EP0434784A1 - Vorrichtung zur fahrbahnabhängigen fahrwerksregelung - Google Patents

Vorrichtung zur fahrbahnabhängigen fahrwerksregelung

Info

Publication number
EP0434784A1
EP0434784A1 EP19900908184 EP90908184A EP0434784A1 EP 0434784 A1 EP0434784 A1 EP 0434784A1 EP 19900908184 EP19900908184 EP 19900908184 EP 90908184 A EP90908184 A EP 90908184A EP 0434784 A1 EP0434784 A1 EP 0434784A1
Authority
EP
European Patent Office
Prior art keywords
wheel
vehicle
road
unevenness
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19900908184
Other languages
English (en)
French (fr)
Inventor
Erich Rubel
Michael Panther
Klaus Gatter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0434784A1 publication Critical patent/EP0434784A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/104Damping action or damper continuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/14Differentiating means, i.e. differential control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/16Integrating means, i.e. integral control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/602Signal noise suppression; Electronic filtering means high pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/604Signal noise suppression; Electronic filtering means low pass

Definitions

  • the invention relates to a device for the travel-dependent suspension control of a vehicle, in particular a motor vehicle, according to the preamble of the main claim.
  • the driving state of a vehicle is dependent on the driver's driving maneuvers on the one hand, but also on the road on the other. Uneven road surfaces which excite the wheels of the vehicle to vibrate can lead to the energy of these vibrations being transmitted to the body of the vehicle. In order to achieve the highest possible driving comfort, such vibrations should be avoided. Furthermore, unevenness in the roadway can lead to changes in the wheel load, ie to dynamic changes Cause wheel load fluctuations. These are a measure of driving safety. A wheel load that is as constant as possible is aimed for a safe driving condition.
  • a device for computer-aided, roadway-dependent control of dampers of a vehicle suspension is known.
  • Sensors are provided which emit electrical signals which are characteristic of the unevenness of the road and which are fed to an evaluation circuit.
  • the evaluation circuit converts the sensor signals into two different signals.
  • the first signal corresponds to the averaged height of the road bumps overall, and the second signal represents the relationship, referred to as ripple, between the averaged heights of the long-wave and short-wave road bumps.
  • the control signals for the control systems are made from these signals by means of characteristic maps the damper is formed in such a way that it is composed of a function, the sum of which depends, among other things, on the average height of the uneven road surface, the ripple and the product of the average height and ripple.
  • a sensor on the front axle and - to determine the body-side accelerations - in the front vehicle body area is provided on the vehicle.
  • This configuration and the described signal processing take into account averaged and therefore, moreover, time-shifted values of the road unevenness in the chassis control.
  • the device according to the invention with the features mentioned in the main claim has the advantage that the unevenness of the road surface or uneven road speed occurring on each wheel is detected and is currently fed to each control circuit, so that a corresponding control of an actuator assigned to the wheel is carried out can be done.
  • the unevenness of the road is thus detected and counteracted immediately in a corresponding size, so that optimum wheel load values can be set and maintained and wheel deflections are counteracted in such a way that virtually no vibrations are transmitted to the body of the vehicle. Since, according to the invention, each wheel area of the vehicle is monitored by sensors and has its own control loop, possible pitch and roll movements of the body are essentially prevented by the unevenness of the roadway.
  • the chassis control according to the invention offers a high level of comfort with great driving safety.
  • the immediate, current intervention which takes place in the full size of the road unevenness disturbance, and not by means of time-delaying and amplitude-influencing averaging, as in the prior art, results in extremely high dynamics of the chassis control, which crucially improves comfort. and safety behavior of the vehicle improved.
  • the uneven road surface and / or the uneven road surface speed is fed to the controller as a disturbance variable.
  • each wheel area there is a damper force, a sensor which measures the relative distance (spring deflection) between the wheel and the structural section of the vehicle located in the wheel area and a sensor which detects the vertical wheel acceleration. From the data of these three sensors, the evaluation circuit forms the associated unevenness in the road and the speed of the road in unevenness. It is particularly advantageous that - in contrast to the prior art mentioned - no size-varying data are used in the evaluation, such as e.g. B. the mass of the body of the vehicle, since it varies with the payload.
  • the device is designed so that a summing point is assigned to each wheel, which is supplied with the damping force as additive input variables and which is fed in a first multiplication stage with the spring constant of the spring arrangement assigned to the wheel area and to which the travel in a second multiplication stage wheel acceleration multiplied by the wheel mass is connected as a subtraction quantity and that the output signal of the summing point is connected via a third multiplication stage, which takes into account the reciprocal value of the spring constant of the tire, as a subtraction quantity at a sum point which is additively generated in an integration stage temporal double integral of the wheel acceleration provides the instantaneous value of the road unevenness. It is preferably provided that the output signal
  • the summing point forms a dynamic wheel load fluctuation, which indicates the change in force of the associated tire on the road.
  • the time integral of the wheel acceleration with a positive sign and the output value of the third multiplier stage with a negative sign, which is conducted via a differentiator, are fed to a summation point.
  • Active or, in particular, semi-active dampers can be used as the actuator.
  • An active damper is to be understood as a piston / cylinder unit, the piston of which can be actively acted upon by a pressure medium, so that the position of its characteristic curve is possible in all four quadrants of a Cartesian coordinate system in which the ordi ⁇ The damper force is plotted and the piston speed is plotted on the abscissa.
  • the active damper requires high control energies, since an active pressure build-up is necessary for piston displacement.
  • semi-active dampers manage with low control energy, since only a displacement of the pressure medium is carried out by piston displacement, but no active pressure generation for piston displacement takes place.
  • a piston / cylinder unit is again provided.
  • the piston divides the cylinder space into two chambers communicating with one another via a passage cross section.
  • This passage cross section is controllable, that is, the flow resistance for the pressure medium displaced by the piston can be varied. Excellent measurement results can be obtained if the sensor detecting the damper force determines its measured variable between a support bearing of the damper and the associated body section of the vehicle.
  • the sensor that detects the wheel acceleration is preferably arranged close to the wheel bearing of the associated wheel.
  • the sensor determining the spring deflection detects its measured variable between the steering knuckle of the associated wheel and the section of the vehicle body that is present in the wheel area.
  • FIG. 1 shows a block diagram of the chassis control according to the invention
  • FIG. 2 shows a two-mass model of the chassis control
  • FIG. 3 shows a positioning of sensors that detect the driving state data, shown on the model
  • FIG. 4 shows a block diagram for determining the unevenness of the road
