WO2004089663A1 - Aktive wankdämpfung - Google Patents

Aktive wankdämpfung Download PDF

Info

Publication number
WO2004089663A1
WO2004089663A1 PCT/EP2004/002322 EP2004002322W WO2004089663A1 WO 2004089663 A1 WO2004089663 A1 WO 2004089663A1 EP 2004002322 W EP2004002322 W EP 2004002322W WO 2004089663 A1 WO2004089663 A1 WO 2004089663A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
acceleration
vehicle body
stabilizer
signal
Prior art date
Application number
PCT/EP2004/002322
Other languages
English (en)
French (fr)
Inventor
Ernst-Ludwig DÖRR
Wolfgang RÜDT
Kenji Shinoda
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2004089663A1 publication Critical patent/WO2004089663A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/053Angular acceleration
    • B60G2400/0531Roll acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/053Angular acceleration
    • B60G2400/0533Yaw acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • B60G2400/1042Acceleration; Deceleration lateral or transversal with regard to vehicle using at least two sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1877Adaptive Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/602Signal noise suppression; Electronic filtering means high pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/604Signal noise suppression; Electronic filtering means low pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal

Definitions

  • the invention relates to a method for operating a control circuit for active roll damping of a vehicle and a device for performing the method according to the preamble of the independent claims.
  • a device for influencing roll movements of a vehicle has at least one stabilizer which can be controlled by means of a hydraulic actuator as a function of the wheel deflection.
  • each actuator is assigned a check valve arrangement, which secures the actuators against kickback of the hydraulic medium to the pressure source.
  • the valves are controlled by means of an electronic control device.
  • the control device determines an actual value for the roll angle of the vehicle body relative to the ground from the signals from sensors. This actual value is low-pass filtered.
  • a signal for controlling the valves is formed from the filtered actual value by comparison with a setpoint.
  • the object of the invention is to provide an active roll damping with improved driving comfort, which reduces the roll of the vehicle body regardless of the position of the vehicle body relative to the ground of the vehicle.
  • the object is achieved by a method and a device with the features of the independent claims.
  • roll movements of the vehicle body are detected by sensors and converted by a control unit into an absolute roll acceleration of the vehicle body.
  • the absolute roll acceleration refers to the acceleration of the vehicle body related to the inertial system of the earth perpendicular to the longitudinal axis of the vehicle body.
  • Rolling accelerations in the inertial system are generally perceived as uncomfortable by the vehicle occupants, regardless of the cause of the rolling movements. In principle, it does not matter whether roll accelerations arise from steering inputs or from road excitation. Regardless of the cause of the malfunctions, it always improves comfort to reduce the absolute roll accelerations.
  • a function with such a control goal is usually referred to as a sky hook function.
  • the present invention is able to represent such a sky hook function with a simple and inexpensive chassis. What is needed is an activatable stabilizer and simple, often standard sensors. According to the independent claim 12, the activatable stabilizer is integrated according to the invention in a control loop for reducing the absolute roll acceleration.
  • the activatable stabilizer is subjected to a control loop force in accordance with the determined absolute roll acceleration.
  • This control loop actuating force counteracts the determined absolute roll acceleration and thus leads to an active reduction in the absolute roll acceleration of the vehicle body.
  • lifting and pitching vibrations are also induced with one-sided excitation, movements of the vehicle body around the longitudinal axis of the vehicle are of particular importance for the occupants' sense of safety and comfort.
  • This degree of freedom in relation to the "human" sensor is increased, particularly in vehicles with a high seating position such as vans or off-road vehicles.
  • the body and the occupants are less excited to roll movements and feel the vehicle more comfortably.
  • the roll damping according to the invention can be used in any driving situation.
  • the roll damping according to the invention remains activated even when cornering. Even when driving straight ahead without steering inputs, impressed movements of the vehicle body are actively reduced.
  • Another advantage is driving safety. For example, when the road is excited in the curve, wheel load fluctuations are reduced, thereby significantly increasing driving safety. The reduction in wheel load fluctuations significantly increases lateral support and the potential for friction. With the present invention, the behavior of the vehicle in the event of mutual road excitation is actively improved, and thus the feeling of comfort and driving safety are significantly increased.
  • 3a is not low-pass filtered absolute roll acceleration of a vehicle body of a vehicle with an open stabilizer when driving over a bump
  • 3b is not low-pass filtered absolute roll acceleration of a vehicle body of a vehicle with an active roll damping according to the invention when driving over a bump
  • FIG. 1 shows a schematic representation of a preferred device according to the invention for active roll damping of a vehicle.
  • An activatable stabilizer 1 is controlled by a control circuit 14.
  • Such an activatable stabilizer 1 is part of an activatable undercarriage of a vehicle. It is rotatably mounted on a vehicle body 9.
  • the stabilizer 1 is a U-shaped round rod with a cross to the direction of travel arranged base leg, and a left side leg 2 projecting therefrom and a right side leg 3 projecting therefrom.
  • the side legs 2 and 3 of the stabilizer 1 are each connected to a vehicle wheel 7 and 8.
  • the variable distance between a vehicle wheel 7, 8 and the vehicle body 9 is referred to as the spring travel n L , n R.
  • the stabilizer 1 transmits movements and forces from one vehicle wheel 7 to the other vehicle wheel 8 and vice versa. If there are differences between the spring travel n L of the left vehicle wheel 7 and the spring travel n R of the right vehicle wheel 8 of an axle, the stabilizer 1 is twisted. Due to the stiffness c of the stabilizer 1, restoring forces F arise in the stabilizer 1, which seek to reduce the travel difference ⁇ n.
  • Vehicles are usually equipped with a stabilizer 1 in order to reduce roll movements occurring when cornering.
  • cornering the vehicle body 9 is pressed towards the outside of the curve.
  • the vehicle wheel 7 or 8 which is on the outside of the curve, is subjected to greater stress and its spring travel n L or n R is reduced.
  • the spring travel n L or n R of the vehicle wheel 8 or 7 on the inside of the curve is increased accordingly.
  • stabilizers reinforce the differences between the wheel loads on the axle and thus the vehicle swaying.
  • the road surface is uneven if the four wheel contact points of a vehicle are not in one plane.
  • the stabilizer 1 shown in FIG. 1 is an activatable stabilizer.
  • Activatable stabilizers have an actuator 5 for actively controlling the power transmission between the vehicle wheels 7 and 8 arranged on a common vehicle axle. With the aid of the actuator 5, the forces F transmitted by the stabilizer 1 between the vehicle wheels 7, 8 can be changed.
  • the stabilizer 1 is shown schematically in FIG. 1 as a component provided with a spring element, which is movably attached to the vehicle body 9.
  • the stabilizer 1 On the left side of the vehicle, the stabilizer 1 is connected to the left vehicle wheel 7 via the side leg 2.
  • the spring travel between the vehicle body 9 and the left vehicle wheel 7 is denoted by n L
  • n R the spring travel between the vehicle body 9 and the right vehicle wheel 8
  • the neutral position 4 of the stabilizer 1 is the position in which there is no stabilizer torsion e des.
  • the actuator 5 is part of the activatable stabilizer 1. In FIG. 1, the actuator 5 is arranged between the two side legs 2 and 3.
  • the actuator 5 itself does not have its own bearing points on the vehicle body 9 and is held by the stabilizer 1. It is thereby achieved that the forces Fsteii impressed by the actuator 5 on the left and right at the two wheel-side fastening points of the stabilizer 1 are approximately the same if acceleration and frictional forces are neglected.
  • the actuator 5 therefore has only one freedom degrees as a control variable (force or travel) and thus simultaneously serves the two vehicle wheels 7 and 8, each with the opposite sign and the same amount of force FSTELL-
  • the actuators 5 can be designed as mechanical, electrical or hydraulic actuators. In principle, the type of energy supply is arbitrary, but preferably hydraulic. It is important that the actuator 5 is able to transmit both a positive and a negative force F STELL Z.
  • the actuator 5 is thus able to generate a change of sign and direction of F on both sides of the vehicle. Furthermore, the actuator 5 is able to apply positive and negative displacements s with respect to its neutral starting position 6. The displacement s is not directly coupled to the force F transmitted at the same time, because this also depends on the spring travel n R and n L.
  • the actuator 5 is integrated in a control circuit 14.
  • This control circuit 14 controls and / or regulates the actuator 5 in accordance with the movements of the vehicle body 9.
  • the control circuit 14 has sensors 10, 11 for detecting roll movements of the vehicle body 9. They are connected to a control unit 13.
  • the control unit 13 processes the signals from the sensors 10, 11 and generates a signal for a control loop actuating force F STELL - with this control loop actuating force F STELL the actuator 5 of the stabilizer 1 is controlled.
  • directional sizes are provided with an arrow with a filled arrowhead, while assembly groups are provided with an arrow with an open arrowhead.
  • a further actuator is also controlled by the control unit 13.
  • the actuator 5 is assigned to a stabilizer 1 on a front axle and the further actuator is assigned to a stabilizer on a rear axle.
  • a roll sensor 12 (not shown in FIG. 1) measuring around the longitudinal axis of the vehicle body 9 is provided as the sensor for signal detection.
  • the installation position of the roll sensor 12 is of secondary importance. On the other hand, it is important to align the measuring axis of the roll sensor 12 as precisely as possible parallel to the longitudinal axis of the vehicle body 9 and to connect it to a point in the vehicle body 9 that is as structurally rigid as possible.
  • This roll sensor 12 detects the absolute roll speed of the vehicle body 9.
  • An alternative embodiment consists in the use of two acceleration sensors 10.
  • the acceleration sensors 10 are preferably arranged on a common axis which is aligned parallel to the Y axis or the Z axis of the vehicle body 9.
  • the longitudinal axis of the vehicle body 9 is referred to as the X axis, from which the Z axis points vertically upwards and the Y axis perpendicularly to the left.
  • the acceleration sensors 10 are arranged approximately parallel to one another and measure orthogonally to the longitudinal axis of the vehicle body 9.
  • the roll acceleration then corresponds to the difference between the signals of the two acceleration sensors 10 divided by the component of the distance between the two acceleration sensors 10 relative to one another, which is perpendicular to the measuring direction and to the X axis stands.
  • the determined roll acceleration corresponds to the absolute roll acceleration W of the vehicle body 9.
  • the acceleration sensors 10 are designed as vertical acceleration sensors arranged next to one another parallel to the Y axis.
  • the two acceleration sensors 10 are installed parallel to one another in a plane perpendicular to the longitudinal axis of the vehicle body 9 at a different distance from the longitudinal axis of the vehicle body 9.
  • the acceleration sensors 10 are designed as transverse acceleration sensors which are arranged one above the other on a common axis parallel to the Z axis (FIG. 1).
  • a yaw sensor 11 is provided.
  • the installation space is so limited that, for example, the acceleration sensors 10 designed as transverse acceleration sensors cannot be aligned parallel to the Z axis.
  • the acceleration sensors 10 are then arranged in the same Y coordinate, but not in a common plane perpendicular to the longitudinal axis of the vehicle body 9. In this case, a yaw sensor 11 is additionally used (FIG. 1).
  • the yaw acceleration a G can be calculated from this angular velocity by derivation.
  • a correction term can be calculated by multiplying the yaw acceleration a G by the distance of the acceleration sensors in the x direction. With this correction term, the acceleration sensors 10 can be arithmetically placed in a common plane perpendicular to the x-axis.
