial pistons 6B1 to 6B4 are fastened, for example, with the aid of screws, not shown. At least one disk-shaped part 8a or 8b forms an end side wall. The two opposite end side walls can optionally also be formed by the two disc-shaped parts 8a, 8b.
  • the piston carrier 5A which is designed as a cylinder 7, is connected to a drive shaft 9A, while the piston carrier 5B is connected to a drive shaft 9B.
  • the drive shaft 9B connected to the piston carrier 5B is designed as a hollow shaft, and in its interior the drive shaft 9A connected to the other piston carrier 5A is by means of a schematically indicated ball bearing 10 stored.
  • the drive shafts 9A, 9B cooperate with a control gear (not shown in more detail) in such a way that the multiple pistons 4A, 4B rotate with their partial pistons 6A1 to 6A4 in the same direction and, when the multiple pistons 4A, 4B rotate, over an angular range of 360 °, preferably completely four Clock processes are run through.
  • the four-cycle process sequences each include the work cycles, the intake, compression, ignition and work and finally the ejection.
  • a complete cycle comprising four working cycles according to the four-stroke principle is carried out between the respective partial pistons 6A1 to 6A4 and 6B1 to 6B4 with a complete rotation through 360 °.
  • the piston carrier 5A, 5B and the housing 2 limit the circumferential sealing gaps 11 which lie in the corners of functional spaces 12 which are delimited in the circumferential direction by a piston orbit 13.
  • these functional spaces 12 are also delimited by two partial pistons 6A1 to 6A4 and 6B1 to 6B4, which follow one another in the circumferential direction, and piston supports 5A, 5B.
  • the design of the housing 2 in cooperation with the design of the piston carrier 5A, 5B thus defines circumferential sealing gaps 11 which lie in the cold corners of the functional spaces 12.
  • bearing shells 14a, 14b for the drive shafts 9A, 9B are shown schematically in FIG.
  • Inlet and outlet areas 15 are formed by slots 16 which are provided in the circumferential direction in the housing 2. Expediently, seen in the axial direction of the housing 2, a plurality of such slots 16 are provided side by side.
  • FIG. 2 an alternative embodiment of the rotary piston internal combustion engine is denoted overall by 1 '.
  • the housing 2 ′ in FIG. 2 is cup-shaped, i.e. an end side wall 17 is integrally formed on the housing 2 '.
  • the opposite front side wall is formed by the piston carrier 5B 'which is designed as a disk.
  • the partial pistons 6B1 'to 6B4' are designed as free pistons, i.e. they are only attached to the disk-shaped piston carrier 5B 'on one side. All other details largely agree with the embodiment of the rotary piston internal combustion engine 1 according to Figure 1, so that they need not be explained in more detail.
  • the circumferential sealing gaps 11 ′ lie in the corners of the functional spaces 12.
  • piston pistons 6A1 to 6A4, 6B1 to 6B4 or 6A1 'to 6A4' and 6B1 'to 6B4' are schematically indicated with a total of 22 piston seals, which are explained in more detail below.
  • This seal 20 is intended for the embodiments of the rotary piston internal combustion engine 1, 1 'explained with reference to FIGS. 1 and 2.
  • the seal 20 comprises a circumferential seal 21, 21 'and a piston seal 22.
  • the circumferential seal 21, 21' serves to seal between the housing 2, 2 'and the respective piston carrier 5A, 5B or 5A', 5B '.
  • Such a peripheral seal 21 is arranged between the disk-shaped part 8a of the piston carrier 5B and the housing 2 in FIG. 1 and between the other disk-shaped part 8b of the piston carrier 5B and the housing 2.
  • the two circumferential seals 21 shown are the same in terms of their structure - apart from a mirror-image arrangement.
  • the peripheral seal 21 is inserted into the respective peripheral sealing gap 11 between the respective piston carrier 5A, 5B or 5A 'or 5B' and the housing 2, 2 'in the region of the corners of functional spaces 12.
  • the functional spaces 12 are each formed in the area of the piston orbit 13, 13 'between two successive partial pistons 6A1 to 6A4 and 6B1 to 6B4.
  • Each circumferential sealing gap 11 is connected via a load passage connection 43, which is expediently designed as a bore, to the functional space under the highest pressure.
