EP0421290A1 - Ultraschall-Stosswellenwandler - Google Patents

Ultraschall-Stosswellenwandler Download PDF

Info

Publication number
EP0421290A1
EP0421290A1 EP90118644A EP90118644A EP0421290A1 EP 0421290 A1 EP0421290 A1 EP 0421290A1 EP 90118644 A EP90118644 A EP 90118644A EP 90118644 A EP90118644 A EP 90118644A EP 0421290 A1 EP0421290 A1 EP 0421290A1
Authority
EP
European Patent Office
Prior art keywords
transducer
ultrasonic shock
shock wave
wave transducer
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90118644A
Other languages
German (de)
English (en)
French (fr)
Inventor
Dagobert Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Wolf GmbH
Original Assignee
Richard Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Wolf GmbH filed Critical Richard Wolf GmbH
Publication of EP0421290A1 publication Critical patent/EP0421290A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to an ultrasonic shock wave transducer for use in lithotripsy, hyperthermia and the like, which sends ultrasonic shock waves generated by it to the calculus or tissue to be destroyed.
  • Dome-shaped or planar transducers in which electronic (DE-OS 3119295) or acoustic focusing of the ultrasonic waves takes place, are used in medicine to disintegrate concrements located in body cavities, to destroy tissue and the like.
  • Ultrasonic shock waves of the type mentioned generally serve their purpose satisfactorily with regard to the first application of the ultrasonic shock waves. So is a sufficiently large concretions are very likely to be destroyed during the first treatment. Often a number of smaller fragments remain, which in turn have to be destroyed. The effort required for this is considerable because each fragment is the subject of a post-treatment.
  • the object of the present invention to further develop an ultrasonic shock wave transducer so that the probability of hit of the ultrasonic shock waves, in particular for smaller fragments or stones, is increased; faster destruction of piles of smaller objects is to be made possible.
  • the likelihood of being hit is thus increased by a targeted enlargement of the focus area.
  • the ultrasonic shock wave transducer according to the invention allows the bundling of the energy to at least two points on a preselected arbitrarily curved space Line.
  • the disadvantages of the theoretical approach are avoided.
  • the transducer focuses the energy of the ultrasound shock waves on an infinite number of points, so that there is a self-contained space-curved line. If the space-curved line is selected as a circular ring, an annular focus region accordingly results in this exemplary embodiment.
  • each planar and essentially dome-shaped transducer can be designed in the manner described.
  • the transducer itself is designed as the transducer directing the ultrasound shock waves generated by it, it has a rotationally symmetrical shape with a bowl-shaped cross-section with a diffusely reflecting base.
  • the focus area will be a circular ring.
  • the transducer as the ultrasonic shock waves generated by it, can itself be constructed on the concretions or tissue-directing transducers in such a way that it consists of several individual segments, each with a focus, which lie on the imaginary arbitrarily curved line. If the individual segments are segments of a spherical cap, the individual foci of the segments will lie on an imaginary circular ring around the main transducer axis.
  • This embodiment can be further developed in that the individual segments can be moved in translation in one plane with respect to the main axis of the converter. If the example is used again, that the individual segments are spherical segments, then the diameter becomes of the circular ring on which the individual foci lie, enlarge if all individual segments are moved apart to the same extent. It will decrease accordingly if the individual segments are moved closer together to the same extent without overlapping. But even an overlap of the individual sound cones is conceivable.
  • a further adjustment possibility of the arbitrarily curved space, but given by the specific design of the transducer, is provided in a further development of the transducer consisting of individual segments if the individual segments are arranged so that they can be pivoted at an angle with respect to the main axis of the transducer.
  • the diameter of the imaginary circular ring on which the individual foci lie will increase if all segments are pivoted away from the main converter axis by the same angle.
  • the transducer is provided with an acoustic lens on its radiation surface, which has several acoustic foci.
  • this lens is formed in one piece and is rotationally symmetrical and its thickness increases steadily from the edge of the transducer to the center thereof, the transducer will have an annular focus area.
  • All of the exemplary embodiments shown can be, for example, mosaic-like in order to generate the ultrasonic shock waves piezoceramic elements. However, this will not be discussed further below.