  • a value for the absolute roll acceleration W of the vehicle body 9 is determined from the measured values of the two acceleration sensors 10 for the roll acceleration and the correction term determined by the yaw sensor. The absolute roll acceleration W of the vehicle body 9 can thus also be determined with acceleration sensors 10 which are not in a plane perpendicular to the longitudinal axis of the vehicle body 9.
  • FIG. 2 shows a control unit 13 with a preferred embodiment of a sensor detection 15 of a method according to the invention.
  • the signals from the sensors 10 and / or the sensor 11 and / or the sensor 12 are fed to a sensor detection 15.
  • the sensor detection 15 determines from the signals of the sensors 10, 11, 12 the absolute roll acceleration W of the driving Tool structure 9. In this case, sensors 10, 11, 12 that are already in series are preferably used for signal detection. In one embodiment, sensor detection 15 additionally detects the current position of actuator 5.
  • the sensor detection 15 generates a signal for the absolute roll acceleration W of the vehicle body 9 from the sensor signals.
  • a signal can be implemented, for example, as a signal for the absolute roll speed or as a signal for the absolute roll acceleration.
  • the sensor detection 15 detects the signals of a roll sensor 12.
  • Roll sensors detect the roll speed of the vehicle body 9. This signal already contains all the information required about the movements of the vehicle body 9 relative to the inertial system of the earth. It is important that the measurement axis of the sensor 12 is aligned as precisely as possible in the longitudinal direction of the vehicle body 9.
  • the change in the roll speed is a measure of the absolute roll acceleration W of the vehicle body 9.
  • the measured signal can thus be used directly without further processing as a signal for the absolute roll acceleration W of the vehicle body 9. In this case there is no later integration of the sensor signal in an integrator 17.
  • the sensor detection 15 carries out a differentiation of the signal of the roll sensor 12 and thereby determines the absolute roll acceleration W of the vehicle body 9.
  • the sensor detection 15 detects the signals from two acceleration sensors 10. If the acceleration sensors 10 are arranged approximately parallel to one another in a plane perpendicular to the longitudinal axis of the vehicle body 9 and measure them orthogonally to the longitudinal axis of the vehicle body 9, no further sensors are required. The sensor detection 15 then calculates the difference between the signals of the two sensors 10 divided by the distance between the two acceleration sensors 10. If the two acceleration sensors 10 lie in a plane perpendicular to the longitudinal axis of the vehicle body 9, the result corresponds to the absolute roll acceleration W of the vehicle body 9.
  • the sensor detection 15 detects the signals from two acceleration sensors 10 and a yaw sensor 11. If the acceleration sensors 10 cannot be arranged parallel to one another in a plane in the direction of the longitudinal axis of the vehicle for structural or other reasons, they can be used to determine the absolute Do not determine roll acceleration W of vehicle body 9.
  • a yaw sensor 11 measuring around Z is additionally provided according to the invention.
  • the sensor detection 15 forms the derivative of this signal v G and the yaw acceleration a G is obtained .
  • the correction factor is therefore: a G * (X ⁇ .
  • the yaw sensor 11 which measures around the Z axis, is used to correct the signal of a roll sensor 12 with the measurement axis not aligned exactly in the longitudinal direction of the vehicle body 9.
  • the Z speed measured by the yaw sensor 11 can be used without further processing as a correction factor for the roll speed of the vehicle body 9 measured by the roll sensor 12.
  • the signal generated by the sensor detection 15 for an absolute roll acceleration W of the vehicle body 9 is processed further.
  • the order of the filter methods used is freely selectable.
  • the signal generated by the sensor detection 15 for an absolute roll acceleration W of the vehicle body 9 is fed to a low-pass filter 16.
  • This result signal of the sensor detection 15 is smoothed by the low-pass filter 16.
  • the low-pass filter 16 removes high-frequency signal components that should not be processed by the control circuit 14. These are, for example, all frequencies above 3 Hz. All that remains is a signal that reflects the movements of the vehicle body 9 to be damped.
  • the signal for the absolute roll acceleration W is integrated in an integrator 17. The signal is smoothed and amplified again.
  • the integrator generates a signal for an absolute roll speed from a signal for an absolute roll acceleration. As already mentioned, such a signal for the absolute roll speed is also suitable as a measure for the absolute roll acceleration W of the vehicle body 9. If the undifferentiated signal of a roll sensor 12 is already used, this step is usually omitted.
  • the signal for the absolute roll acceleration W is high-pass filtered.
  • the high pass filter 18 removes the information about very slow assembly movements from the signal. Frequencies below 0.5 Hz are typically filtered out by the high-pass filter 18. Such movements, which can be the result of a changing road layout (mountain and valley), for example, should not be dampened by the active roll damping according to the invention.
  • a characteristic field 19 is provided.
  • the characteristic field 19 can take into account various parameters. Any dependencies, for example on the driving speed, the actuator position, the steering wheel position, the spring travel of the wheels, and the position of operating switches can be established in the characteristic field 19. Vehicle parameters such as track width, weight of the vehicle, positioning system and positioning dynamics are preferably taken into account.
  • the characteristic field 19 generates a signal for a variable K on the basis of the predetermined parameters to be taken into account.
  • the characteristic curve field 19 determines the current state of the predetermined parameters to be taken into account and generates the variable size K on this basis.
  • the characteristic curve field 19 can be connected to corresponding sensors, for example for the driving speed or the actuator position.
  • a control loop actuating force F ST E LL is assigned to the signal for an absolute roll acceleration W of the vehicle body 9 in an actuating force determination 20.
  • the quantity K from the characteristic curve field 19 is multiplied by the adjusted signal for the absolute roll acceleration W (ie, adjusted absolute roll speed / roll acceleration) in the actuating force determination 20.
  • the resulting value is a measure of a control loop actuating force F STELL to be set - this control loop actuating force F STELL is designed in such a way that the roll acceleration is damped by at least 5% on average.
  • the current position of the actuator 5 is taken into account.
  • the control loop actuating force F STELL is selected such that the corresponding actuating travel s of the actuator 5 is not greater than the maximum currently adjustable actuating travel.
  • control loop actuating force F STELL can be processed further with non-linear filters. This filter causes the control loop actuating force F STELL to be zero at very low signal levels or not to change so quickly.
  • control unit 13 also has the task of aligning the vehicle horizontally when cornering. In this case, the control loop actuating force F STELL is increased or decreased by an additional actuating force for the horizontal alignment of the vehicle before being transferred to the actuator 5. This means that the total force to be set results from the superposition of the individual control components.
  • control loop actuating force F STELL is transferred to the actuator 5 of the stabilizer 1 as an actuating command .
  • an actuator 5 of a stabilizer 1 of a front axle and an actuator 5 of a stabilizer 1 of a rear axle are provided.
  • the control loop actuating force F STE L L can be distributed as desired depending on further parameters between stabilizer 1 on the front axle and stabilizer 1 on the rear axle.
  • control loop actuating forces on the respective actuator 5 result, which can be regulated or controlled as follows:
  • V distribution variable
  • the displacement s v of the actuator 5 of the front axle and the displacement s H of the actuator of the rear axle to be set are determined.
  • the displacements s v , s H are calculated in the actuating force determination 20 and then transferred as an actuating command to the actuator 5 of the stabilizer 1 of the front axle and the actuator of the stabilizer of the rear axle.
  • 3a, 3b, 4a and 4b show the behavior of an off-road vehicle when driving over a one-sided "sinus-bump".
  • the driving speed is 80 km / h, the amplitude of the bump 0.15 m, its wavelength 33.33 m.
  • the steering wheel is held firmly by the one-sided shaft during the crossing to hide the driver influence.
  • the absolute roll acceleration W of the vehicle body 9 is measured over time.
  • FIG. 3 a shows the non-low-pass filtered absolute roll acceleration of a vehicle body 9 of a vehicle with an open stabilizer 1.
  • An open stabilizer 1 is understood to mean a stabilizer 1 in which the connection between the two wheels of an axle is interrupted. For example, the stabilizer 1 is cut open or removed.
  • the unfiltered signal shown for the absolute roll acceleration W shows maximum values of +2.7 m / s 2 and -3.0 m / s 2 .
  • FIG. 3 b shows the absolute roll acceleration W, which is not low-pass filtered, of a vehicle body 9 of a vehicle with an active roll damping according to the invention when driving over a bump.
  • the unfiltered signal shown for the absolute roll acceleration W shows lower maximum values of +2.2 m / s 2 and -2.0 m / s 2 compared to FIG. 3a.
  • FIG. 4a shows the absolute roll acceleration W low-pass filtered at 3 Hz of a vehicle body 9 of a vehicle with an open stabilizer 1 when driving over a bump.
  • the measurement profiles of the roll accelerations W are low-pass filtered with a corner frequency of approximately 3 Hz. Only the signal profiles filtered with this basic frequency are now considered.
  • the signal for the absolute roll acceleration W of the vehicle body 9 has been significantly smoothed compared to the signal from FIG. 3a.
  • the signal shown for the absolute roll acceleration W of the vehicle body 9 shows maximum values of +1.3 m / s 2 and -0.9 m / s 2 .
  • the areas enclosed between the curve and the X axis, which are a measure of the movements of the vehicle body 9, are marked with crosses in the graphic.
  • FIG. 4b shows the roll acceleration of a vehicle body 9 of a vehicle with active roll damping when driving over a bump that is low-pass filtered at 3 Hz.
  • the curve represents the same maneuver as in FIG. 4a with an active roll damping according to the invention.
  • the signal shown for the absolute roll acceleration W of the vehicle body 9 shows maximum values of +1.2 m / s 2 and -0.7 m / s 2 .
  • the areas enclosed between the curve and the X axis, which are a measure of the movements of the vehicle body 9, are marked with crosses in the graphic.
  • the resulting total area enclosed by the filtered signals with the X axis is the one according to the invention active roll damping (Fig. 4b) more than 5% smaller, based on the value with open stabilizers 1 (Fig. 4a). It is important here that the measured / determined signals are zero shortly before the "event", ie the determination of these areas must be carried out using offset-corrected signals.
  • the example shown can be used as a "measuring method" to check whether a vehicle has active roll damping according to the invention or not. It is only with the active roll damping according to the invention that the acceleration values (and thus also the sum of the areas) become smaller than in the case of such a maneuver without stabilizers 1. As a criterion, the amounts of the area enclosed by the roll acceleration are to be summed up and when traveling over a unilateral bump passive system. If the reduction in the total area in the frequency range up to approximately 3 Hz is at least 5% for measurement with open or nonexistent stabilizers 1, this is an "active roll damping" with activatable stabilizers 1.
  • the actuator 5 and possibly the further actuator can also be adjusted in the case of one-sided road excitation in such a way that, in particular in typical roll build-up frequency ranges of 1-2 Hz, the active system delivers lower roll accelerations as a result than a passive system with cut or "removed" Stabilizers 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Regelkreises (14) zur aktiven Wankdämpfung eines Fahrzeugs mit einem aktivierbaren Stabilisator (1), sowie eine Vorrichtung dazu. Aufgabe der Erfindung ist eine aktive Wankdämpfung mit verbessertem Fahrkomfort anzugeben, die unabhängig von der Position des Fahrzeugaufbaus (9) zum Untergrund des Fahrzeugs die Wankbeschleunigung des Fahrzeugaufbaus (9) reduziert. Es wird vorgeschlagen die Wankbewegungen des Fahrzeugaufbaus (9) von Sensoren (10, 11, 12) zu erfassen und von einer Regelungseinheit (13) in eine absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) umzurechnen. Dazu ist der aktivierbare Stabilisator (1) in einen Regelkreis (14) zur Reduzierung der absoluten Wankbeschleunigung W integriert.

