EP0427840B1 - Device for electrokinetic desalination of brickwork - Google Patents

Device for electrokinetic desalination of brickwork Download PDF

Info

Publication number
EP0427840B1
EP0427840B1 EP90908410A EP90908410A EP0427840B1 EP 0427840 B1 EP0427840 B1 EP 0427840B1 EP 90908410 A EP90908410 A EP 90908410A EP 90908410 A EP90908410 A EP 90908410A EP 0427840 B1 EP0427840 B1 EP 0427840B1
Authority
EP
European Patent Office
Prior art keywords
buffer material
separator layer
layer
electrode
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90908410A
Other languages
German (de)
French (fr)
Other versions
EP0427840A1 (en
Inventor
Karl-Heinz Dipl.-Ing.Dr.Techn. Steininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steininger Karl-Heinz Dipl-Ingdrtechn
Original Assignee
Steininger Karl-Heinz Dipl-Ingdrtechn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steininger Karl-Heinz Dipl-Ingdrtechn filed Critical Steininger Karl-Heinz Dipl-Ingdrtechn
Publication of EP0427840A1 publication Critical patent/EP0427840A1/en
Application granted granted Critical
Publication of EP0427840B1 publication Critical patent/EP0427840B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • E04B1/7007Drying or keeping dry, e.g. by air vents by using electricity, e.g. electro-osmosis

Definitions

  • the invention relates to a device and an anode arrangement for the electrokinetic desalination of masonry according to the preambles of claims 1 and 6.
  • Wall salts are mostly hygroscopic and therefore absorb water from the air depending on the air humidity. This increase in volume of the salt crystals causes high hydration pressures, which in turn destroy the porous building material.
  • Electrophysical drying processes based on the principle of electroosmosis in porous masonry can only work if a sufficient zeta potential can form between the pore wall and the electrolyte. Excessive concentrations of soluble salts hinder the formation of this zeta potential and drainage by electroosmosis becomes impossible. For this reason, the walls must be largely desalinated before using electroosmosis.
  • the principle of salt removal from the masonry is based on the use of electrokinetic charge separation.
  • Ion transport in masonry is considerably slower, but is still sufficient to desalinate masonry in an acceptable period of time.
  • the known methods for electrokinetic desalination of masonry mostly use metal anodes, which are broken down corrosively and whose liquid corrosion products are removed from the masonry by a plastic channel.
  • FR-A-2 552 797 discloses a device for such electrokinetic desalination of masonry using a combined electrode consisting of a plastic shell, steel rod, cover plate, outflow opening and burnt lime, which are in predrilled, outwardly inclined holes in the Masonry.
  • the shell or the trough is arranged in the hole, the hole is filled with the burnt lime and the electrode rod, which is preferably made of steel, is pushed through the cover plate into the masonry so that it is surrounded by the burnt lime all around.
  • the saline solution can drain off through the trough.
  • the electrode consists of an iron electrode, on which there is a dimensionally stable layer of a bound mixture of calcium hydroxide and calcium carbonate, a plastic channel for the removal of the salt solutions formed being connected directly to the electrode via a sleeve.
  • US-A-3 856 646 describes an arrangement for the electroosmotic dewatering of damp structures, the positive electrode being designed as a cylinder with a conductive electrode embedded in a depolarizing material.
  • FR-A-2 346 511 (3) discloses an arrangement for drying and keeping buildings water-free, consisting of electrical metal conductors, optionally insulated from the masonry, in the form of thin foils, sheets, metal wire nets, grids or bars.
  • the object of the invention is to provide a device for the electrokinetic desalination of masonry, the operation of which eliminates the disadvantages inherent in the known desalination processes.
  • the handling and installation of such a device should be simple and inexpensive, and in particular, prefabricated electrodes or electrode arrangements should also be able to be used in a manner known per se.
  • the separator layer consists of a microporous and possibly ion-selective membrane.
  • the main advantage of this design is that the arrangement of the separator layer creates a barrier against the diffusion of the reaction products back into the masonry.
  • the separator layer should lie against the immobilizing buffer material layer at least wherever the masonry is directly adjacent, so that the migration of the ions to the electrode also takes place exclusively via the separator layer.
  • the electrode is optimally protected from excessive corrosion by the buffer material layer as far as possible.
  • the invention further relates to an anode arrangement with an electrode completely surrounded by a buffer material, apart from the connection ends, for use in such a device for the electrokinetic desalination of masonry, wherein there is a separator layer on the buffer material layer, and the anode arrangement is characterized in that the separator layer consists of a microporous and possibly ion-selective membrane.
  • Fig. 1 shows a desalination device with a plurality of anodes 2 laid in boreholes in the wall 1, which are wired together.
  • the anodes 2 are each completely surrounded by an ion-immobilizing buffer material layer except for their connection ends; this, in turn, is enclosed by a separator layer which directly adjoins the borehole walls.
  • a DC voltage is applied to a cathode, in this case an earth rod 4, via a current source 3.
  • a desalination device is shown schematically in FIG. 2, in which flat anodes 5 are arranged on the wall 1.
  • the anodes each of which is completely embedded in ion-immobilizing buffer material, are in turn wired together and connected to a current source 3, a direct voltage being applied to an earth rod 4.
  • the separator layer lying against the buffer material layer is arranged only on the surface facing the wall.
  • FIG. 3 shows a cartridge-shaped anode arrangement 6 which is particularly suitable for laying in drilled holes in the masonry to be desalinated.
  • the core of the anode arrangement is formed by a metal, preferably copper, conductor 7, which is coated with conductive plastic 8.
  • a layer 9 of a buffer material is arranged around this core, which chemically and physically binds the reaction products.
  • the buffer material essentially comprises water, Ca (OH) 2, CaCO3 and / or CaO or mixtures thereof, an addition of a gelling agent being advantageous. This has an immobilizing effect and is moisture-retaining, so that there is no risk of the area around the anode drying out.
  • the layer of the buffer material is completely enclosed by a separator layer 10 formed from a microporous membrane, which in the installed state of the anode arrangement adjoins the wall of the borehole in a borehole in the masonry.
  • the anode assembly 11 is rod-shaped. This arrangement is particularly suitable for laying in wall slots.
  • the electrode 12, which in turn consists of a metal conductor covered with conductive plastic, is enclosed all around except for its two connection ends by the buffer material layer 13, which is covered on the outside by the separator layer 14. This then adjoins the walls of the anode arrangement in a wall slot in the assembled state.
  • the electrode 17 which is formed from a metal conductor coated with conductive plastic, is embedded in the buffer material layer 18 in the form of serpentine windings which extend over the entire surface of the anode arrangement.
  • the separator layer 19 is arranged on the side of the buffer material layer facing the wall.
  • the anodes can be designed as rod, strip or surface electrodes and consist of metal, graphite, conductive plastic or of metal conductors or graphite fiber conductors coated with such an electrode.
  • the buffer material essentially comprises Water, Ca (OH) 2, CaCO3 and / or CaO or mixtures thereof, an addition of a gelling agent being advantageous. This has an immobilizing effect and is moisture-retaining, so that there is no risk of the area around the anode drying out.
  • all commercially available, but preferably agar-agar or carboxymethyl cellulose can be used as the gelling agent.
  • the Coulombsche The efficiency of the anion (wall salt) conversion at the anode was between 40 and 50%, depending on the degree of salinization and the moisture content of the masonry. After a period of 60 days, the 40 grams of CaCO3 had been consumed and the electrodes could be removed from the wall with the reaction products. Analysis showed that over 90% of the reaction products were bound to the electrode.