  • the known transducer 16 has a focus 15, idealized as a point, on which the ultrasonic shock waves are bundled.
  • the focus 15 is aligned with the object to be destroyed during the application of the ultrasonic shock waves, so that both are coincident.
  • the converter 1 is rotationally symmetrical in shape and has a planar base 1 in the center.
  • the transducer 1 In the area of the planar base 4, the transducer 1 has no transducer elements, for example piezoelectric elements such as on the radiation surfaces 2.
  • the transducer 1 emits a rotationally symmetrical sound field. Due to its shape, it focuses the energy of the ultrasonic shock waves on an infinite number of points that lie on a closed, space-curved line 3 about its main axis 13.
  • the curved line 3 is a closed circular ring. Accordingly, the converter 1 in the present case has a closed, ring-shaped focus area.
  • Figure 2 again shows the transducers 16 and 1 in a perspective view for illustration.
  • the curved lines in the interior of the transducer represent only that curved course of the radiation surfaces 2, but not a segmentation of the transducers.
  • the converter 1 is divided into four segments 5, 6, 7, 8 here.
  • the segments 5, 6, 7, 8 are dome-shaped, so that each of them has an individual focus 9, 10, 11, 12.
  • the segments 5, 6, 7, 8 are shown arranged relative to one another in the present case so that the individual foci 9, 10, 11, 12 lie on an imaginary space-curved line 3 in the form of a circular ring.
  • the individual segments 5, 6, 7, 8 can be moved in translation in one plane with respect to the main axis 13 of the converter 1, as is indicated by the double arrows in the top view (c). If, starting from the position shown, the individual segments are moved away from the main axis 13 by the same distance, the diameter of the imaginary circular ring 3 increases. It becomes correspondingly smaller when the individual segments move towards the main axis 13.
  • other space-curved lines 3 can also be represented as a circular ring, namely if the distances by which the individual segments 5, 6, 7, 8 are moved with respect to the main axis 13 are not the same.
  • FIG. 4 shows a further embodiment of the converter 1, which like the one according to FIG. 3 has a non-rotationally symmetrical shape.
  • the transducer has a circular outer contour in its maximally extended position (b), while this 3 is the case when all the individual segments 5, 6, 7, 8 have moved as far as possible to the main axis 13 of the converter 1. Then the converter 1 takes the position (a) of the converter 16 in principle.
  • dome segments 5, 6 are arranged at their base at a certain distance from one another.
  • the individual foci 9, 10 are coincident in this position.
  • the individual segments 5, 6 can now be moved in the direction of the main axis 13.
  • the end position (b) is reached when both segments 5, 6 touch on the main axis 13.
  • the sound cones emanating from the individual segments 5, 6 overlap, so that the individual focuses 9, 10 move away from one another. Any intermediate position is of course possible between position (a) and position (b).
  • FIG. 6 schematically shows a further embodiment of the converter.
  • the segments 5, 6 can be pivoted at an angle with respect to the main axis 13.
  • the segments 5, 6 can, for example, be pivoted into position (b), as a result of which the individual foci 9, 10 move away from one another.
  • the individual angles around which the individual segments are pivoted do not always have to be of the same size.
  • different curved lines can be created from a circular ring, on which the individual foci come to rest.
  • FIG. 7 (b) shows a further variant of the converter, which here consists of a single rotationally symmetrical body. It emerges from the dome-shaped, known transducer (a) by tilting the cross-section halves and has a ring focus.
  • FIG. 8 shows a further interesting embodiment of the transducer 1.
  • An acoustic lens 14, which has a plurality of foci 17, 18, is applied to the radiation surface 2 of the transducer 1.
  • an enlargement of the focus area is thus not achieved by moving or pivoting individual elements with respect to the main axis 13, but rather by "acoustically tilting".
  • the lens 14 is formed in one piece and is rotationally symmetrical. Its thickness increases steadily from the edge of the transducer 1 to its center.
  • the converter shown has a focus area, which lies on a closed circular ring as a space-curved line.
  • a focus area which lies on a closed circular ring as a space-curved line.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Surgical Instruments (AREA)
EP90118644A 1989-10-03 1990-09-28 Ultraschall-Stosswellenwandler Withdrawn EP0421290A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3932967 1989-10-03
DE3932967A DE3932967A1 (de) 1989-10-03 1989-10-03 Ultraschall-stosswellenwandler