  • the respective circumferential seal 21 is assigned a bellows seal 44, which acts between the respective piston carrier 5A, 5B or 5A ', 5B' and the housing 2, 2 '.
  • the piston seal 22 comprises three sealing arrangements 23, 24, 25, which form corresponding sealing planes which are spaced apart in the circumferential direction.
  • the two outer sealing arrangements 23 and 25 are essentially designed in a matching manner and the sealing arrangement 24 is designed to be complementary to this.
  • the sealing arrangement 25 has sealing elements 27 and 28 in the axial direction and sealing elements 29 and 31 in the radial direction.
  • Corresponding sealing elements 29 ', 31' are provided in the radial direction at the end of the sealing arrangement 25 axially opposite the sealing elements 29, 31.
  • the sealing elements 29 ', 31' are essentially correct in terms of design and function with the sealing elements 29, 31 match.
  • Each sealing arrangement 25 has in the axial and radial directions a pressure wedge 26, 30 which is arranged between two sealing elements 27, 28, 29, 31 which are wedge-shaped at least on their facing sides. These pressure wedges 26, 30 act on the sealing elements 27, 28, 29, 31 of the sealing arrangement 25 in the sealing direction.
  • the parts of the sealing arrangement 23 are additionally identified with an "a" in order to distinguish the previously specified parts of the sealing arrangement 25.
  • the sealing arrangement 24 comprises sealing elements 32, 34 in the axial direction and sealing elements 35, 36 and 35 ', 36' in the radial direction, respectively.
  • the sealing arrangement 24, similar to the sealing arrangement 25, also comprises a pressure wedge 33, 37. These pressure wedges 33, 37 press the sealing elements 32, 34 and 35, 36 in the sealing direction.
  • the respective sealing elements and the pressure wedges of the respective sealing arrangements 23 and 25 have one same material thickness.
  • the sealing arrangements 23 and 24 or 24 and 25 and their parts are in this case offset from one another such that at least one sealing element 27, 28 or 29, 31 in one sealing arrangement, the intermediate space 45, in which there is a pressure wedge in the other sealing arrangement 33, 37 is covered. Since the sealing elements can be moved independently of one another in the respective sealing planes of the associated sealing arrangements, it is reliably achieved in this way that no leakage occurs around the pressure wedge 26, 30 or 33, 37.
  • sealing package 40 which is located in a groove 41 in the respective partial piston 6A1 to 6A4 or 6B1 to 6B4 is arranged.
  • a corresponding sealing package can of course also be arranged in an assigned groove of the respective partial pistons 6A1 'to 6A4' and 6B1 'to 6B4'.
  • the pressure build-up in the bottom of the groove 41 and in front of the sealing package 40 seen in the direction of rotation of the rotary piston internal combustion engine simultaneously causes the sealing arrangements 23 to 25 to be pressed against the rear wall of the groove, in cooperation with the pressure wedges, to compress the sealing elements of the sealing package 40 the sealing arrangements 23 to 25 are pressed against the peripheral seal 21 and the sealing arrangements 23 to 25 are pressed against the housing 2, 2 'and the side walls or the disk-shaped parts 8a, 8b of the piston carrier 5B.
  • seal 20 described above is suitable for use with both fixed and free pistons, it being possible, of course, to make any necessary modifications.
  • peripheral seal 21 In the same or similar way as the peripheral seal 21, corresponding peripheral seals in the inner area, i.e. be provided in the area of the piston carrier 5A.
  • the peripheral seal 21 has an approximately triangular cross section.
  • the seal comprises a peripheral seal 51, 51 'and 51' ', which is arranged in associated and not shown peripheral sealing gaps between the housing 2 and the piston carrier 5A, 5B.
  • peripheral seals 51, 51 ', 51' ' are designed as sealing strips with an approximately triangular cross section.
  • a piston seal 52 is provided in each partial piston 6A1 to 6A4 or 6A1 'to 6A4' and 6B1 to 6B4 or 6B1 'to 6B4'.
  • the piston seal 52 comprises only two sealing arrangements 53, 54, which are arranged at a distance in the circumferential direction and form associated sealing planes.
  • the sealing arrangements 53, 54 act in the radial and axial directions.