Abstract

A device for electrokinetic desalination of brickwork consists of at least one positive, salt-collecting electrode (2) arranged on or in the brickwork in contact with a buffer material (9) which immobilizes the ions, at least one negative electrode (4) to which a continuous voltage is applied and an arrangement of anodes one electrode of which is in contact with a buffer material for use in the device. The positive electrode is completely coated with a layer of the buffer material, except at the connection ends, and a separating layer (10) is applied to the layer of buffer material.

Description

Die Erfindung betrifft eine Vorrichtung und eine Anodenanordnung zur elektrokinetischen Entsalzung von Mauerwerken nach den Oberbegriffen der Ansprüche 1 und 6.The invention relates to a device and an anode arrangement for the electrokinetic desalination of masonry according to the preambles of claims 1 and 6.

Das Prinzip der elektrokinetischen Ladungstrennung und Wanderung der Ionen im elektrischen Feld durch Anlegen einer Gleichspannung wird großtechnisch z.B. zur Meerwasserentsalzung ausgenutzt. Verfahren zur Entsalzung von Mauerwerken mit Hilfe der elektrokinetischen Effekte sind bereits bekannt und werden angewandt. Die am häufigsten vorkommenden bauschädlichen Salze sind Sulfate, Chloride und Nitrate. Die Herkunft der Salze ist verschiedenartig, wie z.B.

  • aus den Baustoffen selbst, die meist aus natürlichen Rohstoffen hergestellt werden
  • von Düngemitteln aus dem umgebenden Erdteich durch kapillaren Wassertransport
  • vom Streusalz, speziell im Sockelbereich
  • aus der Atmosphäre, wie z.B. durch den "sauren Regen".
The principle of electrokinetic charge separation and migration of the ions in the electric field by applying a DC voltage is used on an industrial scale, for example for seawater desalination. Processes for desalination of masonry using the electrokinetic effects are already known and are used. The most common building-damaging salts are sulfates, chlorides and nitrates. The origin of the salts is varied, such as
  • from the building materials themselves, which are mostly made from natural raw materials
  • of fertilizers from the surrounding earth pond through capillary water transport
  • of road salt, especially in the base area
  • from the atmosphere, such as "acid rain".

Mauersalze sind meist hygroskopisch und nehmen daher abhängig von der Luftfeuchtigkeit aus der Luft Wasser auf. Diese Volumenvergrößerung der Salzkristalle bewirkt hohe Hydratationsdrücke, die wiederum den porösen Baustoff zerstören.Wall salts are mostly hygroscopic and therefore absorb water from the air depending on the air humidity. This increase in volume of the salt crystals causes high hydration pressures, which in turn destroy the porous building material.

Diese Mauersalze zerstören außerdem Beton- und Spannstähle durch Korrosion.These wall salts also destroy reinforcing and prestressing steel through corrosion.

Elektrophysikalischhe Trockenverfahren nach dem Prinzip der Elektroosmose im porösen Mauerwerk können nur funktionieren, wenn sich zwischen der Porenwand und dem Elektrolyten ein ausreichendes Zetapotential ausbilden kann. Zu hohe Konzentrationen an löslichen Salzen behindern die Ausbildung dieses Zetapotentials und eine Trockenlegung durch Elektroosmose wird unmöglich. Aus diesem Grund müssen vor der Anwendung der Elektroosmose die Mauern weitgehend entsalzt werden.Electrophysical drying processes based on the principle of electroosmosis in porous masonry can only work if a sufficient zeta potential can form between the pore wall and the electrolyte. Excessive concentrations of soluble salts hinder the formation of this zeta potential and drainage by electroosmosis becomes impossible. For this reason, the walls must be largely desalinated before using electroosmosis.