Description

Aktive Wankdämpfung
Die Erfindung betrifft ein Verfahren zum Betreiben eines Regelkreises zur aktiven Wankdämpfung eines Fahrzeuges sowie eine Vorrichtung zum Durchführen des Verfahrens gemäß dem Oberbegriff der unabhängigen Ansprüche.
Aus der DE 42 37 708 AI ist eine Vorrichtung zur Beeinflussung von Wankbewegungen eines Fahrzeuges bekannt. Die Vorrichtung weist mindestens einen Stabilisator auf, der mittels eines hydraulischen Aktors in Abhängigkeit von der Radeinfederung steuerbar ist. Dazu ist jedem Aktor eine Sperrventilanordnung zugeordnet, welche die Aktoren gegen Rückschlag des Hydraulikmediums zur Druckquelle sichert. Die Steuerung der Ventile erfolgt mittels einer elektronischen Regelvorrichtung. Aus den Signalen von Sensoren ermittelt die Regelvorrichtung einen Istwert für den Wankwinkel des Fahrzeugaufbaus relativ zum Untergrund. Dieser Istwert wird tiefpassgefil- tert . Aus dem gefilterten Istwert wird durch Vergleich mit einem Sollwert ein Signal zur Steuerung der Ventile gebildet.
Aufgabe der Erfindung ist eine aktive Wankdämpfung mit verbessertem Fahrkomfort anzugeben, die unabhängig von der Position des Fahrzeugaufbaus zum Untergrund des Fahrzeugs das Wanken des Fahrzeugaufbaus reduziert . Die Aufgabe wird durch ein Verfahren und eine Vorrichtung mit den Merkmalen der unabhängigen Ansprüche gelöst. Dazu werden gemäß Anspruch 1 Wankbewegungen des Fahrzeugaufbaus von Sensoren erfasst und von einer Regelungseinheit in eine absolute Wankbeschleunigung des Fahrzeugaufbaus umgerechnet . Als absolute Wankbeschleunigung wird die auf das Inertial- system der Erde bezogene Beschleunigung des Fahrzeugaufbaus senkrecht zur Längsachse des Fahrzeugaufbaus bezeichnet . Wankbeschleunigungen im Inertialsystem werden von den Fahrzeuginsassen grundsätzlich als unangenehm empfunden, ungeachtet der Ursache der Wankbewegungen. Ob Wankbeschleunigungen durch Lenkeingaben oder durch Straßenanregungen entstehen ist prinzipiell nicht von Bedeutung. Unabhängig von der Ursache der Störungen wirkt es sich immer komfortverbessernd aus, die absoluten Wankbeschleunigungen zu reduzieren. Eine Funktion mit einem solchen Regelungsziel wird üblicherweise als Sky-Hook-Funktion bezeichnet.
Die vorliegende Erfindung ist in der Lage, eine solche Sky- Hook-Funktion bereits mit einem einfachen und kostengünstigen Fahrwerk darzustellen. Benötigt wird ein aktivierbarer Stabilisator und einfache, häufig bereits serienmäßig vorhandene Sensoren. Gemäß dem unabhängigen Anspruch 12 ist der aktivierbare Stabilisator erfindungsgemäß in einen Regelkreis zur Reduzierung der absoluten Wankbeschleunigung integriert .
Dazu wird der aktivierbare Stabilisator nach Maßgabe der ermittelten absoluten Wankbeschleunigung mit einer Regelkreisstellkraft beaufschlagt. Diese Regelkreisstellkraft wirkt der ermittelten absoluten Wankbeschleunigung entgegen und führt damit zu einer aktiven Reduzierung der absoluten Wankbeschleunigung des Fahrzeugaufbaus . Zwar werden auch Hub- und Nickschwingungen bei einseitiger Anregung induziert, jedoch sind insbesondere Bewegungen des Fahrzeugaufbaus um die Längsachse des Fahrzeugs maßgebend für das Sicherheits- und Komfortempfinden der Insassen von besonderer Bedeutung. Insbesondere bei Fahrzeugen mit hoher Sitzposition wie Vans oder Geländewagen wird dieser Freiheitsgrad bezogen auf den Sensor "Mensch" verstärkt.
Die Karosserie und die Insassen werden bei einem Fahrzeug mit einer erfindungsgemäßen Wankdämpfung weniger zu Wankbewegungen angeregt und empfinden das Fahrzeug so komfortabler.
Die erfindungsgemäße Wankdämpfung ist in jeder Fahrsituation einsetzbar. Im Unterschied zu üblichen Wankdämpfungen bleibt die erfindungsgemäße Wankdämpfung auch außerhalb von Kurvenfahrten aktiviert. Auch bei Geradeausfahrt ohne Lenkeingaben werden eingeprägte Bewegungen des Fahrzeugaufbaus aktiv reduziert .
Ein weiterer Vorteil ist die Fahrsicherheit. So werden beispielsweise bei Straßenanregungen in der Kurve Radlastschwankungen reduziert und damit die Fahrsicherheit deutlich erhöht . Durch die Verringerung der Radlastschwankungen wird der Seitenhalt und das Reibwertpotenzial deutlich angehoben. Mit der vorliegenden Erfindung wird das Verhalten des Fahrzeugs bei wechselseitigen Straßenanregungen aktiv verbessert und so das Komfortempfinden und die Fahrsicherheit deutlich angehoben.
Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung, sowie den Zeichnungen. Im Folgenden wird anhand der Zeichnungen eine Ausfuhrungsform der Erfindung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Dabei zeigen: Fig. 1 eine schematische Darstellung einer bevorzugten erfindungsgemäßen Vorrichtung zur aktiven Wankdämpfung,
Fig. 2 eine bevorzugte Ausfuhrungsform einer Signalverarbeitung eines erfindungsgemäßen Verfahrens,
Fig. 3a nicht tiefpassgefilterte absolute Wankbeschleunigung eines Fahrzeugaufbaus eines Fahrzeugs mit einem offenen Stabilisator bei Fahrt über eine Bodenwelle,
Fig. 3b nicht tiefpassgefilterte absolute Wankbeschleunigung eines Fahrzeugaufbaus eines Fahrzeugs mit einer erfindungsgemäßen aktiven Wankdämpfung bei Fahrt über eine Bodenwelle,
Fig. 4a tiefpassgefilterte absolute Wankbeschleunigung eines Fahrzeugaufbaus eines Fahrzeugs mit einem offenen Stabilisator bei Fahrt über eine Bodenwelle,
Fig. 4b tiefpassgefilterte absolute Wankbeschleunigung eines Fahrzeugaufbaus eines Fahrzeugs mit einer erfindungs- gemäßen aktiven Wankdämpfung bei Fahrt über eine Bodenwelle .
Fig. 1 zeigt eine schematische Darstellung einer bevorzugten erfindungsgemäßen Vorrichtung zur aktiven Wankdämpfung eines Fahrzeugs. Dabei wird ein aktivierbarer Stabilisator 1 von einem Regelkreis 14 gesteuert.
Ein derartiger aktivierbarer Stabilisator 1 ist Teil eines aktivierbaren Fahrwerks eines Fahrzeugs. Er ist an einem Fahrzeugaufbau 9 drehbar gelagert. Der Stabilisator 1 ist als U-förmig gebogener Rundstab mit einem quer zur Fahrtrichtung angeordneten Grundschenkel, und einem davon abragenden linken Seitenschenkel 2 und einem davon abragenden rechten Seitenschenkel 3 ausgeführt. Die Seitenschenkel 2 und 3 des Stabilisators 1 sind jeweils an ein Fahrzeugrad 7 und 8 angebunden. Der veränderliche Abstand zwischen einem Fahrzeugrad 7, 8 und dem Fahrzeugaufbau 9 wird als Federweg nL, nR bezeichnet. Dabei bedeuten die Indizes: L = links, R = rechts.
Der Stabilisator 1 überträgt Bewegungen und Kräfte vom dem einen Fahrzeugrad 7 auf das andere Fahrzeugrad 8 und umgekehrt. Bei Differenzen zwischen dem Federweg nL des linken Fahrzeugrads 7 und dem Federweg nR des rechten Fahrzeugrads 8 einer Achse wird der Stabilisator 1 tordiert . Aufgrund der Steifigkeit c des Stabilisators 1 entstehen im Stabilisator 1 rückstellende Kräfte F, welche die Federwegdifferenz Δn zu verringern suchen. Der Anteil der Federwegdifferenz Δn, der mit einer Torsion des Stabilisators 1 verbunden ist, wird im Folgenden als Stabilisatortorsion e bezeichnet. Bei einem nicht aktivierbaren Stabilisator gilt Δn = e .
Üblicherweise werden Fahrzeuge mit einem Stabilisator 1 ausgestattet, um bei Kurvenfahrt auftretende Wankbewegungen zu reduzieren. Bei Kurvenfahrt wird der Fahrzeugaufbau 9 in Richtung Kurvenaußenseite gedrückt . Dabei wird das kurvenäußere Fahrzeugrad 7 oder 8 stärker belastet und sein Federweg nL oder nR verringert . Entsprechend wird der Federweg nL oder nR des kurveninneren Fahrzeugrades 8 oder 7 erhöht . Aufgrund der Federwegdifferenz Δn = nL - nR wird der Stabilisator 1 tordiert . Es entstehen im Stabilisator 1 rückstellende Kräfte F, die dem Aufbauwanken entgegenwirken. Bei Kurvenfahrt auf ebener Fahrbahn ist diese Eigenschaft der Stabilisatoren günstig. Auf unebener Fahrbahn verstärken Stabilisatoren die Differenzen der Radlasten an der Achse und damit das Wanken des Fahrzeugs. Unebene Fahrbahn liegt dann vor, wenn die vier Radauf- Standspunkte eines Fahrzeugs nicht in einer Ebene liegen.
Bei dem in Fig. 1 dargestellten Stabilisator 1 handelt es sich um einen aktivierbaren Stabilisatoren. Aktivierbare Stabilisatoren verfügen über einen Aktor 5 zur aktiven Steuerung der Kraftübertragung zwischen den an einer gemeinsamen Fahrzeugachse angeordneten Fahrzeugrädern 7 und 8. Mit Hilfe des Aktors 5 sind die vom Stabilisator 1 zwischen den Fahrzeugrädern 7, 8 übertragenen Kräfte F veränderbar.