  • the sealing arrangement 53 has two sealing elements 55, 56, which are wedge-shaped on their opposite sides.
  • a pressure wedge 57 is provided between the two sealing elements 55, 56 of the sealing arrangement 53.
  • the sealing arrangement 53 comprises two sealing elements 55 ', 56' and a pressure wedge 57 '.
  • the sealing arrangement 53 also has corresponding sealing elements and a pressure wedge, which are designated 55'a, 56'a and 57'a.
  • the sealing arrangement 54 comprises two sealing elements 60, 61 and a pressure wedge 62 arranged between them. These parts are provided in an axially aligned manner and together form a sealing plane which is circumferentially spaced from the sealing plane formed by the sealing arrangement 53. In the radial direction, the sealing arrangement 54 comprises corresponding sealing elements 60 ', 61' and a pressure wedge 62 '. Corresponding sealing elements 60'a, 61'a and a pressure wedge 62'a are provided on the axially opposite side.
  • the sealing arrangements 53, 54 are provided offset with respect to the arrangement of the respectively associated sealing elements and the pressure wedges such that the area occupied by the pressure wedges 57, 57 ', 57'a and 62, 62', 62'a in the Sealing plane of the sealing arrangements 53, 54 in the respectively adjacent sealing plane, which is formed by the sealing arrangements 53, 54, by a respectively assigned sealing element 55, 55 ', 55'a, 56, 56', 56'a, 60, 60 ', 60'a, 61, 61 ', 61'a is completely covered.
  • sealing elements of the respective sealing arrangement 53, 54 and the respective working planes i.e. radially and axially additionally pressed loosely in the sealing direction by a schematically indicated spring device 63.
  • These sealing arrangements 53, 54 are also combined to form a corresponding sealing package and arranged in a groove 64 in the respective partial pistons.
  • a bellows seal 65 is provided, which prevents the contact pressure required for the peripheral seals from escaping.
  • receiving grooves 70, 71 are provided in the piston carriers 5A, 5B for the respective partial pistons that are not shown.
  • the respective partial pistons are then inserted into these receiving grooves 70, 71 and fastened, for example, with the aid of screws, not shown.
  • a further circumferential seal 73 is provided, which is also approximately triangular in cross section, and in connection with FIG. 5, for example, presses against the circumferential seal 51 '.
  • the circumferential seal 51 ' is then assigned, for example, in the other piston carrier.
  • the further circumferential seal 73 and the circumferential seal 51 ' are pressed in the sealing direction with the aid of spring elements 74, 75 provided on the associated piston carriers 5A, 5B.
  • the circumferential seal 51 ′ can be divided in the circumferential direction into ring segments 76, each of which extends over at least the angular range between two adjacent partial pistons of a single one Piston carrier 5A, 5B extend.
  • the further circumferential seal 73 is also divided in the circumferential direction into ring segments 77, the separation points of which lie in the region of the receiving grooves 71 of the piston carrier 5B.
  • the ring segments 76 of the circumferential seal 51 'and the ring segments 77 of the circumferential seal 73 are arranged offset from one another in the circumferential direction in such a way that the separating points 78 formed between the respective ring segments 76 are separated from a continuous ring segment 77 of the further circumferential seal 73 is covered.
  • the design is of course also made such that the separation points 78, the ring segments 76 of the peripheral seal 51 are covered by the corresponding ring segments 77 of the further peripheral seal 73.
  • the embodiment of the seal explained with reference to FIGS. 5 to 7 thus reliably seals the functional spaces 12 when the rotary piston internal combustion engine 1, 1 'is operating even when the respective partial pistons in the associated receiving grooves 70, 71 on the piston carrier 5A, 5B or 5A ', 5B' are attached.
  • the design of the seal also makes it clear from FIGS. 5 to 7 that two sealing arrangements 53, 54 spaced apart in the circumferential direction are sufficient for the respective piston seals 52.
  • the seals 20 are designed such that the sealing surfaces are constantly used with a lubricating film, preferably an oil film.