Das Prinzip der Salzentfernung aus dem Mauerwerk beruht auf der Ausnutzung der elektrokinetischen Ladungstrennung.The principle of salt removal from the masonry is based on the use of electrokinetic charge separation.

Beim Anlegen einer Gleichspannung in einem Elektrolyten bewegen sich die Ladungsträger (Ionen) in einem elektrischen Feld zu den entsprechenden Elektroden und konzentrieren sich an diesen Elektroden bzw. um diese herum (negative Ionen, Anionen wandern zur Anode, positive Ionen, Kationen wandern zur Kathode). Auf diese Weise ist es möglich, die hohen Anionenkonzentrationen an der Anode aus dem Mauerwerk kontinuierlich und weitgehend zu entfernen. Die Wanderungsgeschwindigkeiten hängen von der Ionenart, ihrer Größe, und von den äußeren Bedingungen, wie Druck, Temperatur, Lösungsmittel und Konzentration ab und betragen für

OH⁻
0,00167 cm²/sV
Cl⁻
0,00062 cm²/sV
NO3⁻
0,00058 cm²/sV
SO4⁻
0,00059 cm²/sV.
When a DC voltage is applied to an electrolyte, the charge carriers (ions) move in an electric field to the corresponding electrodes and concentrate on or around these electrodes (negative ions, anions migrate to the anode, positive ions, cations migrate to the cathode) . In this way it is possible to continuously and largely remove the high anion concentrations at the anode from the masonry. The migration speeds depend on the type of ion, its size, and on the external conditions, such as pressure, temperature, solvent and concentration, and are for
OH⁻
0.00167 cm² / sV
Cl⁻
0.00062 cm² / sV
NO3⁻
0.00058 cm² / sV
SO4⁻
0.00059 cm² / sV.

Im Mauerwerk ist der Ionentransport erheblich langsamer, jedoch noch ausreichend, um ein Mauerwerk in einem akzeptablen Zeitraum zu entsalzen.Ion transport in masonry is considerably slower, but is still sufficient to desalinate masonry in an acceptable period of time.

Die bekannten Verfahren zur elektrokinetischen Entsalzung von Mauerwerken verwenden meist Metallanoden, die korrosiv abgebaut werden und deren flüssige Korrosionsprodukte durch eine Kunststoffrinne aus dem Mauerwerk entfernt werden.The known methods for electrokinetic desalination of masonry mostly use metal anodes, which are broken down corrosively and whose liquid corrosion products are removed from the masonry by a plastic channel.

So offenbart die FR-A-2 552 797 eine Vorrichtung für eine solche elektrokinetische Entsalzung von Mauerwerk unter Verwendung einer kombinierten Elektrode, bestehend aus einer Kunststoffschale, Stahlstab, Abdeckplatte, Ausflußöffnung und gebranntem Kalk, die sich in vorgebohrten, nach außen hin geneigten Löchern im Mauerwerk befinden. Zur Anordnung der Elektrode im Mauerwerk wird die Schale bzw. der Trog im Loch angeordnet, das Loch mit dem gebrannten Kalk verfüllt und der vorzugsweise aus Stahl bestehende Elektrodenstab durch die Abdeckplatte in das Mauerwerk geschoben, daß er ringsum vom gebrannten Kalk umgeben ist. Über den Trog kann die Salzlösung abfließen.For example, FR-A-2 552 797 discloses a device for such electrokinetic desalination of masonry using a combined electrode consisting of a plastic shell, steel rod, cover plate, outflow opening and burnt lime, which are in predrilled, outwardly inclined holes in the Masonry. To arrange the electrode in the masonry, the shell or the trough is arranged in the hole, the hole is filled with the burnt lime and the electrode rod, which is preferably made of steel, is pushed through the cover plate into the masonry so that it is surrounded by the burnt lime all around. The saline solution can drain off through the trough.

Aus der FR-A-2 552 796 ist eine Elektrodenanordnung zur elektrochemischen Entsalzung von Mauerwerk bekannt. Bei dieser Anordnung besteht die Elektrode aus einer Eisenelektrode, an der sich eine formstabile Schicht eines gebundenen Gemisches von Calciumhydroxid und Calciumcarbonat befindet, wobei eine Kunststoffrinne zum Ableiten der gebildeten Salzlösungen direkt über eine Manschette mit der Elektrode verbunden ist.From FR-A-2 552 796 an electrode arrangement for the electrochemical desalination of masonry is known. In this arrangement, the electrode consists of an iron electrode, on which there is a dimensionally stable layer of a bound mixture of calcium hydroxide and calcium carbonate, a plastic channel for the removal of the salt solutions formed being connected directly to the electrode via a sleeve.

Die US-A-3 856 646 beschreibt eine Anordnung zum elektroosmotischen Entwässern von feuchten Bauwerken, wobei die positive Elektrode als Zylinder mit einer leitfähigen Elektrode, eingebettet in einem depolarisierenden Material, ausgeführt ist.US-A-3 856 646 describes an arrangement for the electroosmotic dewatering of damp structures, the positive electrode being designed as a cylinder with a conductive electrode embedded in a depolarizing material.