Publications (1)

Publication Number Publication Date
EP0421290A1 true EP0421290A1 (de) 1991-04-10

Family

ID=6390740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90118644A Withdrawn EP0421290A1 (de) 1989-10-03 1990-09-28 Ultraschall-Stosswellenwandler

Country Status (3)

Country Link
US (1) US5193527A (zh)
EP (1) EP0421290A1 (zh)
DE (1) DE3932967A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008413A1 (de) * 1990-11-20 1992-05-29 Storz Medical Ag Vorrichtung zur erzeugung von fokussierten akustischen schallwellen
WO1993021626A1 (de) * 1991-01-28 1993-10-28 Siemens Aktiengesellschaft Akustischer druckimpulsgenerator, insbesondere zur heilung von knochenleiden
DE19927481C1 (de) * 1999-06-16 2000-06-29 Siemens Ag Akustische Fokussiereinrichtung mit veränderbarem Fokusabstand
WO2008003910A1 (fr) * 2006-07-05 2008-01-10 Edap S.A. Appareil de therapie a fonctionnement sequentiel

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
FR2695788B1 (fr) * 1992-09-14 1994-12-23 Framatome Sa Procédé de réalisation de la surface de sortie d'un traducteur à faisceau ultrasonore focalisé et traducteur comportant une surface de sortie ainsi réalisée.
DE4238645C1 (de) * 1992-11-16 1994-05-05 Siemens Ag Therapeutischer Ultraschall-Applikator für den Urogenitalbereich
JP3243047B2 (ja) * 1993-03-12 2002-01-07 呉羽化学工業株式会社 受波型圧電素子
US5817021A (en) * 1993-04-15 1998-10-06 Siemens Aktiengesellschaft Therapy apparatus for treating conditions of the heart and heart-proximate vessels
US5743855A (en) * 1995-03-03 1998-04-28 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5415175A (en) * 1993-09-07 1995-05-16 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5438998A (en) * 1993-09-07 1995-08-08 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5371483A (en) * 1993-12-20 1994-12-06 Bhardwaj; Mahesh C. High intensity guided ultrasound source
FR2715313B1 (fr) * 1994-01-27 1996-05-31 Edap Int Procédé de commande d'un appareil de traitement par hyperthermie à l'aide d'ultrasons.
DE19733233C1 (de) * 1997-08-01 1998-09-17 Wolf Gmbh Richard Elektroakustischer Wandler
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
DE19914809B4 (de) * 1999-03-31 2006-10-05 Dornier Medtech Holding International Gmbh Verwendung eines abbildenden Systems in einer Vorrichtung zur Erzeugung von fokussierten Stoßwellen
DE19928491A1 (de) 1999-06-22 2001-01-04 Wolf Gmbh Richard Vorrichtung, insbesondere Therapievorrichtung, zum Beschallen von Objekten mit fokussiertem Schall
US6571444B2 (en) * 2001-03-20 2003-06-03 Vermon Method of manufacturing an ultrasonic transducer
DE10138434C1 (de) * 2001-08-06 2003-02-13 Wolf Gmbh Richard Fokussierender elektroakustischer Wandler und Verfahren zum Test seiner Ausgangsleistung
US20030171701A1 (en) * 2002-03-06 2003-09-11 Eilaz Babaev Ultrasonic method and device for lypolytic therapy
US7410464B2 (en) * 2002-06-04 2008-08-12 Moshe Ein-Gal Wave generating device
US7167415B2 (en) * 2004-09-15 2007-01-23 Packaging Technologies & Inspection Llc Transducers for focusing sonic energy in transmitting and receiving device
US7666152B2 (en) * 2006-02-06 2010-02-23 Moshe Ein-Gal Focusing electromagnetic acoustic wave source
US20080009774A1 (en) * 2006-06-15 2008-01-10 Capelli Christopher C Methods of diminishing permanent tissue markings and related apparatus
US20080262483A1 (en) * 2007-04-17 2008-10-23 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method for removing permanent tissue markings
EP2092916A1 (en) * 2008-02-19 2009-08-26 Institut National De La Sante Et De La Recherche Medicale (Inserm) A method of treating an ocular pathology by applying high intensity focused ultrasound and device thereof
DE102008038214B4 (de) * 2008-08-18 2013-12-05 Siemens Aktiengesellschaft Verfahren und Stoßwellenkopf zum Erzeugen von fokussierten Ultraschall-Stoßwellen
US20100204617A1 (en) * 2009-02-12 2010-08-12 Shmuel Ben-Ezra Ultrasonic probe with acoustic output sensing
EP2398432B1 (en) * 2009-02-18 2017-09-06 Eye Tech Care Ultrasound device comprising means to generate ultrasound beam presenting a concave segment shape having a single curvature
RU2515509C2 (ru) * 2009-02-18 2014-05-10 Ай Тек Кэар Ультразвуковое устройство, содержащее средства для генерации луча ультразвука, которые имеют форму вогнутых сегментов с одной кривизной
CN102164542B (zh) * 2009-10-12 2015-09-30 科纳医药股份有限公司 神经的能量调节
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US20110118600A1 (en) * 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US20110092880A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
DE102009049487B4 (de) * 2009-10-15 2015-05-13 Richard Wolf Gmbh Elektroakustischer Wandler
WO2011091020A2 (en) 2010-01-19 2011-07-28 The Board Of Regents Of The University Of Texas System Apparatuses and systems for generating high-frequency shockwaves, and methods of use
US9833373B2 (en) 2010-08-27 2017-12-05 Les Solutions Médicales Soundbite Inc. Mechanical wave generator and method thereof
US11865371B2 (en) 2011-07-15 2024-01-09 The Board of Regents of the University of Texas Syster Apparatus for generating therapeutic shockwaves and applications of same
US20130340530A1 (en) * 2012-06-20 2013-12-26 General Electric Company Ultrasonic testing device with conical array
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
AU2016261936B2 (en) 2015-05-12 2020-12-17 Soliton, Inc. Methods of treating cellulite and subcutaneous adipose tissue
TWI793754B (zh) 2016-07-21 2023-02-21 美商席利通公司 產生醫療脈衝之裝置、用於產生醫療脈衝之裝置、以及產生脈衝之方法
JP2020508112A (ja) 2017-02-19 2020-03-19 ソリトン, インコーポレイテッド 生物学的媒体中の選択的レーザ誘起光学破壊
CN107569271A (zh) * 2017-09-22 2018-01-12 优超医疗科技(徐州)有限公司 一种冲击波碎石装置及其碎石方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866711A (en) * 1973-06-04 1975-02-18 Us Navy Solid ultrasonic lens doublet
US4029395A (en) * 1975-10-31 1977-06-14 Westinghouse Electric Corporation Method for altering the focal zone of a lens system
DE3150513A1 (de) * 1981-12-21 1983-06-30 Battelle-Institut E.V., 6000 Frankfurt "vorrichtung zur lokalen hyperthermiebehandlung"
US4401910A (en) * 1981-11-30 1983-08-30 Analogic Corporation Multi-focus spiral ultrasonic transducer
GB2126901A (en) * 1982-09-15 1984-04-04 Varian Associates Hyperthermia applicator
EP0367117A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Shock wave generating apparatus forming wide concretion-dis-integrating region by focused shock wave