Abstract

Moteur à combustion interne à pistons rotatifs avec un carter, à l'intérieur duquel se déplacent sur un circuit de pistons, sous l'effet d'un mécanisme de direction, au moins deux pistons multiples avec chacun deux pistons partiels, qui sont fixés sur des supports de piston, de telle manière que des espaces de fonctionnement sont créés entre chaque paire de pistons et le carter, dans lesquels se produisent des cycles à quatre temps complets. Le carter et les supports de piston délimitent les gorges d'étanchéité périphériques situées dans les coins des espaces de fonctionnement. La garniture prévue pour assurer une bonne étanchéité des espaces de fonctionnement comporte une garniture périphérique servant à l'étanchéification du carter par rapport au support de piston et soumise à une pression d'appui dans la direction de l'espace de fonctionnement, et une garniture de piston, agencée sur le piston partiel, agissant axialement et radialement et collaborant avec la première garniture. Ladite garniture de piston comporte au moins deux ensembles d'étanchéité, espacés l'un par rapport à l'autre dans la direction de la périphérie, mobiles de manière indépendante l'un par rapport à l'autre et formant des plans d'étanchéité. Chaque ensemble d'étanchéité dans le plan d'étanchéité correspondant comporte au moins deux éléments d'étanchéité, de forme profilée au moins sur leurs faces antérieures, et un élément conique de pression exerçant une pression axiale et radiale sur les éléments d'étanchéité dans la direction d'étanchéification. Les ensembles d'étanchéité de la garniture de piston sont décalés les uns par rapport aux autres de telle manière que l'espace intermédiaire entre les éléments d'étanchéité d'un ensemble d'étanchéité, dans lequel est logé l'élément conique de pression correspondant, est complètement recouvert par un élément d'étanchéité continu de l'ensemble d'étanchéité suivant. Pour obtenir une pression sur la garniture périphérique, les gorges d'étanchéité périphériques sont reliées, par exemple par un trou de passage, à l'espace de fonctionnement qui est soumis à la pression la plus importante.

Claims (17)