Der Stabilisator 1 ist in Fig. 1 schematisch als mit einem Federelement versehenes Bauteil dargestellt, das beweglich am Fahrzeugaufbau 9 befestigt ist. Auf der linken Fahrzeugseite ist der Stabilisator 1 über den Seitenschenkel 2 mit dem linken Fahrzeugrad 7 verbunden. Auf der rechten Fahrzeugseite ist der Stabilisator 1 über den Seitenschenkel 3 mit dem rechten Fahrzeugrad 8 verbunden. Der Federweg zwischen dem Fahrzeugaufbau 9 und dem linken Fahrzeugrad 7 wird mit nL bezeichnet, der Federweg zwischen dem Fahrzeugaufbau 9 und dem rechten Fahrzeugrad 8 wird mit nR bezeichnet. Als neutrale Position 4 des Stabilisators 1 wird die Position bezeichnet, bei der keine Stabilisatortorsion e des vorliegt. Der Aktor 5 ist Teil des aktivierbaren Stabilisators 1. In Fig. 1 ist der Aktor 5 zwischen den beiden Seitenschenkeln 2 und 3 angeordnet. Der Aktor 5 hat selbst keine eigenen Lagerstellen am Fahrzeugaufbau 9 und wird vom Stabilisator 1 gehalten. Dadurch wird erreicht, dass die vom Aktor 5 aufgeprägten Kräfte Fsteii links und rechts an den beiden radseitigen Befestigungsstellen des Stabilisators 1 im Betrag näherungsweise gleich sind, wenn Beschleunigungs- und Reibungskräfte vernachlässigt werden. Der Aktor 5 hat also nur einen Freiheits- grad als Stellvariable (Kraft oder Weg) und bedient damit gleichzeitig die beiden Fahrzeugräder 7 und 8, jeweils mit umgekehrten Vorzeichen und der betragsmäßig gleichen Kraft FSTELL- Die Aktoren 5 können als mechanische, elektrische oder hydraulische Stellglieder ausgeführt sein. Prinzipiell ist die Art der Energiezuführung beliebig, bevorzugt jedoch hydraulisch. Von Bedeutung ist, dass der Aktor 5 in der Lage ist sowohl eine positive als auch eine negative Kraft FSTELL Z übertragen. Damit ist der Aktor 5 in der Lage einen Vorzeichen- und Richtungswechsel von F an beiden Fahrzeugseiten zu generieren. Weiterhin ist der Aktor 5 in der Lage, bezogen auf seine neutrale Ausgangsposition 6 positive und negative Verschiebungen s aufzubringen. Die Verschiebung s ist nicht direkt mit der gleichzeitig übertragenen Kraft F gekoppelt, weil diese noch zusätzlich von den Federwegen nR und nL abhängt .
Bei idealisiert senkrechter Federung der Achsen erzeugt der Stabilisator 1 im Wesentlichen vertikale Kräfte F, die hier betrachtet werden. Bei annähernd reibungsfreier Führung des Stabilisators 1 in dessen Lagerstellen ist die entstehende Kraft bei Kurvenfahrt auf der Kurveninnen- und der Kurvenaußenseite im Betrag gleich. Für einen aktivierbaren Stabilisator 1 ergibt sich die Federwegdifferenz Δn mit e + s = nR - nL und die an den beiden Rädern wirkende Kraft mit
F = c * e, wobei e = Stabilisatortorsion, s = Verschiebungsweg des Aktors 5 aus seiner neutralen Position 6, nL = Federweg zwischen dem Fahrzeugaufbau 9 und dem linkem Fahrzeugrad 7 , nR = Federweg zwischen dem Fahrzeugaufbau 9 und dem rechtem Fahrzeugrad 8 , L = Kennzeichnung links, R = Kennzeichnung rechts,
F = am linken Fahrzeugrad 7 und am rechten Fahrzeugrad 8 wirkende Kraft und c = Steifigkeit des Stabilisators 1 bezeichnet.
Wie in Fig. 1 dargestellt, ist der Aktor 5 in einen Regelkreis 14 integriert. Dieser Regelkreis 14 steuert und/oder regelt den Aktor 5 nach Maßgabe der Bewegungen des Fahrzeugaufbaus 9. Der Regelkreis 14 weist Sensoren 10, 11 zur Erfassung von Wankbewegungen des Fahrzeugaufbaus 9 auf. Sie sind mit einer Regelungseinheit 13 verbunden. Die Regelungseinheit 13 verarbeitet die Signale der Sensoren 10, 11 und erzeugt ein Signal für eine Regelkreisstellkraft FSTELL- Mit dieser Regelkreisstellkraft FSTELL wird der Aktor 5 des Stabilisators 1 angesteuert. Um in Fig. 1 Baugruppen und gerichtete Größen voneinander unterscheiden zu können, sind gerichtete Größen mit einem Pfeil mit einer gefüllten Pfeilspitze versehen, Baugruppen hingegen mit einem Pfeil mit offener Pfeilspitze.
In einer Weiterbildung wird ein nicht dargestellter weiterer Aktor ebenfalls durch die Regelungseinheit 13 angesteuert. Dabei ist beispielsweise der Aktor 5 einem Stabilisator 1 einer Vorderachse zugeordnet und der weitere Aktor einem Stabilisator einer Hinterachse zugeordnet.
In einer bevorzugten Ausfuhrungsform ist als Sensor zur Signalerfassung ein um die Längsachse des Fahrzeugaufbaus 9 messenden Rollsensor 12 (in Fig. 1 nicht dargestellt) vorgesehen. Dabei ist die Einbauposition des Rollsensors 12 von zweitrangiger Bedeutung. Wichtig ist hingegen die möglichst genaue Ausrichtung der Messachse des Rollsensors 12 parallel zur Längsachse des Fahrzeugaufbaus 9 und die Anbindung an eine möglichst struktursteife Stelle des Fahrzeugaufbaus 9. Dieser Rollsensor 12 erfasst die absolute Wankgeschwindigkeit des Fahrzeugaufbaus 9.
Eine alternative Ausfuhrungsform besteht in der Verwendung von zwei Beschleunigungssensoren 10. Die Beschleunigungssensoren 10 sind vorzugsweise auf einer gemeinsamen Achse angeordnet, die parallel zur Y-Achse oder der Z-Achse des Fahrzeugaufbaus 9 ausgerichtet ist. Dabei wird die Längsachse des Fahrzeugaufbaus 9 als X-Achse bezeichnet, von der aus die Z- Achse senkrecht nach oben zeigt und die Y-Achse senkrecht dazu nach links. Die Beschleunigungssensoren 10 sind annähernd parallel zueinander angeordnet und messen orthogonal zur Längsachse des Fahrzeugaufbaus 9. Die Wankbeschleunigung entspricht dann der Differenz der Signale der beiden Beschleunigungssensoren 10 dividiert durch die Komponente des Abstands der beiden Beschleunigungssensoren 10 zueinander, die senkrecht zur Messrichtung sowie zur X-Achse steht. In diesem Fall entspricht die ermittelte Wankbeschleunigung der absoluten Wankbeschleunigung W des Fahrzeugaufbaus 9.
In einer günstigen Ausgestaltung sind die Beschleunigungssensoren 10 als parallel zur Y-Achse nebeneinander angeordnete Vertikalbeschleunigungssensoren ausgeführt. Dabei sind die beiden Beschleunigungssensoren 10 in einer Ebene senkrecht zur Längsachse des Fahrzeugaufbaus 9 in unterschiedlichem Abstand zur Längsachse des Fahrzeugaufbaus 9 parallel zueinander eingebaut .
In einer weiteren günstigen Ausgestaltung sind die Beschleunigungssensoren 10 als Querbeschleunigungssensoren ausgeführt, die auf einer gemeinsamen Achse parallel zur Z-Achse übereinander angeordnet sind (Fig. 1) . In einer weiteren Ausgestaltung der Erfindung ist ein Giersensor 11 vorgesehen. Manchmal ist der Bauraum so beschränkt, dass sich beispielsweise die als Querbeschleunigungssensoren ausgeführten Beschleunigungssensoren 10 nicht parallel zur Z- Achse ausrichten lassen. Die Beschleunigungssensoren 10 sind dann zwar in der gleichen Y-Koordinate angeordnet, nicht aber in einer gemeinsamen Ebene senkrecht zur Längsachse des Fahrzeugaufbaus 9. In diesem Fall wird zusätzlich ein Giersensor 11 eingesetzt (Fig. 1) . Er dient zur Ermittlung der um die __- Achse wirkenden Drehwinkelgeschwindigkeit des Fahrzeugaufbaus 9 senkrecht zur horizontalen Ebene. Aus dieser Drehwinkelgeschwindigkeit lässt durch Ableitung die Gierbeschleunigung aG berechnen. Durch Multiplikation der Gierbeschleunigung aG mit dem Abstand der Beschleunigungssensoren in x-Richtung lässt sich ein Korrekturterm berechnen. Mit diesem Korrekturterm können die Beschleunigungssensoren 10 rechnerisch in eine gemeinsame Ebene senkrecht zur x-Achse gelegt werden. Aus den gemessenen Werten der beiden Beschleunigungssensoren 10 für die Wankbeschleunigung und dem durch den Giersensor ermittelten Korrekturterm wird ein Wert für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 ermittelt . Damit lässt sich auch mit Beschleunigungssensoren 10, die nicht in einer Ebene senkrecht zur Längsachse des Fahrzeugaufbaus 9 liegen, die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 ermitteln.
Fig. 2 zeigt eine Regelungseinheit 13 mit einer bevorzugten Ausfuhrungsform einer Sensorerfassung 15 eines erfindungsgemäßen Verfahrens. In der Regelungseinheit 13 werden die Signale der Sensoren 10 und/oder des Sensors 11 und/oder des Sensors 12 einer Sensorerfassung 15 zugeführt .
Die Sensorerfassung 15 ermittelt aus den Signalen der Sensoren 10, 11, 12 die absolute Wankbeschleunigung W des Fahr- zeugaufbaus 9. Dabei werden bevorzugt bereits serienmäßig vorhandene Sensoren 10, 11, 12 zur Signalerfassung verwendet. In einer Ausfuhrungsform erfasst die Sensorerfassung 15 zusätzlich die aktuelle Position des Aktors 5.
Erfindungsgemäß erzeugt die Sensorerfassung 15 aus den Sensorsignalen ein Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9. Ein solches Signal kann beispielsweise als ein Signal für die absolute Wankgeschwindigkeit oder als ein Signal für die absolute Wankbeschleunigung ausgeführt sein.
In einer bevorzugten Ausfuhrungsform erfasst die Sensorerfassung 15 die Signale eines Rollsensors 12. Rollsensoren erfassen die Wankgeschwindigkeit des Fahrzeugaufbaus 9. In diesem Signal sind bereits alle benötigten Informationen über die Bewegungen des Fahrzeugaufbaus 9 relativ zum Inertialsystem der Erde enthalten. Wichtig ist dabei die möglichst exakte Ausrichtung der Messachse des Sensors 12 in Längsrichtung Fahrzeugaufbaus 9.
Die Veränderung der Wankgeschwindigkeit ist ein Maß für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9. Damit kann das gemessene Signal direkt ohne weitere Bearbeitung als Signal für die absolute Wankbeschleunigung W des Fahrzeugauf- baus 9 genutzt werden. In diesem Fall entfällt eine spätere Integration des Sensorsignals in einem Integrator 17.