  • FIG. 5 shows a detailed block diagram of the chassis control. Description of the embodiment
  • the vehicle (passenger car) shown schematically in FIG. 1 is provided with sensors 4, 5 and 6 on all four wheels 1, ie twice in the area of the front axle 2 and also in the area of the rear axle 3.
  • Each wheel 1 is arranged on a steering knuckle and is connected to a body 8 of the vehicle via a spring arrangement 7 (FIG. 2).
  • a spring arrangement 7 In parallel to the spring arrangement 7, an actuator 9 is arranged between the wheel support part and the body 8.
  • the actuator 9 is designed as a semi-active damper 10.
  • the sensors 4 are used to determine the damper force F d . To record this measurement variable, they are arranged between a support bearing (not shown) of the respective damper 10 and the section of the body 8 located in the respective wheel area (FIG. 3). In order to determine the spring deflection x ar of each wheel 1 relative to the body 8, the sensors 5 are connected between the respective steering knuckle of the associated wheel 1 and the corresponding section of the body 8. The sensors 6 are attached to each wheel 1 directly next to the wheel bearing. They determine the wheel acceleration x r . The wheel acceleration x r is recorded in the vertical direction, ie parallel to the deflection x ar .
  • the signals from the sensors 4, 5 and 6 each arrive in a signal processing circuit 11.
  • the unevenness S of the road and the road surface S are determined from the processed signals in a processing unit 12.
  • Roughness speed S determined. This will be discussed in more detail below.
  • a processor circuit 65 determines the control signal for the assigned semi-active damper 10.
  • the processing unit 12 and the processor circuit 65 are preferably implemented with powerful microprocessors.
  • the instantaneous damping of the semi-active dampers 10 is individually optimized for each wheel 1, taking into account unevenness S and unevenness S of the road.
  • Optimizing the overall damping of the vehicle against pitching and swaying is the task of a higher-level circuit 15. It communicates in both directions with the four processor circuits 65 via a data transmission device 14 (for example a CAN bus) to which it just like the processor circuits 65, is connected via lines 13.
  • the data transmission device 14 can also lead to other electronic circuits in the vehicle (for example for injection control, etc.).
  • the circuit 15 can alternatively also be integrated in one of the processor circuits 65 or distributed over a plurality of processor circuits 65.
  • FIG. 2 shows a so-called two-mass model, which embodies the respective wheel area of the vehicle.
  • the wheel mass m r of the wheel 1 is connected to the body mass via the spring arrangement 7.
  • the body mass m a is to be understood here as the portion of the total mass of the vehicle body which is to be assigned to each wheel 1.
  • the spring arrangement 7 has the spring constant c & .
  • the damper 10, which develops the damper force F d lies between the wheel mass r and the body mass m a .
  • the spring deflection x ar exists between the wheel mass r and the body mass a - the elastic parts of the wheel 1 (tire) are embodied in the model by a spring 16 with the spring constant c r .
  • the wheel 1 rolls on the road 17, which has an unevenness S on the road.
  • the road unevenness S is defined with respect to an inertial system 18 (vertical component).
  • the wheel acceleration x r and the cycle path x r are also related to this inertial system 18.
  • the wheel load fluctuation is designated with F r . It indicates the change in force of the associated tire on the road.
  • FIG. 4 shows, as a block diagram, the circuit structure for determining the unevenness S of the road and the uneven road speed S.
  • a circuit structure is provided for each wheel 1 of the vehicle.
  • the output of the high-pass filter 20 is connected to an evaluation circuit 21 which has the factor "1".
  • the output signal of the evaluation circuit 21 is additively fed to a summing point 22.
  • the spring deflection x ar of the wheel 1 in question relative to the body 8 of the vehicle is - as already described - determined by the associated sensor 5.
  • the output signal of the second multiplier stage 28 is supplied to the summing point 22 subtractively.
  • the output 29 of the summing point 22 is subtractively connected to a summing point 30 via a third multiplication stage 33.
  • the reciprocal of the spring constant c r of the wheel 1 (tire) is multiplied.
  • the line 27 has a branch which leads to an integrating stage 27 'with two integrators 31 and 31', which forms the temporal double integral of the input data.
  • the output of the integrating stage 27 ' is connected to the sum point 30 with a negative sign.
  • the starting value of the sum point 30 provides the unevenness S of the road.
  • a differential detector 32 ' is connected, which - with a negative sign - leads to a summation point 32 and feeds the relative wheel speed x rr to it.
  • the time integral of the wheel acceleration x r originating from the integrator 31 is - with a positive sign - given to the sum point 32.
  • the roadway unevenness speed S is available.
  • the unevenness of the roadway S which is not directly measurable can therefore be determined by the circuit described above and shown in FIG. It is fed as a disturbance variable to a controller 65 of the chassis control.
  • the road surface unevenness speed is also S is determined and also fed to the controller as a disturbance variable.
  • FIG. 1 A corresponding overview block diagram is shown in FIG.
  • the circuit arrangement shown there is provided for each wheel 1 of the vehicle. It includes the circuit structure according to FIG. 4.
  • the damper force F d , the wheel acceleration x r , the relative spring deflection x ar and the body acceleration x a are supplied to the low-pass filters 19, 22 ', 25 and 38, which have already been mentioned in part and which are used as so-called anti-aliasing filters are formed.
  • a line 39 leads from the low-pass filter 19 to the high-pass filter 20, the output 41 of which applies the now filtered data of the damper force F ⁇ to the controller 65.
  • the line 41 also leads to the evaluation circuit 21, which is connected to the summing point 22.
  • the output of the low-pass filter 25 is connected to the already described high-pass filter 26, which is connected to the integrator 31. Furthermore, the output of the high-pass filter 26 leads to the second multiplier stage 28, which is connected to the summing point 22 with a negative sign.
  • the wheel speed x r is available, which is fed via a filter 48 to the further integrator 31 'belonging to the integrating stage 27', at whose output the cycle path x r is present, which is at the summing point 30 connected.
  • the output variable x "(wheel speed) of the integrator 31 is fed to a summing point 53 via a line 51 and a filter 52.
  • the output of the low-pass filter 22 ' is connected to a differentiator 54, which uses a filter 55 to determine the relative spring speed ar to the controller 65 feeds. Furthermore, the output of the low-pass filter 22 'is connected to the high-pass filter 23, the output of which leads via the first multiplier stage 24 to the summing point 22. The output of the high-pass filter 23 is also connected to the controller 65 and provides the relative deflection x ar . The output of the low-pass filter 38 is also connected to a high-pass filter 58, the output of which is connected to an integrator 59 which supplies the assembly speed & to the controller 65.
  • the output of the summing point 22 leads via a line 29 to a differentiator 61, the output of which provides the relative wheel speed x rr , which is connected to the summing point 53 with a negative sign.
  • the line 29 is also connected — also with a negative sign — to the summation point 30.
  • the output 30 'of the summation point 30 is connected to the controller 65 and provides the unevenness S on the roadway.
  • the output 63 of the summing point 53 has the uneven road speed S which is fed to the controller 65.
  • the controller 65 bil ⁇ det from the mentioned input variables (F d, x ar, S, S, Ar and x x a) an operating voltage V d with which a fürströmguer bain influencing the Steuer ⁇ means of the damper is driven 10th