  1. Moteur à combustion interne à pistons rotatifs, avec un carter (2, 2') à l'intérieur duquel au moins deux pistons composés, pourvus chacun d'au moins deux pistons partiels fixés sur des porte-piston associés (5A, 5B ; 5A', 5B'), se déplacent, en étant commandés par un mécanisme de distribution, sur une trajectoire circulaire de telle sorte que des chambres fonctionnelles (12, 12') de volume variable sont chaque fois formées entre deux pistons partiels et le carter, chambres dans lesquelles se déroulent respectivement des cycles complets à quatre temps, et avec un ensemble d'étanchéité qui étanche les chambres fonctionelles et comprend des joints d'étanchéité circonférentiels (21, 21' ; 51, 51', 51'') servant à l'étanchement entre le carter et le porte-piston respectif, ainsi que des joints d'étanchéité de piston (22, 52) sur chacun des pistons partiels, qui sont actifs radialement et axialement et coopèrent avec le carter, les porte-pistons et les joints d'étanchéité circonférentiels, les joints d'étanchéité circonférentiels étant disposés dans des fentes d'étanchéité circonférentielles (11, 11') qui sont délimitées par le carter et les porte-piston et sont prévues dans les coins des chambres fonctionnelles, et chaque joint d'étanchéité de piston présentant au moins deux ensembles d'étanchéité (23, 24, 25 ; 53, 54), distants en direction circonférentielle, mobiles indépendamment l'un de l'autre, formant des plans d'étanchéité et comprenant chacun au moins deux éléments d'étanchéité (27, 29, 31, 29', 31', 32, 34, 36, 36', 27a, 29a, 31a, 29a', 31a' ; 55, 55', 55'a, 56, 56', 56'a, 60, 60', 60'a, 61, 61', 61'a),
    caractérisé en ce que les joints d'étanchéité circonférentiels (21, 21' ; 51, 51', 51'') sont sollicités en pression d'appui en direction des chambres fonctionnelles,
    en ce que les éléments d'étanchéité (27, 29, 31, 29', 31', 32, 34, 36, 36', 27a, 29a, 31a, 29a', 31a' ; 55, 55', 55'a, 56, 56', 56'a, 60, 60', 60'a, 61, 61', 61'a) sont réalisés coniques au moins sur leurs côtés en vis-à-vis, et une clavette de pression d'appui (26, 30, 33, 37, 36', 37' ; 57, 57', 57'a, 62, 62', 62'a) est chaque fois disposée entre les éléments d'étanchéité et les sollicite axialement et radialement dans la direction d'étanchéité,
    et en ce que les ensembles d'étanchéité (23, 24, 25 ; 53, 54) sont disposés en décalage mutuel de telle sorte qu'un élément d'étanchéité d'un des ensembles d'étanchéité recouvre, par la clavette de pression d'appui qui y est disposée, l'espace intermédiaire entre deux éléments d'étanchéité de l'ensemble d'étanchéité respectivement voisin.
  2. Moteur à combustion interne à pistons rotatifs selon la revendication 1, caractérisé en ce que l'un des porte-piston (5A, 5A') est réalisé sous forme de cylindre (7, 7') et l'autre sous forme de disque (8a, 8b), qui constitue une paroi latérale du carter (2, 2').
  3. Moteur à combustion interne à pistons rotatifs selon la revendication 2, caractérisé en ce que le carter (2') comprend la paroi circonférentielle et la paroi latérale opposée au porte-piston (5B') réalisé sous forme de disque (8a') (figure 2).
  4. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les arbres d'entraînement (9A, 9B) des porte-piston (5A, 5B ; 5A', 5B'), qui coopèrent avec le mécanisme de distribution, sont disposés coaxialement l'un dans l'autre.
  5. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint d'étanchéité de piston (20 ; 50) comprend au moins trois ensembles d'étanchéité (23 à 25) distants en direction circonférentielle et formant des plans d'étanchéité (figures 3 et 4).
  6. Moteur à combustion interne à pistons rotatifs selon la revendication 5, caractérisé en ce que les ensembles d'étanchéité (23 et 25) des plans d'étanchéité extérieurs respectifs sont réalisés coïncidents, et l'ensemble d'étanchéité (24) du plan d'étanchéité médian est prévu avec un décalage correspondant par rapport aux ensembles d'étanchéité (23, 25) des plans d'étanchéité extérieurs respectifs.
  7. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que les ensembles d'étanchéité (23 à 25 ; 53, 54) sont introduits, sous la forme d'un paquet d'étanchéité (40), dans une rainure (41 ; 64) configurée sur le piston partiel respectif.
  8. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint d'étanchéité circonférentiel (21, 21' ; 51, 51', 51'') consiste en un bourrelet d'étanchéité de section approximativement triangulaire.
  9. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint d'étanchéité circonférentiel (51') est divisé, en direction circonférentielle, en segments annulaires (76) qui s'étendent chacun sur au moins une plage angulaire entre deux pistons partiels voisins d'un même porte-piston (5A, 5B ; 5A', 5B').
  10. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un joint d'étanchéité à soufflet (44 ; 65), agissant entre le porte-piston respectif et le carter, est associé au joint d'étanchéité circonférentiel (21, 21' ; 51, 51', 51'').
  11. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que les pistons partiels sont insérés dans une rainure réceptrice (70, 71) sur le porte-piston associé (5A, 5B), et en ce qu'un joint d'étanchéité circonférentiel supplémentaire (73) est prévu pour étancher les porte-piston l'un par rapport à l'autre.
  12. Moteur à combustion interne à pistons rotatifs selon la revendication 11, caractérisé en ce que le joint d'étanchéité circonférentiel supplémentaire (73) est sollicité dans la direction d'étanchéité au moyen d'éléments élastiques (74, 75) prévus sur les porte-piston associés (5A, 5B).
  13. Moteur à combustion interne à pistons rotatifs selon la revendication 12, caractérisé en ce que le joint d'étanchéité circonférentiel supplémentaire (73) est divisé, en direction circonférentielle, en segments annulaires (77) de telle sorte que le point de séparation (79) entre deux segments annulaires successifs (77) se trouve dans la région de la rainure réceptrice (71) du porte-piston respectif (5A, 5B).
  14. Moteur à combustion interne à pistons rotatifs selon les revendications 12 et 9, caractérisé en ce que les segments annulaires (76, 77) du joint d'étanchéité circonférentiel (51') et du joint d'étanchéité circonférentiel supplémentaire (73) sont mutuellement associés de telle sorte que les points de séparation respectivement formés (78, 79) sont recouverts.
  15. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que les faces d'étanchéité du joint d'étanchéité circonférentiel (21, 21' ; 51, 51', 51'') et du joint d'étanchéité de piston (22, 52), ou du joint d'étanchéité circonférentiel supplémentaire (73), sont imprégnées d'un film lubrifiant.
  16. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce que les régions d'admission et d'échappement (15) des chambres fonctionnelles sont formées par des fentes (16) qui s'étendent en direction circonférentielle dans le carter (2, 2').
  17. Moteur à combustion interne à pistons rotatifs selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu, afin de solliciter le joint d'étanchéité circonférentiel (21, 21' ; 51, 51', 51'') en direction des chambres fonctionnelles (12), au moins une liaison de passage de sollicitation (43) qui est reliée à la chambre fonctionnelle (12) qui se trouve sous la plus haute pression.
EP89909186A 1988-08-14 1989-08-12 Moteur a combustion interne a pistons rotatifs Expired - Lifetime EP0435878B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3827621 1988-08-14
DE3827621 1988-08-14

Publications (2)