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
EP0068961A3 (fr) * 1981-06-26 1983-02-02 Thomson-Csf Dispositif d'échauffement localisé de tissus biologiques
DE3417985C2 (de) * 1984-05-15 1986-03-27 Dornier System Gmbh, 7990 Friedrichshafen Vorrichtung zur berührungsfreien Zerkleinerung von Konkrementen
DE3510341A1 (de) * 1985-03-22 1986-10-02 Richard Wolf Gmbh, 7134 Knittlingen Schallsender zur erzeugung akustischer impulse
DE3543867C3 (de) * 1985-12-12 1994-10-06 Wolf Gmbh Richard Vorrichtung zur räumlichen Ortung und zur Zerstörung von Konkrementen in Körperhöhlen
EP0310380B2 (en) * 1987-09-30 1997-04-02 Kabushiki Kaisha Toshiba Ultrasonic medical treatment apparatus
JPH0722578B2 (ja) * 1988-12-09 1995-03-15 松下電器産業株式会社 超音波探触子
DE3932959C1 (zh) * 1989-10-03 1991-04-11 Richard Wolf Gmbh, 7134 Knittlingen, De
US5050588A (en) * 1990-02-08 1991-09-24 Richard Grey High energy ultrasonic lens assembly with mounting facets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866711A (en) * 1973-06-04 1975-02-18 Us Navy Solid ultrasonic lens doublet
US4029395A (en) * 1975-10-31 1977-06-14 Westinghouse Electric Corporation Method for altering the focal zone of a lens system
US4401910A (en) * 1981-11-30 1983-08-30 Analogic Corporation Multi-focus spiral ultrasonic transducer
DE3150513A1 (de) * 1981-12-21 1983-06-30 Battelle-Institut E.V., 6000 Frankfurt "vorrichtung zur lokalen hyperthermiebehandlung"
GB2126901A (en) * 1982-09-15 1984-04-04 Varian Associates Hyperthermia applicator
EP0367117A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Shock wave generating apparatus forming wide concretion-dis-integrating region by focused shock wave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008413A1 (de) * 1990-11-20 1992-05-29 Storz Medical Ag Vorrichtung zur erzeugung von fokussierten akustischen schallwellen
WO1993021626A1 (de) * 1991-01-28 1993-10-28 Siemens Aktiengesellschaft Akustischer druckimpulsgenerator, insbesondere zur heilung von knochenleiden
DE19927481C1 (de) * 1999-06-16 2000-06-29 Siemens Ag Akustische Fokussiereinrichtung mit veränderbarem Fokusabstand
WO2008003910A1 (fr) * 2006-07-05 2008-01-10 Edap S.A. Appareil de therapie a fonctionnement sequentiel
FR2903316A1 (fr) 2006-07-05 2008-01-11 Edap S A Sonde de therapie et appareil de therapie incluant une telle sonde