Die FR-A-2 346 511 (3) offenbart eine Anordnung zum Trocknen und Wasserfreihalten von Bauwerken, bestehend aus gegebenenfalls gegenüber dem Mauerwerk isolierten elektrischen Metalleitern in Form von dünnen Folien, Blechen, Metalldrahtnetzen, Gittern oder Stäben.FR-A-2 346 511 (3) discloses an arrangement for drying and keeping buildings water-free, consisting of electrical metal conductors, optionally insulated from the masonry, in the form of thin foils, sheets, metal wire nets, grids or bars.

Ein weiteres Verfahren zur Entsalzung von Betonbauten ist bekannt, bei dem die Eisenarmierung im Beton als Kathode dient und die Anionen am Weg zur oberflächlich angelegten Anode durch Ionentauscherharze oder Ca(OH)₂, CaCO₃ und/oder CaO-Aufschlämmungen gebunden werden.Another process for the desalination of concrete structures is known, in which the iron reinforcement in the concrete serves as the cathode and the anions are bound on the way to the surface anode by ion exchange resins or Ca (OH) ₂, CaCO₃ and / or CaO slurries.

Die oben dargelegten Verfahren zur Entsalzung von Mauerwerken konnten die Rückdiffusion der Reaktionsprodukte in das Mauerwerk nicht gänzlich verhindern. Somit verringert sich die Stromausbeute, aber auch die Handhabung dieser Verfahren ist aufwendig und kompliziert.The desalination procedures outlined above Masonry could not completely prevent the reaction products from diffusing back into the masonry. The power yield is thus reduced, but the handling of these processes is also complex and complicated.

Aufgabe der Erfindung ist die Schaffung einer Vorrichtung für die elektrokinetische Entsalzung von Mauerwerken, bei deren Betrieb die den bekannten Entsalzungsverfahren anhaftenden Nachteile ausgeschaltet sind. Außerdem soll die Handhabung und Installation einer solchen Vorrichtung einfach und wenig aufwendig sein, wobei in an sich bekannter Weise insbesondere auch vorgefertigte Elektroden bzw. Elektrodenanordnungen einsetzbar sein sollen.The object of the invention is to provide a device for the electrokinetic desalination of masonry, the operation of which eliminates the disadvantages inherent in the known desalination processes. In addition, the handling and installation of such a device should be simple and inexpensive, and in particular, prefabricated electrodes or electrode arrangements should also be able to be used in a manner known per se.

Die Vorrichtung gemäß der Erfindung ist nun dadurch gekennzeichnet, daß die Separatorschicht aus einer mikroporösen und gegebenenfalls ionenselektiven Membran besteht.The device according to the invention is now characterized in that the separator layer consists of a microporous and possibly ion-selective membrane.

Der Vorteil dieser Ausbildung liegt vor allem darin, daß durch die Anordnung der Separatorschicht eine Barriere gegen das Zurückdiffundieren der Reaktionsprodukte in das Mauerwerk geschaffen wird. Die Separatorschicht soll hierzu zumindest überall dort an der immobilisierenden Puffermaterialschicht anliegen, wo das Mauerwerk unmittelbar angrenzt, so daß auch die Migration der Ionen zur Elektrode ausschließlich über die Separatorschicht erfolgt. Überdies wird die Elektrode durch die Puffermaterialschicht , so weit dies eben möglich ist, optimal vor allzu starker Korrosion geschützt.The main advantage of this design is that the arrangement of the separator layer creates a barrier against the diffusion of the reaction products back into the masonry. For this purpose, the separator layer should lie against the immobilizing buffer material layer at least wherever the masonry is directly adjacent, so that the migration of the ions to the electrode also takes place exclusively via the separator layer. In addition, the electrode is optimally protected from excessive corrosion by the buffer material layer as far as possible.

Weitere vorteilhafte Ausbildungen der erfindungsgemäßen Vorrichtung sind in den Unteransprüchen 2 bis 5 gekennzeichnet.Further advantageous embodiments of the device according to the invention are characterized in the subclaims 2 to 5.

Die Erfindung betrifft ferner eine Anodenanordnung mit einer von einem Puffermaterial, abgesehen von den Anschlußenden, vollständig umgebenen Elektrode zur Verwendung in einer solchen Vorrichtung zur elektrokinetischen Entsalzung von Mauerwerken, wobei an der Puffermaterialschicht eine Separatorschicht anliegt, und die Anoden anordnung dadurch gekennzeichnet ist, daß die Separatorschicht aus einer mikroporösen und gegebenenfalls ionenselektiven Membran besteht.The invention further relates to an anode arrangement with an electrode completely surrounded by a buffer material, apart from the connection ends, for use in such a device for the electrokinetic desalination of masonry, wherein there is a separator layer on the buffer material layer, and the anode arrangement is characterized in that the separator layer consists of a microporous and possibly ion-selective membrane.

In den Unteransprüchen 7 bis 10 sind weitere vorteilhafte Ausbildungen und Ausführungsformen der erfindungsgemäßen Anodenanordnung gekennzeichnet.Further advantageous designs and embodiments of the anode arrangement according to the invention are characterized in subclaims 7 to 10.