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Vorrichtung zur fahrbahnabhäncrigen Fahrwerksregelung
Stand der Technik
Die Erfindung betrifft eine Vorrichtung zur fahr¬ bahnabhängigen Fahrwerksregelung eines Fahrzeugs, insbesondere eines Kraftfahrzeugs, nach der Gattung des Hauptanspruchs.
Der Fahrzustand eines Fahrzeugs ist einerseits von den Fahrmanövern des Fahrzeugführers, andererseits jedoch auch von der Fahrbahn abhängig. Fahrbahnun¬ ebenheiten, die die Räder des Fahrzeugs zu Schwin¬ gungen anregen, können dazu führen, daß die Energie dieser Schwingungen auf den Aufbau des Fahrzeugs übertragen werden. In dem Bestreben, einen möglichst hohen Fahrkomfort zu erzielen, sind derartige Schwin¬ gungen zu vermeiden. Ferner können Fahrbahnunebenhei¬ ten zu Änderungen der Radlast, d. h. zu dynamischen Radlastschwankungen führen. Diese sind ein Maß für r die Fahrsicherheit. Für einen sicheren Fahrzustand wird eine möglichst konstante Radlast angestrebt.
Aus der DE-PS 35 18 503 ist eine Vorrichtung zur rechnergestützten, fahrbahnabhängigen Steuerung von Dämpfern einer Fahrzeugfederung bekannt. Es sind Sen¬ soren vorgesehen, die für die Unebenheit der Fahrbahn charakteristische elektrische Signale abgeben, welche einer Auswerteschaltung zugeführt werden.Die Auswer¬ teschaltung formt die Sensorsignale in zwei unter¬ schiedliche Signale um. Das erste Signal entspricht der gemittelten Höhe der Fahrbahnunebenheiten insge¬ samt und das zweite Signal stellt das als Welligkeit bezeichnete Verhältnis zwischen den je für sich gemittelten Höhen der langwelligen und der kurzwelli¬ gen Fahrbahnunebenheiten dar. Aus diesen Signalen werden mittels Kennfeldern die Stellsignale für die Steuersysteme der Dämpfer derart gebildet, daß sie sich aus einer Funktion zusammensetzen, deren Summan¬ den unter anderem von der gemittelten Höhe der Fahr¬ bahnunebenheiten, der Welligkeit und dem Produkt aus gemittelter Höhe und Welligkeit abhängig sind. Für die Ermittlung der dynamischen Fahrzustandsdaten ist am Fahrzeug ein Sensor an der Vorderachse und -zur Ermittlung der aufbauseitigen Beschleunigungen- im vorderen Fahrzeugaufbaubereich vorgesehen. Durch diese Ausbildung und die geschilderte Signalverarbei¬ tung werden gemittelte und daher überdies zeitver¬ setzte Werte der Fahrbahnunebenheit bei der Fahr¬ werksregelung berücksichtigt. Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung mit den im Haupt¬ anspruch genannten Merkmalen hat demgegenüber den Vorteil, daß die an jedem Rad auftretende Fahrbahn¬ unebenheit bzw. Fahrbahn-ünebenheitsgeschwindigkeit erfaßt und aktuell jedem Regelkreis zugeführt wird, so daß eine entsprechende Steuerung eines dem Rad zu¬ geordneten Aktuators erfolgen kann. Mithin wird die Fahrbahnunebenheit erfaßt und ihr sofort in entspre¬ chender Größe entgegengewirkt, so daß sich optimale Radlastwerte einstellen und halten lassen und Radaus¬ lenkungen derart entgegengewirkt wird, daß so gut wie keine Schwingungen auf den Aufbau des Fahrzeugs übertragen werden. Da erfindungsgemäß jeder Radbe¬ reich des Fahrzeugs sensorisch überwacht wird und einen eigenen Regelkreis aufweist, sind auch durch die Fahrbahnunebenheit an sich mögliche Nick- und Wankbewegungen des Aufbaus im wesentlichen verhin¬ dert. Insgesamt wird deutlich, daß die erfindungsge¬ mäße Fahrwerksregelung einen hohen Komfort bei großer Fahrsicherheit bietet. Durch den sofortigen, aktuel¬ len Eingriff, der in voller Größe der Fahrbahnuneben¬ heitsstörung erfolgt -und nicht durch zeitverzögernde und amplitudenbeeinflussende Mittelung, wie im Stand der Technik-, ist eine extrem hohe Dynamik der Fahr¬ werksregelung erzielt, die entscheidend das Komfort- und Sicherheitsverhalten des Fahrzeugs verbessert. Nach einer Weiterbildu <ng der Erfindung wird dem Reg- ler die Fahrbahnunebenheit und/oder die Fahrbahn-Un- ebenheitsgeschwindigkeit als Störgröße zugeführt.
In jedem Radbereich ist ein die Dämpferkraft, ein den relativen Abstand (Einfederweg) zwischen dem Rad und dem im Radbereich gelegenen Aufbauabschnitt des Fahr¬ zeugs und ein die vertikale Radbeschleunigung erfas¬ sender Sensor vorgesehen. Aus den Daten dieser drei Sensoren bildet die Auswerteschaltung die zugehörige Fahrbahnunebenheit und die Fahrbahn-Unebenheitsge¬ schwindigkeit. Dabei ist es besonders vorteilhaft, daß bei der Auswertung -im Gegensatz zum genannten Stand der Technik- keine in ihrer Größe variierenden Daten herangezogen werden, wie z. B. die Masse des Aufbaus des Fahrzeugs, da diese mit der Zuladung schwankt.