In einer bevorzugten Ausgestaltung führt die Sensorerfassung 15 eine Differentiation des Signals des Rollsensors 12 durch und ermittelt dadurch die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9. In einer alternativen Ausfuhrungsform erfasst die Sensorerfassung 15 die Signale von zwei Beschleunigungssensoren 10. Sind die Beschleunigungssensoren 10 in einer Ebene senkrecht zur Längsachse des Fahrzeugaufbaus 9 annähernd parallel zueinander angeordnet und messen sie orthogonal zur Längsachse des Fahrzeugaufbaus 9, so sind keine weiteren Sensoren nötig. Die Sensorerfassung 15 berechnet dann die Differenz der Signale der beiden Sensoren 10 dividiert durch den Abstand der beiden Beschleunigungssensoren 10. Liegen die beiden Beschleunigungssensoren 10 in einer Ebene senkrecht zur Längsachse des Fahrzeugaufbaus 9, so entspricht das Ergebnis der absoluten Wankbeschleunigung W des Fahrzeugaufbaus 9.
In einer Weiterbildung der obengenannten Ausfuhrungsform erfasst die Sensorerfassung 15 die Signale von zwei Beschleunigungssensoren 10 und einem Giersensor 11. Lassen sich die Beschleunigungssensoren 10 aus baulichen oder anderen Gründen nicht in einer Ebene in Richtung Fahrzeuglängsachse parallel zueinander anordnen, so lässt sich mit ihnen allein die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 nicht ermitteln. In diesem Fall ist erfindungsgemäß zusätzlich ein um Z- messenden Giersensor 11 vorgesehen. Der um Z-messenden Giersensor 11 erfasst die Giergeschwindigkeit vG des Fahrzeugaufbaus 9. Die Sensorerfassung 15 bildet die Ableitung dieses Signals vG und man erhält die Gierbeschleunigung aG. Durch Multiplikation der Gierbeschleunigung aG mit dem Abstand (Xi- X2) der beiden Beschleunigungssensoren 10 in Richtung der Längsachse des Fahrzeugaufbaus 9 lässt sich nun der Korrekturfaktor berechnen, mit dem ein bei X=Xι liegender erster Beschleunigungssensor 10 in die Ebene des anderen Beschleunigungssensors 10 bei X=X2 vorzeichenrichtig korrigiert werden kann. Der Korrekturfaktor ergibt sich also zu: aG* (Xπ.-X2) Die zu ermittelnde absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 entspricht dann der Differenz des mit dem Korrekturfaktor versehenen Beschleunigungssignals Wi ersten Beschleunigungssensors 10 und des unkorrigierten Beschleunigungssignals W2 des zweiten Beschleunigungssensors 10, verstärkt um den in Z-Richtung des Fahrzeugs zu messenden Abstand der Beschleunigungssensoren 10 zueinander. Damit gilt: W = (Wi* (aβ* (Xι-X2) ) - W2)*ZX-Z2.
In einer alternativen Ausführungsform wird der um die Z-Achse messende Giersensor 11 genutzt um das Signal eines Rollsensors 12 mit nicht exakt in Längsrichtung des Fahrzeugaufbaus 9 verlaufender Ausrichtung der Messachse zu korrigieren. Dabei ist die vom Giersensor 11 gemessene Z-Geschwindigkeit ohne weitere Bearbeitung als Korrekturfaktor für die vom Roll- sensor 12 gemessene Wankgeschwindigkeit des Fahrzeugaufbaus 9 einsetzbar.
Im Weiteren wird das von der Sensorerfassung 15 erzeugte Signal für eine absolute Wankbeschleunigung W des Fahrzeugauf- baus 9 weiterverarbeitet. Dabei ist die Reihenfolge der angewendeten Filterverfahren frei wählbar.
In einer bevorzugten Ausfuhrungsform wird das von der Sensorerfassung 15 erzeugte Signal für eine absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 einem Tiefpassfilter 16 zugeführt. Durch den Tiefpassfilter 16 wird dieses Ergebnissignal der Sensorerfassung 15 geglättet. Dabei entfernt der Tiefpassfilter 16 hochfrequente Signalanteile, die nicht vom Regelkreis 14 bearbeitet werden sollen. Dies sind beispielsweise alle Frequenzen oberhalb von 3 Hz. Übrig bleibt ein Signal, dass die zu dämpfenden Bewegungen des Fahrzeugaufbaus 9 wiedergibt . In einer günstigen Ausgestaltung wird das Signal für die absolute Wankbeschleunigung W in einem Integrator 17 integriert. Dabei wird das Signal nochmals geglättet und verstärkt . Der Integrator erzeugt aus einem Signal für eine absolute Wankbeschleunigung ein Signal für eine absolute Wankgeschwindigkeit . Wie bereits erwähnt ist ein derartiges Signal für die absolute Wankgeschwindigkeit ebenfalls als Maß für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 geeignet . Wird bereits das nicht differenzierte Signal eines Rollsensors 12 verwendet, so entfällt dieser Schritt üblicherweise .
In einer weiteren günstigen Ausgestaltung wird das Signal für die absolute Wankbeschleunigung W hochpassgefiltert . Der Hochpassfilter 18 entfernt die Informationen über sehr langsame Aufbaubewegungen aus dem Signal. Typischerweise werden Frequenzen unterhalb von 0.5 Hz durch den Hochpassfilter 18 weggefiltert. Derartige Bewegungen, die beispielsweise das Ergebnis einer sich ändernden Straßenführung (Berg und Tal) sein können, sollen nicht durch die erfindungsgemäße aktive Wankdämpfung gedämpft werden.
In einer bevorzugten Ausfuhrungsform der Erfindung ist ein Kennlinienfeld 19 vorgesehen. Das Kennlinienfeld 19 kann erfindungsgemäß verschiedene Parameter berücksichtigen. Im Kennlinienfeld 19 können beliebige Abhängigkeiten, beispielsweise zur Fahrgeschwindigkeit, zur Aktorposition, zur Lenkradstellung, zu Federwegen der Räder, zu der Stellung von Bedienschaltern hergestellt werden. Bevorzugt werden dabei Fahrzeugparameter wie Spurweite, Gewicht des Fahrzeugs, Stellsystem und Stelldynamik berücksichtigt. Das Kennlinienfeld 19 erzeugt auf Grundlage der vorgegebenen zu berücksichtigenden Parameter ein Signal für eine Größe K. In einer Ausfuhrungsform ermittelt das Kennlinienfeld 19 den aktuellen Zustand der vorgegebenen zu berücksichtigenden Parameter und erzeugt auf dieser Grundlage die variable Größe K. Dazu kann das Kennlinienfeld 19 mit entsprechenden Sensoren z.B. für die Fahrgeschwindigkeit oder die Aktorposition verbunden sein.
In einer bevorzugten Ausgestaltung der Erfindung wird in einer Stellkraftermittlung 20 dem Signal für eine absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 eine zu stellende Regelkreisstellkraft FSTELL zugeordnet.
Dazu wird in einer besonders günstigen Ausgestaltung der Erfindung die Größe K aus dem Kennlinienfeld 19 mit dem bereinigten Signal für die absoluten Wankbeschleunigung W (also bereinigte absolute Wankgeschwindigkeit/Wankbeschleunigung) in der Stellkraftermittlung 20 multipliziert. Der sich ergebende Wert ist ein Maß für eine zu stellende Regelkreisstell- kraft FSTELL- Diese Regelkreisstellkraft FSTELL ist so ausgelegt, dass die Wankbeschleunigung im Mittel um mindestens 5% gedämpft wird.
Im einer Ausfuhrungsform wird dabei die aktuelle Position des Aktors 5 berücksichtigt. Dabei wird die Regelkreisstellkraft FSTELL so gewählt, dass der entsprechende Stellweg s des Aktors 5 nicht größer als der maximale aktuell stellbare Stell- weg ist.
In einer weiteren Ausgestaltung kann die Regelkreisstellkraft FSTELL mit nichtlinearen Filtern weiterverarbeitet werden. Dieser Filter bewirkt, dass die Regelkreisstellkraft FSTELL bei sehr kleinen Signalpegeln Null ist oder sich nicht so schnell ändert. In einer weiteren Ausführungsform hat die Reglungseinheit 13 auch die Aufgabe das Fahrzeug bei Kurvenfahrt waagerecht auszurichten. In diesem Fall wird die Regelkreisstellkraft FSTELL vor der Übergabe an den Aktor 5 noch um eine zusätzliche Stellkraft zur waagerechten Ausrichtung des Fahrzeuges angehoben oder abgesenkt. D.h. die insgesamt zu stellende Kraft ergibt sich aus Superposition der einzelnen Regelanteile.
Erfindungsgemäß wird die Regelkreisstellkraft FSTELL als Stellbefehl dem Aktor 5 des Stabilisators 1 übergeben werden.
In einer Ausfuhrungsform der Erfindung ist ein Aktor 5 eines Stabilisators 1 einer Vorderachse und ein Aktor 5 eines Stabilisators 1 einer Hinterachse vorgesehen. In diesem Fall kann die Regelkreisstellkraft FSTELL beliebig in Abhängigkeit weiterer Parameter zwischen dem Stabilisator 1 der Vorderachse und dem Stabilisator 1 der Hinterachse verteilt werden.
Es ergeben sich die Regelkreisstellkräfte am jeweiligen Aktor 5, die geregelt oder gesteuert werden können wie folgt:
FSTELL-V = FSTEL * ( 1 -V) ,
FSTELL-H = FSTELL *V, mit
FSTELL-V = Sollkraft Vorderachse,
FSTELL-H = Sollkraft Hinterachse,
V = Verteilungsvariable.
Handelt es sich um eine Wegsteuerungen/Wegregelungen anstatt Kraftsteuerungen/Kraftregelungen können mit
Sv = nR - nLV - FSTELL-V /cv
SH
Figure imgf000018_0001
die zu stellende Verschiebung sv des Aktors 5 der Vorderachse und die zu stellende Verschiebung sH des Aktors der Hinterachse ermittelt werden. Erfindungsgemäß werden die zu stellenden Verschiebungen sv, sH in der Stellkraftermittlung 20 berechnet und anschließend als Stellbefehl dem Aktor 5 des Stabilisators 1 der Vorderachse und dem Aktor des Stabilisators der Hinterachse übergeben.
In Fig. 3a, 3b, 4a und 4b wird das Verhalten eines Geländewagens beim Überfahren einer einseitigen "Sinus-Bodenwelle" dargestellt. Die Fahrgeschwindigkeit beträgt 80 km/h, die Amplitude der Bodenwelle 0,15 m, ihre Wellenlänge 33,33 m. Das Lenkrad wird während der Überfahrt über die einseitige Welle fest gehalten, um den Fahrereinfluss auszublenden. Gemessen wird die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 im zeitlichen Verlauf.