In der Zeichnung ist der Gegenstand der Erfindung näher erläutert, worin

  • Fig. 1 eine schematische Darstellung einer erfindungsgemäßen Vorrichtug zur elektrokinetischen Entsalzung von Mauerwerk,
  • Fig. 2 eine andere Ausführungsform der erfindungsgemäßen Vorrichtung und
  • Fig. 3 bis 5 verschiedene Ausführungsformen einer erfindungsgemäßen, in einer Entsalzungsvorrichtung verwendbaren Anodenanordnung zeigen.
In the drawing, the subject matter of the invention is explained in more detail, wherein
  • 1 is a schematic representation of a device according to the invention for electrokinetic desalination of masonry,
  • Fig. 2 shows another embodiment of the device according to the invention and
  • 3 to 5 show different embodiments of an anode arrangement according to the invention which can be used in a desalination device.

Fig. 1 zeigt eine Entsalzungsvorrichtung mit mehreren in Bohrlöchern in der Wand 1 verlegten Anoden 2, die miteinander verdrahtet sind. Die Anoden 2 sind dabei jeweils bis auf ihre Anschlußenden vollständig von einer ionenimmobilisierenden Puffermaterialschicht umgeben; diese ist wiederum von einer Separatorschicht umschlossen, die unmittelbar an die Bohrlochwandungen angrenzt. Über eine Stromquelle 3 ist gegen eine Kathode, vorliegendenfalls ein Erdstab 4, eine Gleichspannung angelegt.Fig. 1 shows a desalination device with a plurality of anodes 2 laid in boreholes in the wall 1, which are wired together. The anodes 2 are each completely surrounded by an ion-immobilizing buffer material layer except for their connection ends; this, in turn, is enclosed by a separator layer which directly adjoins the borehole walls. A DC voltage is applied to a cathode, in this case an earth rod 4, via a current source 3.

In Fig. 2 ist schematisch eine Entsalzungsvorrichtung dargestellt, bei welcher flächig ausgebildete Anoden 5 an der Mauer 1 angeordnet sind. Die bis auf ihre Anschlußenden jeweils vollständig in ionenimmobilisierendem Puffermaterial eingebetteten Anoden sind wiederum miteinander verdrahtet und an eine Stromquelle 3 angeschlossen, wobei gegen einen Erderstab 4 eine Gleichspannung angelegt ist. Bei dieser Ausführungsform der Entsalzungsvorrichtung ist die an der Puffermaterialschicht anliegende Separatorschicht nur an der der Mauer zugekehrten Fläche angeordnet.A desalination device is shown schematically in FIG. 2, in which flat anodes 5 are arranged on the wall 1. The anodes, each of which is completely embedded in ion-immobilizing buffer material, are in turn wired together and connected to a current source 3, a direct voltage being applied to an earth rod 4. In this embodiment of the desalination device, the separator layer lying against the buffer material layer is arranged only on the surface facing the wall.

Fig.3 zeigt eine patronenförmig ausgebildete Anodenanordnung 6, die sich besonders zur Verlegung in im zu entsalzenden Mauerwerk angebrachten Bohrlöchern eignen. Den Kern der Anodenanordnung bildet ein Metall- vorzugsweise Kupferleiter 7, der mit leitfähigem Kunststoff 8 ummantelt ist. Um diesen Kern ist eine Schicht 9 aus einem Puffermaterial angeordnet, welches die Reaktionsprodukte chemisch und physikalisch bindet. Das Puffermaterial umfaßt im wesentlichen Wasser, Ca(OH)₂, CaCO₃ und/oder CaO oder Mischungen hievon, wobei ein Zusatz eines Gelierungsmittels vorteilhaft ist. Dieses wirkt immobilisierend und ist feuchtigkeitshaltend, so daß keine Austrocknungsgefahr des Bereiches um die Anode besteht.
Die Schicht des Puffermaterials ist von einer aus einer mikroporösen Membran gebildeten Separatorschicht 10 vollständig umschlossen, die im verlegten Zustand der Anodenanordnung in einem Bohrloch im Mauerwerk an die Bohrlochwandung angrenzt.
3 shows a cartridge-shaped anode arrangement 6 which is particularly suitable for laying in drilled holes in the masonry to be desalinated. The core of the anode arrangement is formed by a metal, preferably copper, conductor 7, which is coated with conductive plastic 8. A layer 9 of a buffer material is arranged around this core, which chemically and physically binds the reaction products. The buffer material essentially comprises water, Ca (OH) ₂, CaCO₃ and / or CaO or mixtures thereof, an addition of a gelling agent being advantageous. This has an immobilizing effect and is moisture-retaining, so that there is no risk of the area around the anode drying out.
The layer of the buffer material is completely enclosed by a separator layer 10 formed from a microporous membrane, which in the installed state of the anode arrangement adjoins the wall of the borehole in a borehole in the masonry.

Gemäß Fig.4 ist die Anodenanordnung 11 stangen- bzw. stabförmig ausgebildet. Diese Anordnung eignet sich besonders zur Verlegung in Mauerschlitzen. Dabei ist die wiederum aus einem mit leitfähigem Kunststoff ummantelten Metalleiter bestehende Elektrode 12 bis auf ihre beiden Anschlußenden rundherum von der Puffematerialschicht 13 umschlossen, die außen von der Separatorschicht 14 ummantelt ist. Diese grenzt dann im montierten Zustand der Anodenanordnung in einem Mauerschlitz an dessen Wandungen an.According to Figure 4, the anode assembly 11 is rod-shaped. This arrangement is particularly suitable for laying in wall slots. The electrode 12, which in turn consists of a metal conductor covered with conductive plastic, is enclosed all around except for its two connection ends by the buffer material layer 13, which is covered on the outside by the separator layer 14. This then adjoins the walls of the anode arrangement in a wall slot in the assembled state.