Publication Number Publication Date
EP0435878A1 EP0435878A1 (fr) 1991-07-10
EP0435878B1 true EP0435878B1 (fr) 1993-05-26

Family

ID=6360862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89909186A Expired - Lifetime EP0435878B1 (fr) 1988-08-14 1989-08-12 Moteur a combustion interne a pistons rotatifs

Country Status (3)

Country Link
EP (1) EP0435878B1 (fr)
DE (1) DE58904524D1 (fr)
WO (1) WO1990001676A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270322B1 (en) 1998-09-03 2001-08-07 Steven W. Hoyt Internal combustion engine driven hydraulic pump
AU9303598A (en) * 1998-09-03 2000-03-27 Steven W. Hoyt Reciprotating combustion engine
WO2002101201A1 (fr) * 2001-06-13 2002-12-19 Atlas Technologies, Inc. Moteur a combustion
US7222601B1 (en) * 2005-07-08 2007-05-29 Kamen George Kamenov Rotary valveless internal combustion engine
US7730869B2 (en) * 2007-04-13 2010-06-08 Yan Li Housing wheel engine
AT507476B1 (de) * 2008-10-17 2012-11-15 Mahle Koenig Kommanditgesellschaft Gmbh & Co Dichtung für kreiskolbenmaschinen
US9719350B2 (en) * 2015-03-12 2017-08-01 Edward Alan Hicks Motor/engine with rotating pistons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547374A (en) * 1946-12-06 1951-04-03 Biagio A Carideo Rotary engine
US3155013A (en) * 1961-06-12 1964-11-03 Houdaille Industries Inc Rotary actuator
US3658447A (en) * 1970-04-09 1972-04-25 Charles Bancroft Pressure sealing assemblies for rotary vane piston devices
GB1556950A (en) * 1977-09-28 1979-12-05 Baer J S Rotary fluidmachine
ZA776719B (en) * 1977-11-10 1979-04-25 Griffenthal Pty Ltd Rotary engine
FR2504609B1 (fr) * 1981-04-27 1986-11-21 Sulzer Ag Palette destinee a equiper un dispositif hydraulique rotatif

Also Published As

Publication number Publication date
EP0435878A1 (fr) 1991-07-10
DE58904524D1 (de) 1993-07-01
WO1990001676A1 (fr) 1990-02-22

Similar Documents

Publication Publication Date Title
DE3932495C2 (de) Spiralverdichter
EP1394363B1 (fr) Système d'aubes de guidage variables pour une turbine
DE2801206C2 (fr)
DE2905867C2 (de) Dichtungsvorrichtung
DE3023775C2 (de) Steuergerät zum Steuern einer Druckmittelströmung
EP0620358A1 (fr) Moteur hydraulique
CH626951A5 (fr)
DE2610524A1 (de) Bremse fuer eine hydraulische maschine
EP0435878B1 (fr) Moteur a combustion interne a pistons rotatifs
DE10393577T5 (de) Stufenlose Getriebeeinheit und Verfahren für die Montage derselben
DE3107231A1 (de) Verdraengermaschine fuer kompressible medien
EP0290664B1 (fr) Pompe à deux arbres
EP0337950B1 (fr) Moteur à piston rotatif à axe interne
DE60011319T2 (de) Gerotormotor
DE2842734C2 (de) Drehschieberventil, insbesondere für eine hydrostatische Hilfskraft-Lenkeinrichtung
DE3919267C2 (de) Radialkolbenpumpe mit Ventilkolbeneinsatz
DE2823195C2 (de) Axialdichtung für eine Kreiskolbenmaschine
DE3801137C2 (fr)
EP0759340A1 (fr) Outil à chocs
CH680152A5 (fr)
DE3520994C2 (de) Hydraulische Schraubenmaschine
DE2825790C2 (de) Stellmotor mit Nachlaufsteuerung
DE2138988B2 (de) Dichtleistenanordnung für Rotationskolbenmaschinen
DE2817774A1 (de) Vorrichtung zur drehzahlabhaengigen selbsttaetigen aenderung des einspritzzeitpunkts der einspritzpumpe einer brennkraftmaschine
EP0294739B1 (fr) Machine à pistons axiaux avec barillet rotatif et corps de commande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19920811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930526

Ref country code: GB

Effective date: 19930526

Ref country code: FR

Effective date: 19930526

REF Corresponds to:

Ref document number: 58904524

Country of ref document: DE

Date of ref document: 19930701

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930526

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

26N No opposition filed