Die Beschleunigungswerte tragen dabei die Einheit m/s2 weil die Wankbeschleunigung hier aus dem Differenzsignal zweier in einem Abstand von 1 m zueinander angeordneten Beschleunigungssensoren 10 in einer Ebene bei X= konst . ermittelt wurden. D.h. die entsprechenden Werte für die absolute Wankbeschleunigung W in rad/s2 ergäben sich in diesem Fall durch Division mit 1 m.
Fig. 3 a zeigt die nicht tiefpassgefilterte absolute Wankbeschleunigung eines Fahrzeugaufbaus 9 eines Fahrzeugs mit einem offenen Stabilisator 1. Dabei ist unter einem offenen Stabilisator 1 ein Stabilisator 1 zu verstehen, bei dem die Verbindung zwischen den beiden Rädern einer Achse unterbrochen ist. Beispielsweise ist dabei der Stabilisator 1 aufgeschnittenen oder ausgebaut . Das dargestellte ungefilterte Signal für die absolute Wankbeschleunigung W zeigt Maximalwerte von +2,7 m/s2 und -3,0 m/s2. Im Vergleich dazu zeigt Fig. 3 b die nicht tiefpassgefilterte absolute Wankbeschleunigung W eines Fahrzeugaufbaus 9 eines Fahrzeugs mit einer erfindungsgemäßen aktiven Wankdämpfung bei Fahrt über eine Bodenwelle. Das dargestellte ungefilterte Signal für die absolute Wankbeschleunigung W zeigt gegenüber Fig. 3a niedrigere Maximalwerte von +2,2 m/s2 und -2,0 m/s2.
Fig. 4a zeigt die mit 3 Hz tiefpassgefilterte absolute Wankbeschleunigung W eines Fahrzeugaufbaus 9 eines Fahrzeugs mit einem offenen Stabilisator 1 bei Fahrt über eine Bodenwelle. Die Messverläufe der Wankbeschleunigungen W sind mit etwa 3 Hz Eckfrequenz tiefpass-gefiltert . Nur die mit dieser Eckfrequenz gefilterten Signalverläufe werden nunmehr betrachtet. Das Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 ist gegenüber dem Signal aus Fig. 3a deutlich geglättet. Das dargestellte Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 zeigt Maximalwerte von +1,3 m/s2 und -0,9 m/s2. Die zwischen der Kurve und der X- Achse eingeschlossenen Flächen, die ein Maß für die Bewegungen des Fahrzeugaufbaus 9 sind, sind in der Grafik mit Kreuzen markiert.
Fig. 4b zeigt im Vergleich dazu die mit 3 Hz tiefpassgefilterte Wankbeschleunigung eines Fahrzeugaufbaus 9 eines Fahrzeugs mit aktiver Wankdämpfung bei Fahrt über eine Bodenwelle. Die Kurve stellt das gleiche Manöver wie in Fig. 4a mit einer erfindungsgemäßen aktiven Wankdämpfung dar. Das dargestellte Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus 9 zeigt Maximalwerte von +1,2 m/s2 und -0,7 m/s2. Die zwischen der Kurve und der X-Achse eingeschlossenen Flächen, die ein Maß für die Bewegungen des Fahrzeugaufbaus 9 sind, sind in der Grafik mit Kreuzen markiert. Die sich ergebende von den gefilterten Signalen mit der X-Achse eingeschlossene aufsummierte Fläche, ist bei der erfindungsgemäßen aktiven Wankdämpfung (Fig. 4b) mehr als 5 % kleiner, bezogen auf den Wert mit offenen Stabilisatoren 1 (Fig. 4a) . Wichtig ist hierbei, das die gemessenen/ermittelten Signale kurz vor dem "Ereignis" Null sind, d.h. die Ermittlung dieser Flächen muss mit offset-korrigierten Signalen erfolgen.
Das dargestellte Beispiel kann als "Messverfahren" verwendet werden, um zu überprüfen, ob ein Fahrzeug über eine erfindungsgemäße aktive Wankdämpfung verfügt oder nicht. Nur mit der erfindungsgemäßen aktiven Wankdämpfung werden die Beschleunigungswerte (und somit auch die Summe der Flächen) kleiner, als bei einem derartigen Manöver ohne Stabilisatoren 1. Als Kriterium sind die Beträge der unter der Wankbeschleunigung eingeschlossenen Fläche aufzusummieren und mit der Fahrt über eine einseitige Bodenwelle bei passivem System zu vergleichen. Beträgt die Verkleinerung der aufsummierten Fläche im Frequenzbereich bis etwa 3 Hz mindestens 5 % zur Messung mit offenen oder nicht vorhandenen Stabilisatoren 1, handelt es sich um eine "aktive Wankdämpfung" mit aktivierbaren Stabilisatoren 1.
Erfindungsgemäß ist der Aktor 5 und gegebenenfalls der weitere Aktor auch bei einseitiger Straßenanregung so zu verstellen, dass insbesondere in typischen Wank-Aufbaufrequenz- bereichen von 1-2 Hz das aktive System geringere Wankbeschleunigungen als Ergebnis liefert als ein passives System mit aufgeschnittenen oder "ausgebauten" Stabilisatoren 1.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Regelkreises (14) zur aktiven Wankdämpfung eines Fahrzeuges mit einem aktivierbaren Stabilisator (1) , d a d u r c h g e k e n n z e i c h n e t , dass Wankbewegungen des Fahrzeugaufbaus (9) von Sensoren (10, 11, 12) erfasst und von einer Regelungseinheit (13) in ein Signal für eine absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) umgerechnet werden.
2. Verfahren nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , dass aus dem Abstand zweier Beschleunigungssensoren (10) und der Differenz ihrer Signale ein Signal für eine Wankbeschleunigung ermittelt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass ein Z-Geschwindigkeits-Signal eines Giersensors (11) erfasst wird, um ein Signal für eine Wankbeschleunigung von seiner Z-Komponente zu befreien.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass aus dem Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) hochfrequente Signalanteile durch einen Tiefpassfilter (16) und/oder einen nichtlinearen Filter ausgeblendet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass das Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) durch einen Integrator (17) über die Zeit integriert wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r C 'h g e k e n n z e i c h n e t , dass aus dem Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) niederfrequente Signalanteile durch einen Hochpassfilter (18) ausgeblendet werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass auf das Signal für die absolute Wankbeschleunigung W des Fahrzeugaufbaus (9) ein Kennlinienfeld (19) angewendet wird, wobei der ermittelten Wankbeschleunigung eine gerichtete Regelkreisstellkraft Fsteιι zugeordnet wird.
8. Verfahren nach Anspruch 7 , d a d u r c h g e k e n n z e i c h n e t , dass in die gerichtete Regelkreisstellkraft Fsteιι die Ergebnisse weitere Parameter wie konventionelle Wankstabili- sierungsprogramme eingehen.
9. Verfahren nach einem der Ansprüche 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , dass ein aktivierbarer Stabilisator (1) von der Regelungs- einrichtung (13) mit der gerichteten Regelkreisstellkraft Fsteii angesteuert wird.
10. Verfahren nach einem der Ansprüche 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , dass die Regelungseinrichtung (13) die Regelkreisstell- kraft Fsteii auf Grundlage der absoluten Wankbeschleunigung W des Fahrzeugaufbaus (9) und der von den Sensoren (10, 11, 12) erfassten Wankbewegungen des Fahrzeugaufbaus (9) zwischen dem aktivierbaren Stabilisator (1) und einem weiteren aktivierbaren Stabilisator aufgeteilt wird.
11. Verfahren nach einem der Ansprüche 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , dass die durch die Regelkreisstellkraft Fsteιι veränderte Wankbeschleunigung mittelbar oder unmittelbar durch die Sensoren (10, 11, 12) erfasst und dem Regelkreis (14) zugeführt wird.
12. Vorrichtung zur aktiven Wankdämpfung eines Fahrzeugs mit einem aktivierbaren Stabilisator (1) nach einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der aktivierbare Stabilisator (1) in einen Regelkreis (14) zur Reduzierung der absoluten Wankbeschleunigung W integriert ist.
13. Vorrichtung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass der Regelkreis (14) einen Rollsensor (12) zur Erfassung der Wankgeschwindigkeit aufweist.
14. Vorrichtung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass der Regelkreis (14) zwei Beschleunigungssensoren (10) aufweist, die bezogen auf einen Fahrzeugboden als übereinander angeordnete Querbeschleunigungssensoren ausgeführt sind.
15. Vorrichtung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass der Regelkreis (14) zwei Beschleunigungssensoren (10) aufweist, die als bezogen auf einen Fahrzeugboden nebeneinander angeordnete Vertikalbeschleunigungssensoren ausgeführt sind.
16. Vorrichtung zur aktiven Wankdämpfung nach einem der Ansprüche 13 oder 14, d a d u r c h g e k e n n z e i c h n e t , dass die Beschleunigungssensoren (10) in einer gemeinsamen
Ebene senkrecht zur Fahrtrichtung angeordnet sind.
17. Vorrichtung zur aktiven Wankdämpfung nach einem der Ansprüche 13 oder 14, d a d u r c h g e k e n n z e i c h n e t , dass ein Giersensor (11) zu Ermittlung der Z- Geschwindigkeit vorgesehen ist .
18. Vorrichtung zur aktiven Wankdämpfung nach einem der Ansprüche 11 bis 16, d a d u r c h g e k e n n z e i c h n e t , dass eine Regelungseinheit (13) vorgesehen ist, welche die Signale der Sensoren (10, 11, 12) verarbeitet und die auf einen aktivierbaren Stabilisator (1) wirkt.
PCT/EP2004/002322 2003-04-09 2004-03-06 Aktive wankdämpfung WO2004089663A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316114.7 2003-04-09
DE2003116114 DE10316114A1 (de) 2003-04-09 2003-04-09 Aktive Wankdämpfung