In Fig.5 ist eine flächig an einer Mauer 15 angeordnete Anodenanordnung 16 gezeigt. Die aus einem mit leitfähigem Kunststoff ummantelten Metalleiter gebildete Elektrode 17 ist in Form von sich über die ganze Fläche der Anodenanordnung erstreckenden Schlangenwindungen in der Puffermaterialschicht 18 eingebettet. Auf der der Mauer zugekehrten Seite der Puffermaterialschicht ist die Separatorschicht 19 angeordnet.5 shows an anode arrangement 16 arranged flat on a wall 15. The electrode 17, which is formed from a metal conductor coated with conductive plastic, is embedded in the buffer material layer 18 in the form of serpentine windings which extend over the entire surface of the anode arrangement. The separator layer 19 is arranged on the side of the buffer material layer facing the wall.

Die Anoden können als Stab-, Band- oder Flächenelektroden ausgebildet werden und bestehen aus Metall, Graphit, leitfähigem Kunststoff oder aus mit einem solchen ummantelten Metalleiter bzw. Graphitiaserleiter. Das Puffermaterial umfaßt im wesentlichen Wasser, Ca(OH)₂, CaCO₃ und/oder CaO oder Mischungen hievon, wobei ein Zusatz eines Gelierungsmittels vorteilhaft ist. Dieses wirkt immobilisierend und ist feuchtigkeitshaltend, so daß keine Austrocknungsgefahr des Bereiches um die Anode besteht. Als Geliermittel können grundsätzlich alle handelsüblichen, vorzugsweise jedoch Agar-Agar oder Carboxymethylcellulose eingesetzt werden.The anodes can be designed as rod, strip or surface electrodes and consist of metal, graphite, conductive plastic or of metal conductors or graphite fiber conductors coated with such an electrode. The buffer material essentially comprises Water, Ca (OH) ₂, CaCO₃ and / or CaO or mixtures thereof, an addition of a gelling agent being advantageous. This has an immobilizing effect and is moisture-retaining, so that there is no risk of the area around the anode drying out. In principle, all commercially available, but preferably agar-agar or carboxymethyl cellulose can be used as the gelling agent.

Die im verlegten Zustand an das Mauerwerk unmittelbar angrenzende Separatorschicht dient als Barriere gegen das Zurückdiffundieren der Reaktionsprodukte in das Mauerwerk. Solche Separatoren Osind an sich aus der Batterietechnik bekannt. Sie sind mikroporöse Membranen, die auf Grund ihrer Porenverteilung vorzüglich bestimmte Ionen durchlassen, jedoch größere Agglomerate am Durchtritt hindern. Auch ionenselektive Membranen sind geeignet.
Diese Membranen sollen folgende Eigenschaften aufweisen:

  • gute ionische Leitfähigkeit
  • große Selektivität bezüglich des Transports bestimmter Ionen
  • gute Benetzbarkeit
  • hohe mechanische Festigkeit
  • keine elektrische Leitfähigkeit
  • chemische Beständigkeit gegenüber Elektrolyt und Reaktionsprodukten

Diese Membranen bestehen aus: PTFE, Asbest, PVC, PE, PP, kunststoffgebundener und/oder glasfaserverstärker Cellulose, regenerierter Cellulose, Cellophan oder gereckten Kunststoffolien. Die angelegten Gleichspannungen sollen so hoch wie möglich sein, um einen ausreichen schnellen Ionentransport zu gewährleisten (10 bis 50V).The separator layer immediately adjacent to the masonry when installed serves as a barrier against the diffusion of the reaction products back into the masonry. Such separators are known per se from battery technology. They are microporous membranes which, due to their pore distribution, allow certain ions to pass through, but prevent larger agglomerates from passing through. Ion-selective membranes are also suitable.
These membranes should have the following properties:
  • good ionic conductivity
  • great selectivity regarding the transport of certain ions
  • good wettability
  • high mechanical strength
  • no electrical conductivity
  • chemical resistance to electrolyte and reaction products

These membranes consist of: PTFE, asbestos, PVC, PE, PP, plastic-bound and / or glass fiber reinforced cellulose, regenerated cellulose, cellophane or stretched plastic films. The applied DC voltages should be as high as possible to ensure sufficient fast ion transport (10 to 50V).