Im einzelnen ist die Vorrichtung so ausgebildet, daß jedem Rad eine Summierstelle zugeordnet ist, der als additive Eingangsgrößen die Dämpferkraft und der in einer ersten Multiplizierstufe mit der Federkonstan- ten der dem Radbereich zugeordneten Federanordnμng multiplizierte Einfederweg zugeführt wird und an die die in einer zweiten Multiplizierstufe mit der Rad¬ masse multiplizierte Radbeschleunigung als Subtrak¬ tionsgröße angeschlossen ist und daß das Ausgangssig¬ nal der Summierstelle über eine dritte, den Kehrwert der Federkonstanten des Reifens berücksichtigende Multiplizierstufe als Subtraktionsgröße an einem Sum¬ menpunkt angeschlossen ist, dem additiv das in einer Integrierstufe erzeugte zeitliche Doppelintegral der Radbeschleunigung den Momentanwert der Fahrbahn¬ unebenheit liefert. Vorzugsweise ist vorgesehen, daß das Ausgangssignal
< der Summierstelle eine dynamische Radlastschwankung bildet, die die Kraftänderung des zugehörigen Reifens auf der Fahrbahn angibt.
Zur Bildung der Fahrbahn-ünebenheitsgeschwindigkeit wird einem Summenpunkt das zeitliche Integral der Radbeschleunigung mit positiven Vorzeichen und der über einen Differenzierer geleitete Ausgangswert der dritten Multiplizierstufe mit negativem Vorzeichen zugeleitet.
Als Aktuator können aktive oder aber auch insbeson¬ dere semiaktive Dämpfer eingesetzt werden. Unter ei¬ nem aktiven Dämpfer ist eine Kolben/Zylinder-Einheit zu verstehen, deren Kolben aktiv mit einem Druckmit¬ tel beaufschlagt werden kann, so daß die Lage seiner Kennlinie in allen vier Quadranten eines kartesischen Koordinatensystems möglich ist, bei dem auf der Ordi¬ nate die Dämpferkraft und auf der Abszisse die Kol¬ bengeschwindigkeit aufgetragen ist. Der aktive Dämp¬ fer verlangt hohe Steuerenergien, da ein aktiver Druckaufbau zur Kolbenverlagerung erforderlich ist. Im Gegensatz dazu kommen semiaktive Dämpfer mit ge¬ ringer Steuerenergie aus, da lediglich eine Verdrän¬ gung des Druckmediums durch Kolbenverlagerung vorge¬ nommen wird, jedoch keine aktive Druckerzeugung für eine Kolbenverlagerung erfolgt. Es ist wiederum eine Kolben/Zylinder-Einheit vorgesehen. Der Kolben teilt den Zylinderraum in zwei miteinander über einen Durchtrittsquerschnitt kommunizierende Kammern. Die¬ ser Durchtrittsquerschnitt ist steuerbar, das heißt, es läßt sich der Ströraungswiderstand für das durch den Kolben verdrängte Druckmedium variieren. Ausgezeichnete Meßergebnisse sind zu erhalten, wenn der die Dämpferkraft erfassende Sensor seine Meßgröße zwischen einem Stützlager des Dämpfers und dem zuge¬ hörigen Aufbauabschnitt des Fahrzeugs ermittelt. Der die Radbeschleunigung erfassende Sensor ist vorzugs¬ weise dicht neben dem Radlager des zugehörigen Rads angeordnet. Der den Einfederweg ermittelnde Sensor erfaßt seine Meßgröße zwischen dem Achsschenkel des zugehörigen Rads und dem im Radbereich vorhandenen Abschnitt des Fahrzeugaufbaus.
Zeichnung
Die Erfindung wird im folgenden anhand der Figuren näher erläύffcert. Es zeigen:
Figur 1 ein Blockschaltbild der erfindungsgemäßen Fahrwerksregelung,
Figur 2 ein Zwei-Massen-Modell der Fahrwerksregelung,
Figur 3 eine am Modell gezeigte Positionierung von die Fahrzustandsdaten erfassenden Sensoren,
Figur 4 ein Blockschaltbild zur Ermittlung der Fahr¬ bahnunebenheit und
Figur 5 ein detailliertes Blockschaltbild der Fahr¬ werksregelung. Beschreibung des Ausführungsbeispiels
Das in der Figur 1 schematisch dargestellte Fahrzeug (Personenkraftwagen) ist an allen vier Rädern 1, also jeweils zweimal im Bereich der Vorderachse 2 und auch im Bereich der Hinterachse 3 mit Sensoren 4, 5 und 6 versehen. Jedes Rad 1 ist auf einem Achsschenkel an¬ geordnet und steht über eine Federanordnung 7 mit ei¬ nem Aufbau 8 des Fahrzeugs in Verbindung (Figur 2) . Parallel zur Federanordnung 7 ist ein Aktuator 9 zwi¬ schen dem Radtrageteil und dem Aufbau 8 angeordnet. Der Aktuator 9 ist als semiaktiver Dämpfer 10 ausge¬ bildet.
Die Sensoren 4 (Figur 1) dienen zur Ermittlung der Dämpferkraft Fd. Sie sind zur Erfassung dieser Me߬ größe zwischen einem nicht dargestellten Stützlager des jeweiligen Dämpfers 10 und dem im jeweiligen Rad¬ bereich liegenden Abschnitt des Aufbaus 8 angeordnet (Fig.3). Um den Einfederweg xar jedes Rads 1 relativ zum Aufbau 8 zu ermitteln, sind die Sensoren 5 zwi¬ schen dem jeweiligen Achsschenkel des zugehörigen Ra¬ des 1 und dem entsprechenden Abschnitt des Aufbaus 8 geschaltet. Die Sensoren 6 sind bei jedem Rad 1 di¬ rekt neben dem Radlager befestigt. Sie ermitteln die Radbeschleunigung xr. Die Radbeschleunigung xr wird in vertikaler Richtung, also parallel zum Einfederweg xar erfaßt.