Publications (1)

Publication Number Publication Date
WO2004089663A1 true WO2004089663A1 (de) 2004-10-21

Family

ID=33103270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002322 WO2004089663A1 (de) 2003-04-09 2004-03-06 Aktive wankdämpfung

Country Status (2)

Country Link
DE (1) DE10316114A1 (de)
WO (1) WO2004089663A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757472A1 (de) 2005-08-25 2007-02-28 Steyr-Daimler-Puch Spezialfahrzeug GmbH Verfahren zum Betrieb einer Einrichtung für eine Reifenfüllanlage für Kraftfahrzeuge
FR2894880A1 (fr) * 2005-12-21 2007-06-22 Renault Sas Procede et systeme anti-roulis d'un vehicule automobile
EP1955876A1 (de) * 2007-02-07 2008-08-13 ZF Friedrichshafen AG Verfahren zum Betrieb eines Aktuators, insbesondere eines elektrischen Aktuators innerhalb einer Stabilisatoranordnung
DE102014015402A1 (de) 2014-10-17 2015-04-02 Daimler Ag Verfahren zum Ermitteln der Wankbeschleunigung eines Kraftfahrzeugs
WO2018114173A1 (de) * 2016-12-22 2018-06-28 Zf Friedrichshafen Ag Sicherheitsfunktion und steuergerät zur überwachung sowie steuerung von wankstabilisatoren

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043176A1 (de) * 2005-09-09 2007-03-15 Zf Friedrichshafen Ag Fahrzeug
DE102007051224A1 (de) * 2007-10-26 2009-04-30 Volkswagen Ag Verfahren und Regelungssystem zur Regelung der Aufbaubewegung eines Fahrzeugs
DE102011084349B4 (de) 2011-10-12 2024-06-06 Schaeffler Technologies AG & Co. KG Aktive Wankdämpfung für ein Fahrzeug
DE102017202954A1 (de) 2017-02-23 2018-09-27 Zf Friedrichshafen Ag Ermittlung des Stabilisatordrehmoments eines aktiven Fahrwerksstabilisators