Die Wirksamkeit der erfindungsgemäßen Vorrichtung einschließlich der in ihr verwendeten erfindungsgemäßen Anodenanordnung wird nachfolgend an Hand einer Versuchsanlage dargelegt:
Bei der Versuchsanlage wurden Stabelektroden aus mit leitfähigem Kunststoff ummantelten Kupferdrähten gefertigt, die in einem Gemisch von 4 Gew.-% Carboxymethylcellulose und 96 Gew.-% CaCO₃ eingebettet waren. Als Separator diente ein Strumpf aus Wursthaut, an beiden Enden verschlossen. Diese Stabelektroden wurden in die Bohrlöcher im Meuerwerk eingeschoben. Die Bohrlöcher waren in der Verdunstungszone auf einem Meter über dem Fundament angebracht. Als Gegenelektrode diente ein in das Erdreich eingeschlagenes Eisenrohr. Die Anlage wurde mit einer Gleichspannung von 36 V betrieben. Der Coulombsche Wirkungsgrad der Anionen-(Mauersalz-) Umwandlung an der Anode betrug zwischen 40 und 50%, je nach Versalzungsgrad und Feuchtigkeit des angebenden Mauerwerks.
Nach einer Zeit von 60 Tagen waren die 40 Gramm an CaCO₃ verbraucht, und die Elektroden konnten mit den Reaktionsprodukten aus der Mauer entfernt werden. Eine Analyse ergab, daß über 90% der Reaktionsprodukte an der Elektrode gebunden waren.
The effectiveness of the device according to the invention, including the anode arrangement according to the invention used in it, is explained below using a test facility:
In the pilot plant, stick electrodes were made of copper wires coated with conductive plastic, which were embedded in a mixture of 4% by weight carboxymethyl cellulose and 96% by weight CaCO₃. A sock skin stocking, closed at both ends, served as a separator. These stick electrodes were inserted into the drill holes in the masonry. The boreholes were located in the evaporation zone one meter above the foundation. An iron pipe hammered into the ground served as the counter electrode. The system was operated with a DC voltage of 36 V. The Coulombsche The efficiency of the anion (wall salt) conversion at the anode was between 40 and 50%, depending on the degree of salinization and the moisture content of the masonry.
After a period of 60 days, the 40 grams of CaCO₃ had been consumed and the electrodes could be removed from the wall with the reaction products. Analysis showed that over 90% of the reaction products were bound to the electrode.

Claims (10)

  1. Device for electrokinetic desalination of brickwork consisting of at least one positive salt-collecting electrode arranged on or in the brickwork, which is wholly surrounded, apart from the connection ends, with an ion immobilising buffer material, and at least one negative electrode against which a direct voltage is applied, wherein there lies against the buffer material layer a separator layer characterised in that the separator layer consists of a microporous and if desired ion selective membrane.
  2. Device according to Claim 1, characterised in that the separator layer wholly covers the buffer material layer.
  3. Device according to Claim 1, characterised in that with flat construction of the buffer material layer the separator layer is arranged only on one surface.
  4. Device according to one of Claims 1 to 3, characterised in that the separator layer consists of PTFE, asbestos, PVC, PE, PP, plastics bound and/or glassfibre reinforced cellulose, regenerated cellulose, cellophane or stretched plastics foil.
  5. Device according to Claim 1, characterised in that the buffer layer having a buffer material containing in known fashion calcium oxide, calcium hydroxide and/or calcium carbonate contains a gelling agent.
  6. Anode arrangement with an electrode surrounded wholly apart from the connection ends by a buffer arterial for use in a device for electrokinetic desalination of brickwork, wherein against the buffer arterial layer there lies a separator layer characterised in that the separator layer consists of a microporous and if desired ion selective membrane.
  7. Anode arrangement according to Claim 6, characterised in that the separator layer consists of PTFE, asbestos, PVC, PE, PP, plastics bonded and/or glassfibre reinforced cellulose, regenerated cellulose, cellophane or stretched plastics foil.
  8. Anode arrangement according to Claim 6, characterised in that the separator layer wholly covers the buffer material layer.
  9. Anode arrangement according to Claim 6, characterised in that the electrode extending over the entire surface, constructed in known fashion as plate, grid or in the form of meandering windings, is arranged in the buffer material layer and the separator layer is arranged only on one surface of the buffer material.
  10. Anode arrangement according to one of Claims 6 to 9, characterised in that the buffer material containing in known fashion calcium oxide, calcium hydroxide and/or calcium carbonate contains a gelling agent.
EP90908410A 1989-05-30 1990-05-30 Device for electrokinetic desalination of brickwork Expired - Lifetime EP0427840B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1307/89 1989-05-30
AT0130789A AT394409B (en) 1989-05-30 1989-05-30 DEVICE FOR ELECTROKINETIC DESALINATION OF WALLMASKS

Publications (2)

Publication Number Publication Date
EP0427840A1 EP0427840A1 (en) 1991-05-22
EP0427840B1 true EP0427840B1 (en) 1993-08-18

Family

ID=3511056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90908410A Expired - Lifetime EP0427840B1 (en) 1989-05-30 1990-05-30 Device for electrokinetic desalination of brickwork

Country Status (19)

Country Link
EP (1) EP0427840B1 (en)
AT (2) AT394409B (en)
CA (1) CA2033167A1 (en)
CZ (1) CZ285180B6 (en)
DD (1) DD294750A5 (en)
DE (1) DE59002386D1 (en)
DK (1) DK0427840T3 (en)
ES (1) ES2044595T3 (en)
HR (1) HRP921231B1 (en)
HU (1) HU209897B (en)
LT (1) LT3290B (en)
LV (1) LV5314A3 (en)
PL (1) PL163847B1 (en)
RU (1) RU1834960C (en)
SI (1) SI9011062A (en)
SK (1) SK280162B6 (en)
UA (1) UA13472A (en)
WO (1) WO1990015203A1 (en)
YU (1) YU106290A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9208921D0 (en) * 1992-04-24 1992-06-10 Isis Innovation Electrochemical treatment of surfaces
DE69329965D1 (en) * 1992-06-15 2001-04-05 Ortlieb Mathieu METHOD AND DEVICE FOR DEHUMIDIFYING WALLS OF A BUILDING
DE4235583A1 (en) * 1992-10-22 1994-05-05 Tridelta Ag Electro:osmosis anode for building restoration - comprises sprayed anode layer on non-metallic support provides simplified removal of harmful substances from brickworks
US5451677A (en) * 1993-02-09 1995-09-19 Merck & Co., Inc. Substituted phenyl sulfonamides as selective β 3 agonists for the treatment of diabetes and obesity
DE10202764A1 (en) * 2002-01-25 2003-08-07 Fischer Christel Method and arrangement for dehumidifying masonry
FR2846571B1 (en) * 2002-11-06 2006-05-26 Francois Chasteau METHOD FOR ELECTRO-OSMOSIS DAMPING OF A POROUS MEDIUM AND ELECTRODES FOR ITS IMPLEMENTATION