Die Signale der Sensoren 4,5 und 6 gelangen in je eine Signalaufbereitungsschaltung 11. Aus den aufbe¬ reiteten Signalen werden in je einer Verarbeitungs¬ einheit 12 die Fahrbahnunebenheit S und die Fahrbahn- Unebenheitsgeschwindigkeit S ermittelt. Hierauf wird im folgenden noch nähe'r eingegangen. Unter Verwendung dieser und weiterer Signale (wie die Dämpferkraft Fd, die Einfedergeschwindigkeit xar, der Einfederweg xar und die Aufbaugeschwindigkeit xa) bestimmt je eine Prozessorschaltung 65 das Ans euersignal für den zu¬ geordneten semiaktiven Dämpfer 10. Die Verarbeitungs¬ einheit 12 und die Prozessorschaltung 65 werden vor¬ zugsweise mit leistungsfähigen Mikroprozessoren re¬ alisiert. Die Momentandämpfung der semiaktiven Däm¬ pfer 10 wird für jedes Rad 1 unter Berücksichtigung von Fahrbahnunebenheit S und Fahrbahn-Unebenheitsge¬ schwindigkeit S individuell optimiert. Die Optimie¬ rung der Gesamtdämpfung des Fahrzeugs gegen Nicken und Wanken ist Aufgabe einer übergeordneten Schaltung 15. Sie kommuniziert in beiden Richtungen mit den vier Prozessorschaltungen 65 über eine Datenübertra¬ gungseinrichtung 14 (z. B. ein CAN-Bus) , an die sie, ebenso wie die Prozessorschaltungen 65, über Leitun¬ gen 13 angeschlossen ist. Die Datenübertragungsein- richtung 14 kann darüberhinaus zu anderen elektroni¬ sche Schaltungen im Fahrzeug führen (z. B. zur Einspritzungsteuerung u.a.). Die Schaltung 15 kann alternativ auch in eine der Prozessorschaltungen 65 integriert oder auf mehrere Prozessorschaltungen 65 verteilt sein.
Die Figur 2 zeigt ein sogenanntes Zwei-Massen-Modell, das den jeweiligen Radbereich des Fahrzeugs verkör¬ pert. Die Radmasse mr des Rads 1 steht über die Fe¬ deranordnung 7 mit der Aufbaumasse in Verbindung. Unter der Aufbaumasse ma ist hier der jedem Rad 1 zu¬ zuordnende Anteil der Gesamtmasse des Fahrzeugaufbaus zu verstehen. Die Federanordnung 7 besitzt die Feder- konstante c&. Zwischen Radmasse r und Aufbaumasse ma liegt der Dämpfer 10,' der die Dämpferkraft Fd ent¬ wickelt. Zwischen der Radmasse r und der Aufbaumasse a besteht der Einfederweg xar- Die elastischen Teile des Rads 1 (Reifen) sind im Modell durch eine Feder 16 mit der Federkonstanten cr verkörpert. Das Rad l rollt auf der Fahrbahn 17 ab, die eine Fahrbahn¬ unebenheit S aufweist. Die Fahrbahnunebenheit S ist gegenüber einem Inertialsystem 18 definiert (Verti¬ kalkomponente) . Auf dieses Inertialsystem 18 ist fer¬ ner die Radbeschleunigung xr und der Radweg xr bezo¬ gen.
Für jedes Rad 1 läßt sich aufgrund des geschilderten Modells auf einfache Weise die Rad-Bewegungsgleichung aufstellen, die in der Figur 2 wiedergegeben ist.. Sie lautet:
Fd + ca xar - F, H = 0
mit Fr = cr (xr - S)
Mit Fr ist die Radlastschwankung bezeichnet. Sie gibt die Kraftänderung des zugehörigen Reifens auf der Fahrbahn an.
Löst man die Rad-Bewegungsgleichung nach der Fahr¬ bahnunebenheit S und der Fahrbahn-Unebenheitsge- schwindigkeit S auf, so ergibt sich
S = xr - Fr cr 1 S = xr - Fr cr
Die Figur 4 zeigt als Blockschaltbild den Schaltungs¬ aufbau zur Ermittlung der Fahrbahnunebenheit S und der Fahrbahn-Unebenheitsgeschwindigkeit S. Ein derar¬ tiger Schaltungsaufbau ist für jedes Rad 1 des Fahr¬ zeugs vorgesehen. Die von dem Sensor 4 des entspre¬ chenden Rads 1 ermittelte Dämpferkraft F^ wird einem Tiefpaßfilter 19 zugeleitet (500 Hz) , dessen Ausgang mit einem Hochpaßfilter 20 (T = 5 s) verbunden ist. Der Ausgang des Hochpaßfilters 20 ist an eine Bewer- tungsSchaltung 21 angeschlossen, die den Faktor "1" aufweist. Das Ausgangssignal der Bewertungsschaltung 21 wird einer Summierstelle 22 additiv zugeführt. Der Einfederweg xar des hier in Rede stehenden Rads 1 re¬ lativ zum Aufbau 8 des Fahrzeugs wird -wie schon be¬ schrieben- von dem zugehörigen Sensor 5 ermittelt. Seine Daten werden ebenfalls einem Tiefpaßfilter 22 ' (500 Hz) zugeführt, der an ein Hochpaßfilter 23 (T = 5 s) angeschlossen ist. Der Ausgang des Hochpa߬ filters 23 steht mit einer ersten Multiplizierstufe 24 in Verbindung, die eine Multiplikation mit der Fe¬ derkonstanten ca der Federanordnung 7 vornimmt. Schließlich wird das Ausgangssignal der ersten Multi- plizierstufe 24 additiv der Summierεtelle 22 zuge¬ führt.