Also Published As

Publication number Publication date
US5193527A (en) 1993-03-16
DE3932967A1 (de) 1991-04-11
DE3932967C2 (zh) 1992-03-26

Similar Documents

Publication Publication Date Title
DE3932967C2 (zh)
DE102008038214B4 (de) Verfahren und Stoßwellenkopf zum Erzeugen von fokussierten Ultraschall-Stoßwellen
EP0701731B1 (de) Vorrichtung zur behandlung von biologischem gewebe und körperkonkrementen
EP0189756B1 (de) Einrichtung zur Erzeugung zeitlich versetzter Stosswellen
EP0397980B1 (de) Lithotriptor
DE4110102C2 (zh)
EP0308644A2 (de) Fokussierender Ultraschallwandler
EP0407779A1 (de) Vorlaufstrecke für eine Lithotripsieeinrichtung
DE10301875B4 (de) Vorrichtung zur Erzeugung von unterschiedlichen akustischen Druckwellen durch variable Reflexionsflächen
DE3608877C2 (zh)
EP1445758A2 (de) Linsensystem für einen Stosswellengenerator
DE19548000C1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP0400196B1 (de) Stosswellenkopf für die Zertrümmerung von Konkrementen
EP1520536A1 (de) Vorrichtung zur Applikation von akustischen Stosswellen
DE202007001884U1 (de) Fokussierende, elektromagnetische Schallwellenquelle
DE2718847C3 (de) Vorrichtung zur Zertrümmerung von Nierensteinen mittels einer oder mehreren Stoßwellen
CH696683A5 (de) Einrichtung zum Erzeugen von Ultraschallstrahlen für die Ultraschalltherapie.
EP0513279B1 (de) Vorrichtung zur erzeugung von fokussierten akustischen schallwellen
EP1062933A2 (de) Vorrichtung, insbesondere Therapievorrichtung, zum Beschallen von Objekten mit fokussiertem Schall
EP0243650B1 (de) Stosswellenquelle mit verbesserter Fokuszone
DE4421938C2 (de) Vorrichtung zur Erzeugung fokussierter akustischer Wellen
EP1371336B1 (de) Balg zur Ankopplung einer Quelle akustischer Wellen an ein Lebewesen
WO2006108615A1 (de) Fokussiereinrichtung für eine vorrichtung zur erzeugung von stosswellen
EP0387858A1 (de) Vorrichtung zur Erzeugung von fokussierten akustischen Wellenfeldern
DE4102447C1 (zh)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19910604

17Q First examination report despatched

Effective date: 19930511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19951103