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856646A (en) * 1967-09-19 1974-12-24 D Morarau Methods and electrodes for the drying of damp buildings
NL7603539A (en) * 1976-04-03 1977-10-04 Halle Hoch & Montagebau Veb PROCEDURE FOR RELEASING MOISTURE AND DRYING BUILDING CONSTRUCTIONS.
DD234997A3 (en) * 1983-10-04 1986-04-23 Adw Ddr ELECTRODE ASSEMBLY FOR THE ELECTROCHEMICAL DESALINATION AND DRYING OF MACHINERY
DD231236A3 (en) * 1983-10-04 1985-12-24 Bauakademie Ddr APPARATUS FOR DRYING NAZELY EMERGING MACHINERY

Also Published As

Publication number Publication date
ATA130789A (en) 1991-09-15
HUT62357A (en) 1993-04-28
ATE93291T1 (en) 1993-09-15
DE59002386D1 (en) 1993-09-23
HU209897B (en) 1994-11-28
RU1834960C (en) 1993-08-15
LT3290B (en) 1995-06-26
LTIP513A (en) 1994-11-25
HRP921231B1 (en) 1999-04-30
PL163847B1 (en) 1994-05-31
UA13472A (en) 1997-02-28
EP0427840A1 (en) 1991-05-22
AT394409B (en) 1992-03-25
CZ285180B6 (en) 1999-06-16
DD294750A5 (en) 1991-10-10
HRP921231A2 (en) 1995-08-31
CZ264390A3 (en) 1999-01-13
SI9011062A (en) 1997-08-31
WO1990015203A1 (en) 1990-12-13
SK264390A3 (en) 1994-04-06
CA2033167A1 (en) 1990-12-01
SK280162B6 (en) 1999-09-10
YU106290A (en) 1994-04-05
HU905208D0 (en) 1992-08-28
ES2044595T3 (en) 1994-01-01
LV5314A3 (en) 1993-10-10
DK0427840T3 (en) 1993-10-11

Similar Documents

Publication Publication Date Title
DE69931662T2 (en) ELECTROKINETIC, GEOSYNTHETIC STRUCTURE
EP0100845B1 (en) Reinforcing or supporting element for building material, in particular an electrode
DE2239922C3 (en) Electric accumulator battery
EP0427840B1 (en) Device for electrokinetic desalination of brickwork
DE69632327T2 (en) METHOD FOR CARRYING OUT A LIQUID FLOW IN POROUS MATERIALS
AT404270B (en) DEVICE AND METHOD FOR DEHUMIDIFYING CONSTRUCTIONS
DE3690002C1 (en) Sacrificial anode protection of steel reinforced constructions
DE2706193A1 (en) Electro-physical process esp. for moisture expulsion from masonry - uses multiple electrodes to produce several electrical fields
DE3430449A1 (en) ELECTRODE ARRANGEMENT FOR ELECTROCHEMICAL DESALINATION AND DRYING OF MASONRY
DE2503670A1 (en) PROCESS FOR ACCELERATING OR STOPPING AND REVERSING THE NATURAL MOVEMENT OF LIQUIDS IN SOLIDS WITH A POROESE AND / OR SEMIPERMEABLE STRUCTURE AND ELECTRODES FOR CARRYING OUT THE PROCESS
DE2942653C2 (en)
DE19609892C2 (en) Container for a liquid with a protective electrode
EP0111306B1 (en) Method of drying and protecting masonry against reocurring dampness
DE334890C (en) Galvanic primary element
DE2652012A1 (en) SULFUR-SODIUM-BASED ELECTROCHEMICAL GENERATOR
AT395033B (en) Apparatus for drying structures and keeping them dry
DD210323A1 (en) ARRANGEMENT FOR DRYING AND DRY-HOLDING CONSTRUCTION WORKS
DD249733A1 (en) METHOD FOR DRAINING AND DRYING WALLS
WO2011017728A2 (en) Method for removing corrosive anions from the pore solutions of porous solids using zinc
DD227996A1 (en) ELECTROCHEMICAL DRYING AND DESALINATION OF MOISTURE WALL
DD242440A1 (en) DEVICE FOR DRYING CONSTRUCTION WORKS
DE2126946A1 (en) Electrochemical grounding rod for connect - ing wires to the soil
HU193354B (en) Method for controlling the liquid, first of all water and/or its charged particle preferably salt, ion economy of soil types
DE1301803B (en) Alkali chlorate cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19911002

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STEININGER, KARL-HEINZ, DIPL.-ING.DR.TECHN.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 93291

Country of ref document: AT

Date of ref document: 19930915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & P

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59002386

Country of ref document: DE

Date of ref document: 19930923

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931013

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2044595

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90908410.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980518

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

EUG Se: european patent has lapsed

Ref document number: 90908410.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000524

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000526

Year of fee payment: 11

Ref country code: CH

Payment date: 20000526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000530

Year of fee payment: 11

Ref country code: ES

Payment date: 20000530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000605

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000609

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010509

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010521

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010530

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010530

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

BERE Be: lapsed

Owner name: STEININGER KARL-HEINZ

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011201

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050530