Die von dem entsprechenden Sensor 6 ermittelte Radbe¬ schleunigung xr ist an ein Tiefpaßfilter 25 (500 Hz) angeschlossen, dem ein Hochpaßfilter 26 (T = 5 s) nachgeschaltet ist. Über eine Leitung 27 ist an den Ausgang des Hochpaßfilters 26 eine zweite Mul- tiplizierstufe 28 angeschlossen, die eine Multiplika¬ tion mit der Radmasse r vornimmt. Das Ausgangssignal der zweiten Multiplizierstufe 28 wird subtraktiv der Summierstelle 22 zugeführt. Der Ausgang 29 der Sum¬ mierstelle 22 ist subtraktiv über eine dritte Multi¬ plizierstufe 33 an einen Summenpunkt 30 angeschlos¬ sen. In der dritten Multiplizierstufe 33 erfolgt eine Multiplikation mit dem Kehrwert der Federkonstanten cr des Rads 1 (Reifens) . Die Leitung 27 besitzt einen Abzweig, der zu einer Integrierstufe 27' mit zwei Integratoren 31 und 31' führt, welche das zeitliche Doppelintegral der eingegebenen Daten bildet. Dies bedeutet, daß aus der durch die Filter 25 und 26 bewerteten Radbeschleunigung xr der Radweg xr gebil¬ det wird. Der Ausgang der Integrierstufe 27' ist - mit negativem Vorzeichen - an den Summenpunkt 30 an¬ geschlossen. Der Ausgangswert des Summenpunkts 30 stellt die Fahrbahnunebenheit S zur Verfügung. An den Ausgang der dritten Multiplizierstufe 33 ist ein Dif- fereηzierer 32' angeschlossen, der - mit negativem Vorzeichen - zu einem Summenpunkt 32 führt und diesem die relative Radgeschwindigkeit xrr zuleitet. Das vom Integrator 31 stammende zeitliche Integral der Radbe¬ schleunigung xr wird - mit positivem Vorzeichen - an den Summenpunkt 32 gegeben. Am Ausgang des Summen¬ punkts 32 steht die Fahrbahn-Unebenheitsgeschwindig¬ keit S zur Verfügung.
Mithin kann die nicht direkt meßbare Fahrbahnuneben¬ heit S durch die zuvor beschriebene, in der Figur 4 dargestellte Schaltung ermittelt werden. Sie wird als Störgröße einem Regler 65 der Fahrwerksregelung zuge¬ führt. Ebenso wird die Fahrbahn-Unebenheitsgeschwin- digkeit S ermittelt und ebenfalls dem Regler als Störgröße zugeführt.
In der Figur 5 ist ein entsprechendes Übersichts- Blockschaltbild wiedergegeben. Die dort abgebildete Schaltungsanordnung ist für jedes Rad 1 des Fahrzeugs vorgesehen. Sie beinhaltet den Schaltungsaufbau gemäß Figur 4. Die Dämpferkraft Fd, die Radbeschleunigung xr, der relative Einfederweg xar und die Auf- baubeschleunigung xa werden den teilweise schon er¬ wähnten Tiefpaßfiltern 19, 22', 25 und 38 zugeführt, die als sogenannte Anti-Aliasing-Filter ausgebildet sind. Vom Tiefpaßfilter 19 führt eine Leitung 39 zu dem Hochpaßfilter 20, dessen Ausgang 41 die nunmehr gefilterten Daten der Dämpferkraft F^ an den Regler 65 anlegt. Die Leitung 41 führt ferner zu der Bewer- tungsschaltung 21, die an die Summierstelle 22 ange¬ schlossen ist. Der Ausgang des Tiefpaßfilters 25 ist an das bereits beschriebene Hochpaßfilter 26 ange¬ schlossen, das mit dem Integrator 31 in Verbindung steht. Ferner führt der Ausgang des Hochpaßfilters 26 zu der zweiten Multiplizierstufe 28, die an die Sum¬ mierstelle 22 mit negativem Vorzeichen angeschlossen ist. Am Ausgang des Integrators 31 steht die Radgeschwindigkeit xr zur Verfügung, die über ein Filter 48 dem weiteren, zur Integrierstufe 27' gehö¬ renden Integrator 31' zugeleitet wird, an dessen Aus¬ gang der Radweg xr ansteht, der an den Summenpunkt 30 angeschlossen ist. Die Ausgangsgröße x„ (Radgeschwin¬ digkeit) des Integrators 31 wird über eine Leitung 51 und ein Filter 52 einer Summierstelle 53 zugeleitet. Der Ausgang des Tiefpaßfilters 22' ist an einen Dif¬ ferenzierer 54 angeschlossen, der über ein Filter 55 die relative Einfedergeschwindigkeit ar dem Regler 65 zuführt. Ferner steht der Ausgang des Tiefpaßfil¬ ters 22' mit dem Hochpaßfilter 23 in Verbindung, des¬ sen Ausgang über die erste Multiplizierstufe 24 zur Summierstelle 22 führt. Der Ausgang des Hochpaßfil¬ ters 23 ist ferner am Regler 65 angeschlossen und liefert den relativen Einfederweg xar. Der Ausgang des Tiefpaßfilters 38 ist ebenfalls mit einem Hoch¬ paßfilter 58 verbunden, dessen Ausgang an einen Inte¬ grator 59 angeschlossen ist, der zum Regler 65 die Aufbaugeschwindigkeit & liefert. Der Ausgang der Summierstelle 22 führt über eine Leitung 29 zu einem Differenzierer 61, dessen Ausgang die relative Radge- schwindigkeit xrr zur Verfügung stellt, die -mit ne¬ gativem Vorzeichen- an die Summierstelle 53 ange¬ schlossen ist. Die Leitung 29 steht ferner -auch mit negativem Vorzeichen- mit dem Summenpunkt 30 in Ver¬ bindung. Der Ausgang 30' des Summenpunkts 30 ist an den Regler 65 angeschlossen und liefert die Fahrbahn¬ unebenheit S. Der Ausgang 63 der Summierstelle 53 weist die Fahrbahn-Unebenheitsgeschwindigkeit S auf, die dem Regler 65 zugeführt wird. Der Regler 65 bil¬ det aus den erwähnten Eingangsgrößen (Fd, xar, S, S, xar und xa) eine Betätigungsspannung Vd, mit der eine den Durchströmguerschnitt beeinflussende Steuer¬ einrichtung des Dämpfers 10 angesteuert wird.

Claims

Ansprüche
1. Vorrichtung zur fahrbahnabhängigen Fahrwerks¬ regelung eines Fahrzeugs, insbesondere eines Kraft¬ fahrzeugs, mit den dynamischen Fahrzustand erfassen¬ den Sensoren, deren Daten einer Auswerteschaltung zu¬ geführt werden, die ein für die Fahrbahnunebenheit charakteristisches Signal erzeugt, das mit einer Fe¬ deranordnung des Fahrzeugs zusammenwirkende Aktuato- ren steuert, d a d u r c h g e k e n n z e i c h ¬ n e t , daß die Auswerteschaltung für jedes Rad (1) den Momentanwert der dort vorliegenden Fahrbahnun¬ ebenheit (S) und/oder Fahrbahn-Unebenheitsgeschwin- digkeit (S) aus den Daten der in jedem Radbereich angeordneten Sensoren (4,5,6) ermittelt und dem jedem Rad (1) zugehörigen Regelkreis als aktuelle Größe zu¬ führt.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß dem Regler (65) die Fahrbahnunebenheit (S) und/oder Fahrbahn-Unebenheits- geschwindigkeit (S) als Störgröße zugeführt wird.
3. Vorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t, daß in jedem Radbereich ein die Dämpferkraft (Fd) , ein den relativen Abstand (Einfederweg xar) zwischen dem Rad (1) und einem Aufbau (8) des Fahrzeugs und ein die vertikale Radbeschleunigung (xr) erfassender Sensor (4,5,6) vorgesehen ist.
4. Vorrichtung nach einem der vorhergehenden An¬ sprüche, g e k e n n z e i c h n e t d u r c h eine jedem Rad (1) zugeordnete Summierstelle (22) , der als additive Eingangsgrößen die Dämpferkraft (Fd) und der in einer ersten Multiplizierstufe (24) mit der Federkonstanten (ca) der dem Radbereich zugeord¬ neten Federanordnung (7) multiplizierte Einfederweg (xar) zugeführt wird und an die die in einer zweiten Multiplizierstufe (28) mit der Radmasse (mr) multi¬ plizierte Radbeschleunigung (xr) als Subtraktions¬ größe angeschlossen ist und daß das Ausgangssignal der Summierstelle (22) über eine dritte, den Kehrwert der Federkonstanten (cr) des Reifens (Rad 1) berück¬ sichtigende Multiplizierstufe (33) als Subtraktions¬ größe an einen Summenpunkt (30) angeschlossen ist, dem additiv das in einer Integrierstufe (27') er¬ zeugte zeitliche Doppelintegral der Radbeschleunigung (xr) zugeführt wird, wobei die Ausgangsgröße des Sum¬ menpunkts (30) den Momentanwert der Fahrbahnun¬ ebenheit (S) liefert.
5. Vorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t, daß das Ausgangssignal der Summierstelle (22) eine dynamische Radlastschwankung Fr = cχ (xr - S) bildet, die die Kraftänderung des zugehörigen Reifens auf der Fahrbahn angibt.
6. Vorrichtung nach einem der vorhergehenden Ansprü¬ che, d a d u r c h g e k e n n z e i c h n e t, daß zur Bildung der Fahrbahn-Unebenheitsgeschwindigkeit
(5) einem Summenpunkt (32) das zeitliche Integral der Radbeschleunigung (xr) mit positivem Vorzeichen und der über einen Differenzierer 32' geleitete Ausgangs- wert der dritten Multiplizierstufe (33) mit negativem Vorzeichen zugeleitet wird.
7. Vorrichtung nach einem der vorhergehenden Ansprü¬ che, d a d u r c h g e k e n n z e i c h n e t, daß der Aktuator (9) als semiaktiver Dämpfer (10) ausge¬ bildet ist.
8. Vorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t, daß der die Dämpferkraft (Fd) erfassende Sensor (4) seine Meßgröße zwischen einem Stützlager des Dämpfers (10) und dem zugehörigen Abschnitt des Aufbaus (8) des Fahrzeugs ermittelt.
9. Vorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t, daß der die Radbeschleunigung (xr) ermittelnde Sensor
(6) neben dem Radlager des zugehörigen Rads (1) an¬ geordnet ist.
10. Vorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t, daß der den Einfederweg (xar) erfassende Sensor (5) seine Meßgröße zwischen dem Achsschenkel des zugehö¬ rigen Rads (1) und dem entsprechenden Abschnitt des Aufbaus (8) des Fahrzeugs ermittelt.
EP19900908184 1989-06-29 1990-05-30 Vorrichtung zur fahrbahnabhängigen fahrwerksregelung Withdrawn EP0434784A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3921325 1989-06-29
DE3921325 1989-06-29
DE3930517 1989-09-13
DE3930517A DE3930517A1 (de) 1989-06-29 1989-09-13 Vorrichtung zur fahrbahnabhaengigen fahrwerksregelung

Publications (1)

Publication Number Publication Date
EP0434784A1 true EP0434784A1 (de) 1991-07-03

Family

ID=25882476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900908184 Withdrawn EP0434784A1 (de) 1989-06-29 1990-05-30 Vorrichtung zur fahrbahnabhängigen fahrwerksregelung

Country Status (5)

Country Link
EP (1) EP0434784A1 (de)
JP (1) JPH04500492A (de)
KR (1) KR920700124A (de)
DE (1) DE3930517A1 (de)
WO (1) WO1991000188A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138171A1 (de) * 1991-02-14 1992-08-20 Bilstein August Gmbh Co Kg Verfahren zum regeln eines semiaktiven fahrwerks
EP0559197B1 (de) * 1992-03-04 1997-06-11 Unisia Jecs Corporation Aufhängungssystemanordnung für ein Kraftfahrzeug
US6115658A (en) * 1999-01-04 2000-09-05 Lord Corporation No-jerk semi-active skyhook control method and apparatus
EP1247665B1 (de) * 2001-04-04 2006-03-22 STMicroelectronics S.r.l. Auf der Sky-Hook-Theorie basierendes Verfahren und Vorrichtung zur Regelung einer Fahrzeugaufhängung
DE102006007576A1 (de) * 2005-07-20 2007-01-25 Continental Teves Ag & Co. Ohg Fahrzeugdämpfungssystem
DE102006053295B4 (de) * 2006-11-13 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ansteuerung eines semiaktiven oder aktiven Schwingungsdämpfers eines Rades im Fahrwerk eines Fahrzeugs
DE102007051212A1 (de) 2007-10-26 2009-04-30 Volkswagen Ag Verfahren oder Regelungssystemkomponente zur Ermittlung des Straßeneinflusses auf ein Fahrzeug unter spezieller Berücksichtigung von stochastischen und Einzelereignissen
DE102007051213A1 (de) 2007-10-26 2009-04-30 Volkswagen Ag Verfahren oder Regelungssystemkomponente zur Ermittlung der Energiezustände eines bewegten Körpers insbesondere eines Fahrzeugs
EP2052885B1 (de) * 2007-10-26 2019-01-23 Volkswagen Aktiengesellschaft Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE102009045353A1 (de) 2009-10-06 2011-04-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur Leuchtweitenregulierung an einem Kraftfahrzeug
WO2013121022A1 (en) 2012-02-15 2013-08-22 Floor Master System for reducing roll and pitch in a moving vehicle
FR2996497B1 (fr) * 2012-10-05 2016-04-15 Renault Sa Systeme de pilotage d'amortisseur semi-actif en boucle ouverte
JP6240662B2 (ja) 2013-03-13 2017-11-29 Kyb株式会社 ダンパ制御装置
DE102013221050A1 (de) * 2013-10-17 2015-05-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung von Eigenschaften eines Streckenabschnitts für eine digitale Karte
ES2909331T3 (es) * 2014-06-09 2022-05-06 Nira Dynamics Ab Método, sistema y producto de programa informático para la detección de irregularidades de corta duración en una superficie de carretera
DE102019111911A1 (de) * 2019-05-08 2020-11-12 Schaeffler Technologies AG & Co. KG Radlageranordnung für ein Rad eines Zweirads sowie Verfahren zur Detektion einer Fahrbahnbeschaffenheit eines Untergrunds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2911768C2 (de) * 1979-03-26 1983-01-20 F & O Electronic Systems GmbH & Co, 6901 Neckarsteinach Regelbarer Stoßdämpfer, insbesondere für Kraftfahrzeuge
GB2068308B (en) * 1980-01-23 1983-09-14 Lucas Industries Ltd Control system for vehicle hydraulic suspension
WO1984002886A1 (en) * 1983-01-21 1984-08-02 Lotus Car Vehicle suspension system
DE3518503C1 (de) * 1985-05-23 1986-10-23 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zur rechnergestuetzten,fahrbahnabhaengigen Steuerung von Daempfern einer Fahrzeugfederung
JP2516780B2 (ja) * 1987-04-17 1996-07-24 本田技研工業株式会社 車両走行時の悪路検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9100188A1 *

Also Published As

Publication number Publication date
KR920700124A (ko) 1992-02-19
WO1991000188A1 (de) 1991-01-10
JPH04500492A (ja) 1992-01-30
DE3930517A1 (de) 1991-01-10

Similar Documents

Publication Publication Date Title
DE112017004865B4 (de) Federungssteuervorrichtung
EP0370469B1 (de) Blockiergeschützte Bremsanlage für einspurige Kraftfahrzeuge
EP0481043B1 (de) Verbundregelsystem für kraftfahrzeuge
DE10327593B4 (de) System und Verfahren zum Bestimmen der Lage eines Kraftfahrzeuges
EP0434784A1 (de) Vorrichtung zur fahrbahnabhängigen fahrwerksregelung
DE69929725T2 (de) Auf das Rollen eines Fahrzeugs ansprechende Vorrichtung
DE102006001436B4 (de) Verfahren zum Bestimmen wenigstens eines Bewegungszustands eines Fahrzeugaufbaus
EP1046571A2 (de) Verfahren zur Reduktion der Kippgefahr von Strassenfahrzeugen
DE10146725A1 (de) Lenkradbasierte Feststellung einer Radabhebung bei einem Kraftfahrzeug
DE10149190A1 (de) Vorrichtung und Verfahren zur Wankregelung für ein Fahrzeug
EP2729337A1 (de) Einrichtung sowie verfahren zur regelung der fahrdynamik eines fahrzeugs sowie fahrzeug mit einer derartigen einrichtung
WO2003076228A1 (de) Vorrichtung zum bereitstellen von grössen
DE102010003205A1 (de) Verfahren zur Bestimmung der vertikalen Beschleunigung, der longitudinalen Winkelbeschleunigung und der transversalen Winkelbeschleunigung eines Körpers, insbesondere eines Kraftfahrzeugs
DE4133237A1 (de) System zur fahrwerkregelung
DE102016206604B4 (de) Steuervorrichtung und Verfahren zum Regeln einer Dämpferhärte eines Schwingungsdämpfers eines Kraftfahrzeugs
EP0844114B1 (de) Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks
EP1470978B1 (de) Verfahren und Vorrichtung zur Erkennung eines Fahrzustands
DE19502670C2 (de) Fahrwerk für Schienenfahrzeuge
DE3928343A1 (de) Anordnung zur aktiven fahrwerksdaempfung (afd)
DE4116839A1 (de) Verfahren und schaltungssystem zur aufbereitung von signalen
DE10337212B4 (de) System und Verfahren zur Ermittlung eines Beladungszustandes eines Fahrzeugs oder eines Anhängers
DE19940490B4 (de) Verfahren und Vorrichtung zur Ermittlung einer Vertikalbeschleunigung eines Rades eines Fahrzeugs
WO2004089663A1 (de) Aktive wankdämpfung
DE19651162A1 (de) Schwingungsdämpfer für eine Überwachungseinrichtung von der Fahrsicherheit dienenden Größen
DE102010048260A1 (de) Automatische Bestimmung eines Einfederwegs eines Rads eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930615