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622166A (ja) * 1985-06-28 1987-01-08 Nissan Motor Co Ltd 横加速度検出装置
JPS6270766A (ja) * 1985-09-25 1987-04-01 Nissan Motor Co Ltd 車両揺動運動検出装置
JPH0388120A (ja) * 1989-08-30 1991-04-12 Konica Corp 磁気記録媒体
DE4237708C1 (de) 1992-11-07 1994-01-27 Daimler Benz Ag Vorrrichtung zur Beeinflussung von Wankbewegungen eines Fahrzeuges
JPH07186666A (ja) * 1993-12-24 1995-07-25 Nissan Motor Co Ltd 能動型サスペンション
JPH07239341A (ja) * 1994-02-28 1995-09-12 Nissan Motor Co Ltd 横加速度検出装置
DE19632363C1 (de) * 1996-08-10 1998-01-15 Telefunken Microelectron Verfahren zur Detektion von Winkelbeschleunigungen eines Kraftfahrzeugs
EP0826576A2 (de) * 1996-09-03 1998-03-04 Ford Global Technologies, Inc. Verfahren und Vorrichtung zur Schätzung der Giergeschwindigkeit eines Fahrzeuges
WO1999012795A1 (de) * 1997-09-05 1999-03-18 Daimlerchrysler Ag Nicht spurgebundenes kurvenneigerfahrzeug
JPH1190519A (ja) * 1997-09-16 1999-04-06 Toshiba Corp 圧延機の油圧圧下制御装置
JPH11326361A (ja) * 1998-05-14 1999-11-26 Toyota Motor Corp 車体のヨーレート、ロールレート、横加速度検出装置
WO2000018596A1 (en) * 1998-09-29 2000-04-06 Land Rover Group Limited Vehicle roll control
EP1151877A1 (de) * 2000-05-03 2001-11-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ermittlung der Gierbeschleunigung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303160A1 (de) * 1993-02-04 1994-08-11 Bosch Gmbh Robert System zur Regelung und/oder Steuerung eines Kraftfahrzeugfahrwerks
US5948027A (en) * 1996-09-06 1999-09-07 Ford Global Technologies, Inc. Method for enhancing vehicle stability
DE19856303A1 (de) * 1998-07-16 2000-01-27 Continental Teves Ag & Co Ohg Verfahren und Einrichtung zum Erfassen der Gefahr des Umkippens eines Kraftfahrzeugs
GB9821062D0 (en) * 1998-09-29 1998-11-18 Rover Group Vehicle roll control

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622166A (ja) * 1985-06-28 1987-01-08 Nissan Motor Co Ltd 横加速度検出装置
JPS6270766A (ja) * 1985-09-25 1987-04-01 Nissan Motor Co Ltd 車両揺動運動検出装置
JPH0388120A (ja) * 1989-08-30 1991-04-12 Konica Corp 磁気記録媒体
DE4237708C1 (de) 1992-11-07 1994-01-27 Daimler Benz Ag Vorrrichtung zur Beeinflussung von Wankbewegungen eines Fahrzeuges
JPH07186666A (ja) * 1993-12-24 1995-07-25 Nissan Motor Co Ltd 能動型サスペンション
JPH07239341A (ja) * 1994-02-28 1995-09-12 Nissan Motor Co Ltd 横加速度検出装置
DE19632363C1 (de) * 1996-08-10 1998-01-15 Telefunken Microelectron Verfahren zur Detektion von Winkelbeschleunigungen eines Kraftfahrzeugs
EP0826576A2 (de) * 1996-09-03 1998-03-04 Ford Global Technologies, Inc. Verfahren und Vorrichtung zur Schätzung der Giergeschwindigkeit eines Fahrzeuges
WO1999012795A1 (de) * 1997-09-05 1999-03-18 Daimlerchrysler Ag Nicht spurgebundenes kurvenneigerfahrzeug
JPH1190519A (ja) * 1997-09-16 1999-04-06 Toshiba Corp 圧延機の油圧圧下制御装置
JPH11326361A (ja) * 1998-05-14 1999-11-26 Toyota Motor Corp 車体のヨーレート、ロールレート、横加速度検出装置
WO2000018596A1 (en) * 1998-09-29 2000-04-06 Land Rover Group Limited Vehicle roll control
EP1151877A1 (de) * 2000-05-03 2001-11-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ermittlung der Gierbeschleunigung

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0111, no. 70 (P - 581) 2 June 1987 (1987-06-02) *
PATENT ABSTRACTS OF JAPAN vol. 0112, no. 70 (P - 611) 3 September 1987 (1987-09-03) *
PATENT ABSTRACTS OF JAPAN vol. 0134, no. 84 (M - 886) 2 November 1989 (1989-11-02) *
PATENT ABSTRACTS OF JAPAN vol. 0161, no. 69 (M - 1239) 23 April 1992 (1992-04-23) *
PATENT ABSTRACTS OF JAPAN vol. 0162, no. 45 (M - 1260) 4 June 1992 (1992-06-04) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10 30 November 1995 (1995-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11 28 November 1997 (1997-11-28) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02 29 February 2000 (2000-02-29) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757472A1 (de) 2005-08-25 2007-02-28 Steyr-Daimler-Puch Spezialfahrzeug GmbH Verfahren zum Betrieb einer Einrichtung für eine Reifenfüllanlage für Kraftfahrzeuge
FR2894880A1 (fr) * 2005-12-21 2007-06-22 Renault Sas Procede et systeme anti-roulis d'un vehicule automobile
EP1955876A1 (de) * 2007-02-07 2008-08-13 ZF Friedrichshafen AG Verfahren zum Betrieb eines Aktuators, insbesondere eines elektrischen Aktuators innerhalb einer Stabilisatoranordnung
US7983814B2 (en) 2007-02-07 2011-07-19 Zf Friedrichshafen Ag Method for operating an actuator, especially an electric actuator in a stabilizer arrangement
DE102014015402A1 (de) 2014-10-17 2015-04-02 Daimler Ag Verfahren zum Ermitteln der Wankbeschleunigung eines Kraftfahrzeugs
WO2018114173A1 (de) * 2016-12-22 2018-06-28 Zf Friedrichshafen Ag Sicherheitsfunktion und steuergerät zur überwachung sowie steuerung von wankstabilisatoren

Also Published As

Publication number Publication date
DE10316114A1 (de) 2004-11-04

Similar Documents

Publication Publication Date Title
DE102007041118B4 (de) System zur Einstellung von dynamischen und sicherheitsrelevanten Charakteristika eines Fahrzeuges basierend auf der Fahrzeugbelastung
EP1097069B1 (de) Verfahren und vorrichtung zum bestimmen und erkennen der kippgefahr eines fahrzeuges
DE19918597C2 (de) Verfahren zur Reduktion der Kippgefahr von Straßenfahrzeugen
DE10327593B4 (de) System und Verfahren zum Bestimmen der Lage eines Kraftfahrzeuges
DE102005034650B4 (de) Steuerungssystem, das eine aktive Hinterradlenkung für ein Fahrzeug bewirkt, unter Anwendung einer Schätzung von Fahrzeugdynamikparametern
DE19926745B4 (de) Hindernis-Ausweich-Steuerungssystem für ein Fahrzeug
DE112009005329B4 (de) Fahrzeugbewegungssteuersystem
DE10348738B4 (de) Steuerungssystem für ein Kraftfahrzeug und Verfahren zum Steuern eines Kraftfahrzeugs
WO2008022697A1 (de) Beeinflussungsvorrichtung zur beeinflussung eines aktiven fahrwerksystems eines fahrzeugs
DE19904216A1 (de) Verfahren und Vorrichtung zum Bestimmen und Erkennen der Kippgefahr eines Fahrzeuges
EP1466763B1 (de) Verfahren zum Betreiben einer Niveauregelanlage eines Kraftfahrzeuges
DE10146725A1 (de) Lenkradbasierte Feststellung einer Radabhebung bei einem Kraftfahrzeug
EP1197409A2 (de) Fahrdynamik-Regelsystem eines Kraftfahrzeuges
DE10328979A1 (de) Verfahren zur Koordination eines Fahrdynamikregelungssystems mit einem aktiven Normalkraftverstellsystem
DE102008010494A1 (de) Befehlsinterpreter für nichtlineares Fahrzeug-Gieren/Wanken/Driften
DE102008053008A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
WO2007118587A2 (de) System zur beeinflussung des fahrverhaltens eines fahrzeuges
DE112005003154T5 (de) Steuerung für eine aktive Frontlenkung für eine Fahrzeugstabilitätsverbesserung
WO2001076897A1 (de) Verfahren zur bestimmung der radaufstandskraft eines kraftfahrzeuges
DE102017206055B4 (de) Verfahren und Vorrichtung zur Dämpferregelung in einem Fahrzeug
DE102006052698A1 (de) Verfahren und Vorrichtung zum Stabilisieren eines Kraftfahrzeugs
DE102010003205A1 (de) Verfahren zur Bestimmung der vertikalen Beschleunigung, der longitudinalen Winkelbeschleunigung und der transversalen Winkelbeschleunigung eines Körpers, insbesondere eines Kraftfahrzeugs
DE19648176B4 (de) Verfahren zur Steuerung der Schwingungsdämpfer in einem Fahrzeug mit einer Niveauregeleinrichtung
DE10348736B4 (de) Steuerungssystem für ein Fahrzeug und Verfahren zum Steuern eines Fahrzeugs
WO2004089663A1 (de) Aktive wankdämpfung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase