EP0421290A1 - Ultrasonic shock wave transducer - Google Patents

Ultrasonic shock wave transducer Download PDF

Info

Publication number
EP0421290A1
EP0421290A1 EP90118644A EP90118644A EP0421290A1 EP 0421290 A1 EP0421290 A1 EP 0421290A1 EP 90118644 A EP90118644 A EP 90118644A EP 90118644 A EP90118644 A EP 90118644A EP 0421290 A1 EP0421290 A1 EP 0421290A1
Authority
EP
European Patent Office
Prior art keywords
transducer
ultrasonic shock
shock wave
wave transducer
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90118644A
Other languages
German (de)
French (fr)
Inventor
Dagobert Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Wolf GmbH
Original Assignee
Richard Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Wolf GmbH filed Critical Richard Wolf GmbH
Publication of EP0421290A1 publication Critical patent/EP0421290A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to an ultrasonic shock wave transducer for use in lithotripsy, hyperthermia and the like, which sends ultrasonic shock waves generated by it to the calculus or tissue to be destroyed.
  • Dome-shaped or planar transducers in which electronic (DE-OS 3119295) or acoustic focusing of the ultrasonic waves takes place, are used in medicine to disintegrate concrements located in body cavities, to destroy tissue and the like.
  • Ultrasonic shock waves of the type mentioned generally serve their purpose satisfactorily with regard to the first application of the ultrasonic shock waves. So is a sufficiently large concretions are very likely to be destroyed during the first treatment. Often a number of smaller fragments remain, which in turn have to be destroyed. The effort required for this is considerable because each fragment is the subject of a post-treatment.
  • the object of the present invention to further develop an ultrasonic shock wave transducer so that the probability of hit of the ultrasonic shock waves, in particular for smaller fragments or stones, is increased; faster destruction of piles of smaller objects is to be made possible.
  • the likelihood of being hit is thus increased by a targeted enlargement of the focus area.
  • the ultrasonic shock wave transducer according to the invention allows the bundling of the energy to at least two points on a preselected arbitrarily curved space Line.
  • the disadvantages of the theoretical approach are avoided.
  • the transducer focuses the energy of the ultrasound shock waves on an infinite number of points, so that there is a self-contained space-curved line. If the space-curved line is selected as a circular ring, an annular focus region accordingly results in this exemplary embodiment.
  • each planar and essentially dome-shaped transducer can be designed in the manner described.
  • the transducer itself is designed as the transducer directing the ultrasound shock waves generated by it, it has a rotationally symmetrical shape with a bowl-shaped cross-section with a diffusely reflecting base.
  • the focus area will be a circular ring.
  • the transducer as the ultrasonic shock waves generated by it, can itself be constructed on the concretions or tissue-directing transducers in such a way that it consists of several individual segments, each with a focus, which lie on the imaginary arbitrarily curved line. If the individual segments are segments of a spherical cap, the individual foci of the segments will lie on an imaginary circular ring around the main transducer axis.
  • This embodiment can be further developed in that the individual segments can be moved in translation in one plane with respect to the main axis of the converter. If the example is used again, that the individual segments are spherical segments, then the diameter becomes of the circular ring on which the individual foci lie, enlarge if all individual segments are moved apart to the same extent. It will decrease accordingly if the individual segments are moved closer together to the same extent without overlapping. But even an overlap of the individual sound cones is conceivable.
  • a further adjustment possibility of the arbitrarily curved space, but given by the specific design of the transducer, is provided in a further development of the transducer consisting of individual segments if the individual segments are arranged so that they can be pivoted at an angle with respect to the main axis of the transducer.
  • the diameter of the imaginary circular ring on which the individual foci lie will increase if all segments are pivoted away from the main converter axis by the same angle.
  • the transducer is provided with an acoustic lens on its radiation surface, which has several acoustic foci.
  • this lens is formed in one piece and is rotationally symmetrical and its thickness increases steadily from the edge of the transducer to the center thereof, the transducer will have an annular focus area.
  • All of the exemplary embodiments shown can be, for example, mosaic-like in order to generate the ultrasonic shock waves piezoceramic elements. However, this will not be discussed further below.
  • the known transducer 16 has a focus 15, idealized as a point, on which the ultrasonic shock waves are bundled.
  • the focus 15 is aligned with the object to be destroyed during the application of the ultrasonic shock waves, so that both are coincident.
  • the converter 1 is rotationally symmetrical in shape and has a planar base 1 in the center.
  • the transducer 1 In the area of the planar base 4, the transducer 1 has no transducer elements, for example piezoelectric elements such as on the radiation surfaces 2.
  • the transducer 1 emits a rotationally symmetrical sound field. Due to its shape, it focuses the energy of the ultrasonic shock waves on an infinite number of points that lie on a closed, space-curved line 3 about its main axis 13.
  • the curved line 3 is a closed circular ring. Accordingly, the converter 1 in the present case has a closed, ring-shaped focus area.
  • Figure 2 again shows the transducers 16 and 1 in a perspective view for illustration.
  • the curved lines in the interior of the transducer represent only that curved course of the radiation surfaces 2, but not a segmentation of the transducers.
  • the converter 1 is divided into four segments 5, 6, 7, 8 here.
  • the segments 5, 6, 7, 8 are dome-shaped, so that each of them has an individual focus 9, 10, 11, 12.
  • the segments 5, 6, 7, 8 are shown arranged relative to one another in the present case so that the individual foci 9, 10, 11, 12 lie on an imaginary space-curved line 3 in the form of a circular ring.
  • the individual segments 5, 6, 7, 8 can be moved in translation in one plane with respect to the main axis 13 of the converter 1, as is indicated by the double arrows in the top view (c). If, starting from the position shown, the individual segments are moved away from the main axis 13 by the same distance, the diameter of the imaginary circular ring 3 increases. It becomes correspondingly smaller when the individual segments move towards the main axis 13.
  • other space-curved lines 3 can also be represented as a circular ring, namely if the distances by which the individual segments 5, 6, 7, 8 are moved with respect to the main axis 13 are not the same.
  • FIG. 4 shows a further embodiment of the converter 1, which like the one according to FIG. 3 has a non-rotationally symmetrical shape.
  • the transducer has a circular outer contour in its maximally extended position (b), while this 3 is the case when all the individual segments 5, 6, 7, 8 have moved as far as possible to the main axis 13 of the converter 1. Then the converter 1 takes the position (a) of the converter 16 in principle.
  • dome segments 5, 6 are arranged at their base at a certain distance from one another.
  • the individual foci 9, 10 are coincident in this position.
  • the individual segments 5, 6 can now be moved in the direction of the main axis 13.
  • the end position (b) is reached when both segments 5, 6 touch on the main axis 13.
  • the sound cones emanating from the individual segments 5, 6 overlap, so that the individual focuses 9, 10 move away from one another. Any intermediate position is of course possible between position (a) and position (b).
  • FIG. 6 schematically shows a further embodiment of the converter.
  • the segments 5, 6 can be pivoted at an angle with respect to the main axis 13.
  • the segments 5, 6 can, for example, be pivoted into position (b), as a result of which the individual foci 9, 10 move away from one another.
  • the individual angles around which the individual segments are pivoted do not always have to be of the same size.
  • different curved lines can be created from a circular ring, on which the individual foci come to rest.
  • FIG. 7 (b) shows a further variant of the converter, which here consists of a single rotationally symmetrical body. It emerges from the dome-shaped, known transducer (a) by tilting the cross-section halves and has a ring focus.
  • FIG. 8 shows a further interesting embodiment of the transducer 1.
  • An acoustic lens 14, which has a plurality of foci 17, 18, is applied to the radiation surface 2 of the transducer 1.
  • an enlargement of the focus area is thus not achieved by moving or pivoting individual elements with respect to the main axis 13, but rather by "acoustically tilting".
  • the lens 14 is formed in one piece and is rotationally symmetrical. Its thickness increases steadily from the edge of the transducer 1 to its center.
  • the converter shown has a focus area, which lies on a closed circular ring as a space-curved line.
  • a focus area which lies on a closed circular ring as a space-curved line.

Abstract

An ultrasonic shockwave transducer (1) is described for use in lithotripsy, hyperthermia and the like, which transducer conveys ultrasonic shockwaves generated by it to the concretion or tissue to be destroyed. It is characterised in that it focuses the energy of the ultrasonic shockwaves in proportion on at least two points, which are arranged on an imaginary line (3) curved as desired in space, lying about its main axis (13) and spaced apart from its irradiation surface (2). <IMAGE>

Description

Die Erfindung betrifft einen Ultraschall-Stoßwellen­wandler für die Anwendung in der Lithotripsie, Hyperthermie und dergl., der von ihm erzeugte Ultraschall-Stoßwellen auf das zu zerstörende Konkrement oder Gewebe sendet.The invention relates to an ultrasonic shock wave transducer for use in lithotripsy, hyperthermia and the like, which sends ultrasonic shock waves generated by it to the calculus or tissue to be destroyed.

Derartige Ultraschall-Stoßwellenwandler sind seit längerem bekannt. Beispielsweise wird diesbezüglich verwiesen auf die DE-OS 3510341.Such ultrasonic shock wave transducers have been known for a long time. For example, reference is made to DE-OS 3510341 in this regard.

Kalottenförmige oder planare Wandler, bei denen eine elektronische (DE-OS 3119295) oder akustische Fokussierung der Ultraschallwellen stattfindet, dienen in der Medizin zur Desintegration von in Körperhöhlen befindlichen Konkrementen, zur Zerstörung von Gewebe und dergleichen.Dome-shaped or planar transducers, in which electronic (DE-OS 3119295) or acoustic focusing of the ultrasonic waves takes place, are used in medicine to disintegrate concrements located in body cavities, to destroy tissue and the like.

Stets wird bei den bekannten Wandlern versucht, die Ultra­schall-Stoßwellen möglichst punktgenau auf einen geometrischen oder akustischen Ort,den Fokus, zu bündeln, um hier eine für die jeweilige Indikation notwendige Energiedichte zu verfügen. Für die Applikation von Ultraschall-Stoßwellen ist der genannte Fokus des Wandlers auf das zu zerstörende Objekt ausgerichtet.In the known transducers, attempts are always made to focus the ultrasonic shock waves as precisely as possible on a geometric or acoustic location, the focus, in order to have the energy density required for the respective indication. For the application of ultrasonic shock waves, the focus of the transducer is aimed at the object to be destroyed.

Ultraschall-Stoßwellen der genannten Art erfüllen ihren Zweck im allgemeinen zufriedenstellend im Hinblick auf die erste Applikation der Ultraschall-Stoßwellen. So wird ein hinreichend großes Konkrement mit hoher Wahrscheinlichkeit bei der ersten Behandlung zerstört werden. Zurück bleiben häufig eine Anzahl kleinerer Fragmente, die ihrerseits zerstört werden müssen. Der hierfür erforderliche Aufwand ist beträchtlich, denn jedes Fragment ist Objekt einer Nachbehandlung.Ultrasonic shock waves of the type mentioned generally serve their purpose satisfactorily with regard to the first application of the ultrasonic shock waves. So is a sufficiently large concretions are very likely to be destroyed during the first treatment. Often a number of smaller fragments remain, which in turn have to be destroyed. The effort required for this is considerable because each fragment is the subject of a post-treatment.

Vor diesem Hintergrund ist es nun die Aufgabe der vorliegenden Erfindung, einen Ultraschall-Stoßwellenwandler so weiter zu entwickeln, daß die Trefferwahrscheinlichkeit der Ultraschall-Stoßwellen, insbesondere für kleinere Fragmente oder Steine erhöht wird; eine schnellere Zerstörung von Haufen kleinerer Objekte soll ermöglicht werden.Against this background, it is the object of the present invention to further develop an ultrasonic shock wave transducer so that the probability of hit of the ultrasonic shock waves, in particular for smaller fragments or stones, is increased; faster destruction of piles of smaller objects is to be made possible.

Gelöst wird diese Aufgabe durch das kennzeichnende Merkmal. des Anspruchs 1.This task is solved by the characteristic feature. of claim 1.

Die Trefferwahrscheinlichkeit wird also durch eine gezielte Vergrößerung des Fokusgebietes erhöht.The likelihood of being hit is thus increased by a targeted enlargement of the focus area.

Denktheoretisch wäre selbstverständlich eine Aufweitung des Fokusgebietes einfach durch eine Verringerung der Apertur von bekannten Wandlern möglich. Dies hätte aber die gravierenden Nachteile zur Folge, daß die Energiedichte der Ultraschall-Stoßwellen an der Eintrittfläche zum Körper des Patienten erhöht würde, woraus ein Schmerzempfinden beim Patienten resultieren würde, und daß die Vergrößerung des Fokusgebietes in der Abstrahlebene der Wellen auch zu dessen Vergrößerung in der räumlichen Tiefe führen würde, so daß in diesem Bereich die Energie nicht auf die gewünschten Zonen verteilt würde.From a theoretical point of view, an expansion of the focus area would of course be possible simply by reducing the aperture of known converters. However, this would have the serious disadvantages that the energy density of the ultrasound shock waves at the entrance surface to the patient's body would be increased, which would result in a pain sensation for the patient, and that the enlargement of the focus area in the radiation plane of the waves would also increase its size of the spatial depth, so that in this area the energy would not be distributed to the desired zones.

Demgegenüber gestattet der erfindungsgemäße Ultraschall-­Stoßwellenwandler die Bündelung der Energie auf mindestens zwei Punkte, die auf einer vorgewählten beliebigen raumgekrümmten Linie liegen. Hierbei werden die Nachteile des denktheoretischen Ansatzes vermieden.In contrast, the ultrasonic shock wave transducer according to the invention allows the bundling of the energy to at least two points on a preselected arbitrarily curved space Line. The disadvantages of the theoretical approach are avoided.

Gemäß einer Ausführungsform fokussiert der Wandler die Energie der Ultraschall-Stoßwellen auf unendlich viele Punkte, so daß sich eine in sich geschlossene raumge­krümmte Linie ergibt. Wenn die raumgekrümmte Linie als Kreis­ring ausgewählt wird, ergibt sich demgemäß bei diesem Ausführungsbeispiel ein ringförmiger Fokusbereich.According to one embodiment, the transducer focuses the energy of the ultrasound shock waves on an infinite number of points, so that there is a self-contained space-curved line. If the space-curved line is selected as a circular ring, an annular focus region accordingly results in this exemplary embodiment.

Grundsätzlich kann jeder planare und im wesentlichen kalotten­förmige Wandler in der beschriebenen Weise ausgestaltet sein.In principle, each planar and essentially dome-shaped transducer can be designed in the manner described.

Ist der Wandler als die von ihm erzeugten Ultraschall-­Stoßwellen selbst auf das Konkrement oder Gewebe lenkender Wandler ausgebildet, weist er gemäß einer vor­teilhaften Weiterbildung eine rotationssymmetrische Gestalt mit einer im Querschnitt schalenförmigen Form mit diffus reflektierender Basis auf. Das Fokusgebiet wird in diesem Falle ein Kreisring sein.If the transducer itself is designed as the transducer directing the ultrasound shock waves generated by it, it has a rotationally symmetrical shape with a bowl-shaped cross-section with a diffusely reflecting base. In this case, the focus area will be a circular ring.

Gemäß einer weiteren Ausführungsform kann der Wandler als die von ihm erzeugten Ultraschall-Stoßwellen selbst auf das Konkrement oder Gewebe lenkender Wandler so aufgebaut sein, daß er aus mehreren Einzelsegmenten mit jeweils einem Fokus besteht, die auf der gedachten beliebig raum­gekrümmten Linie liegen. Sind die Einzelsegmente Segmente einer Kalotte, so werden die Einzelfoki der Segmente auf einen gedachten Kreisring um die Wandlerhauptachse liegen.According to a further embodiment, the transducer, as the ultrasonic shock waves generated by it, can itself be constructed on the concretions or tissue-directing transducers in such a way that it consists of several individual segments, each with a focus, which lie on the imaginary arbitrarily curved line. If the individual segments are segments of a spherical cap, the individual foci of the segments will lie on an imaginary circular ring around the main transducer axis.

Diese Ausführungsform kann dadurch weitergebildet werden, daß die Einzelsegmente in einer Ebene in bezug auf die Hauptachse des Wandlers translatorisch verfahrbar sind. Wird wieder von dem Beispiel ausgegangen, daß die Einzel­segmente Kalottensegmente sind, so wird sich der Durchmesser des Kreisringes, auf dem die Einzelfoki liegen, vergrößern, wenn alle Einzelsegmente im selben Maße auseinandergerückt werden. Entsprechend wird er sich verkleinern, wenn die Einzelsegmente im selben Maße näher aneinander gerückt werden, ohne sich hierbei zu überlappen. Aber selbst eine Überlappung der Einzelschallkegel ist denkbar.This embodiment can be further developed in that the individual segments can be moved in translation in one plane with respect to the main axis of the converter. If the example is used again, that the individual segments are spherical segments, then the diameter becomes of the circular ring on which the individual foci lie, enlarge if all individual segments are moved apart to the same extent. It will decrease accordingly if the individual segments are moved closer together to the same extent without overlapping. But even an overlap of the individual sound cones is conceivable.

Eine weitere Verstellmöglichkeit der beliebig raumgekrümmten, aber durch die konkrete Bauform des Wandlers vorgegebene Linie ist bei einer Weiterbildung des aus Einzelsegmenten bestehenden Wandlers gegeben, wenn die Einzelsegmente in bezug auf die Hauptachse des Wandlers im Winkel schwenkbar abgeordnet sind.A further adjustment possibility of the arbitrarily curved space, but given by the specific design of the transducer, is provided in a further development of the transducer consisting of individual segments if the individual segments are arranged so that they can be pivoted at an angle with respect to the main axis of the transducer.

Wenn dabei wieder die Einzelsegmente Kalottensegmente sind, so wird sich der Durchmesser des gedachten Kreisringes, auf dem die Einzelfoki liegen, vergrößern, wenn alle Segmente um den selben Winkel von der Wandlerhauptachse fort geschwenkt werden.If the individual segments are again spherical segments, the diameter of the imaginary circular ring on which the individual foci lie will increase if all segments are pivoted away from the main converter axis by the same angle.

Gemäß einer weiteren Ausführungsform ist der Wandler auf seiner Abstrahlfläche mit einer akustischen Linse versehen, die mehrere akustische Foki aufweist.According to a further embodiment, the transducer is provided with an acoustic lens on its radiation surface, which has several acoustic foci.

Wenn diese Linse einstückig und rotationssymmetrisch ausgebildet ist und ihre Dicke vom Rand des Wandlers zu dessen Mitte hin stetig zunimmt, wird der Wandler einen ringförmigen Fokusbereich aufweisen.If this lens is formed in one piece and is rotationally symmetrical and its thickness increases steadily from the edge of the transducer to the center thereof, the transducer will have an annular focus area.

Mit allen vorbeschriebenen Ausführungsformen des Wandlers wird ein guter Wirkungsquerschnitt erzielt, d.h., daß der Querschnitt des Fokusbereiches, in welchem eine genügend große Energiedichte vorliegt, um noch zur Zerstörung des Konkrementes, Gewebe und dergleichen beizutragen, hinreichend groß ist.With all of the above-described embodiments of the transducer, a good cross-section is achieved, ie the cross-section of the focus area, in which there is a sufficiently large energy density to contribute to the destruction of the concrement, tissue and the like, is sufficiently large.

Die Erfindung wird anhand einiger Ausführungsbeispiele gemäß der Zeichnungen näher erläutert. Hierbei zeigt:

  • Figur 1 eine Aufsicht (a), Schnittansicht (b) eines bekannten Wandlers im Vergleich zur Aufsicht (c) und Schnittansicht (d) einer ersten Ausführungs­form des Wandlers,
  • Figur 2 eine schematische perspektivische Ansicht eines bekannten Kalottenwandlers (a) im Vergleich zu jener der ersten Ausführungsform des Wandlers (b),
  • Figur 3 eine Aufsicht (a), Schnittansicht (b) eines bekannten Wandlers im Vergleich zur Aufsicht (c) und Schnitt­ansicht (d) einer zweiten Ausführungsform des Wandlers,
  • Fig.4a,b Aufsichten auf eine dritte Ausführungsform des Wandlers,
  • Fig.5a,b Schnittansichten einer weiteren Ausführungsform des Wandlers,
  • Fig.6a,b Schnittansichten einer anderen Ausführungsform des Wandlers,
  • Figur 7 Schnittansicht eines bekannten Wandlers (a) im Vergleich zu jener einer weiteren Ausführungsform des Wandlers (b),
    und
  • Figur 8 eine Schnittansicht einer noch weiteren Ausführungs­form des Wandlers.
The invention is explained in more detail with the aid of a few exemplary embodiments according to the drawings. Here shows:
  • FIG. 1 shows a top view (a), sectional view (b) of a known transducer in comparison to top view (c) and sectional view (d) of a first embodiment of the transducer,
  • FIG. 2 shows a schematic perspective view of a known spherical cap converter (a) compared to that of the first embodiment of the converter (b),
  • FIG. 3 shows a top view (a), sectional view (b) of a known transducer in comparison to top view (c) and sectional view (d) of a second embodiment of the transducer,
  • 4a, b are top views of a third embodiment of the transducer,
  • 5a, b are sectional views of a further embodiment of the transducer,
  • 6a, b sectional views of another embodiment of the transducer,
  • FIG. 7 shows a sectional view of a known converter (a) compared to that of a further embodiment of the converter (b),
    and
  • Figure 8 is a sectional view of yet another embodiment of the transducer.

Alle gezeigten Ausführungsbeispiele können zur Erzeugung der Ultraschall-Stoßwellen beispielsweise mosaikartig mit piezokeramischen Elementen bestückt sein. Hierauf wird nachfolgend aber nicht weiter eingegangen.All of the exemplary embodiments shown can be, for example, mosaic-like in order to generate the ultrasonic shock waves piezoceramic elements. However, this will not be discussed further below.

In den Zeichnungen sind gleiche Teile mit den selben Bezugszeichen versehen.In the drawings, the same parts are provided with the same reference numerals.

In Figur 1 sind die Aufsicht (a) und der Querschnitt (b) eines bekannten kalottenförmigen, selbstfokussierenden Wandlers (16) den Entsprechungen (c und d) eines ersten Ausführungsbeispieles des erfindungsgemäßen Wandlers 1 gegenüber gestellt.In Figure 1, the top view (a) and the cross section (b) of a known dome-shaped, self-focusing transducer (16) are compared to the counterparts (c and d) of a first embodiment of the transducer 1 according to the invention.

Der bekannte Wandler 16 weist einen idealisiert als Punkt dargestellten Fokus 15 auf, auf den die Ultraschall-­Stoßwellen gebündelt werden. Der Fokus 15 wird während der Applikation der Ultraschallstoßwellen auf das zu zerstörende Objekt ausgerichtet, so daß beide koinzident sind.The known transducer 16 has a focus 15, idealized as a point, on which the ultrasonic shock waves are bundled. The focus 15 is aligned with the object to be destroyed during the application of the ultrasonic shock waves, so that both are coincident.

Der Wandler 1 ist von rotationssymmetrischer Gestalt und weist zentral eine planare Basis 1 auf. Im Bereich der planaren Basis 4 weist der Wandler 1 keine Wandlerelemente, beispielsweise piezoelektrische Elemente wie an den Abstrahlflächen 2 auf. Der Wandler 1 gibt ein rotationssymmetrisches Schall­feld ab. Aufgrund seiner Formgebung fokussiert er die Energie der Ultraschallstoßwellen auf unendlich viele Punkte, die auf einer geschlossenen raumgekrümmten Linie 3 um seine Hauptachse 13 liegen. Im gezeigten Ausführungsbeispiel ist die raumgekrümmte Linie 3 ein geschlossener Kreisring. Demnach weist der Wandler 1 vorliegend ein geschlossenes, ringförmiges Fokusgebiet auf.The converter 1 is rotationally symmetrical in shape and has a planar base 1 in the center. In the area of the planar base 4, the transducer 1 has no transducer elements, for example piezoelectric elements such as on the radiation surfaces 2. The transducer 1 emits a rotationally symmetrical sound field. Due to its shape, it focuses the energy of the ultrasonic shock waves on an infinite number of points that lie on a closed, space-curved line 3 about its main axis 13. In the exemplary embodiment shown, the curved line 3 is a closed circular ring. Accordingly, the converter 1 in the present case has a closed, ring-shaped focus area.

Figur 2 zeigt nochmals die Wandler 16 und 1 in perspektivischer Ansicht zur Veranschaulichung.In der Darstellung stellen die gekrümmten Linien im Wandlerinneren lediglich den gekrümmten Verlauf der Abstrahlflächen 2 dar, nicht hingegen eine Segmentierung der Wandler.Figure 2 again shows the transducers 16 and 1 in a perspective view for illustration. In the illustration, the curved lines in the interior of the transducer represent only that curved course of the radiation surfaces 2, but not a segmentation of the transducers.

In Figur 3 sind die schon beschriebenen Darstellungen des bekannten Wandlers 16 den Entsprechungen einer zweiten Ausführungsform des Wandlers 1 gegenübergestellt.In FIG. 3, the representations of the known converter 16 which have already been described are compared with the correspondences of a second embodiment of the converter 1.

Der Wandler 1 ist hier in vier Segmente 5, 6, 7, 8 unter­teilt. Die Segmente 5, 6, 7, 8 sind kalottenförmig gestaltet, so daß jedes von ihnen einen Einzelfokus 9,10,11,12 aufweist. Die Segmente 5,6,7,8 sind vorliegend so zueinander angeordnet dargestellt, daß die Einzelfoki 9,10,11,12 auf einer gedachten raumgekrümmten Linie 3 in Form eines Kreisringes liegen.The converter 1 is divided into four segments 5, 6, 7, 8 here. The segments 5, 6, 7, 8 are dome-shaped, so that each of them has an individual focus 9, 10, 11, 12. The segments 5, 6, 7, 8 are shown arranged relative to one another in the present case so that the individual foci 9, 10, 11, 12 lie on an imaginary space-curved line 3 in the form of a circular ring.

Die Einzelsegmente 5,6,7,8 sind in einer Ebene in Bezug auf die Hauptachse 13 des Wandlers 1 translatorisch ver­fahrbar, wie dies in der Aufsicht (c) durch die Doppelpfeile angedeutet ist. Wenn die Einzelsegmente ausgehend von der dargestellten Position jeweils um denselben Streckenanschnitt von der Hauptachse 13 fortbewegt werden, so vergrößert sich der Durchmesser des gedachten Kreisringes 3. Entsprechend kleiner wird er bei Bewegung der Einzelsegmente auf die Hauptachse 13 zu.The individual segments 5, 6, 7, 8 can be moved in translation in one plane with respect to the main axis 13 of the converter 1, as is indicated by the double arrows in the top view (c). If, starting from the position shown, the individual segments are moved away from the main axis 13 by the same distance, the diameter of the imaginary circular ring 3 increases. It becomes correspondingly smaller when the individual segments move towards the main axis 13.

Mit diesem Ausführungsbeispiel des Wandlers 1 lassen sich auch andere raumgekrümmte Linien 3 als einen Kreisring darstellen, wenn nämlich die Strecken, um welche die Einzel­segmente 5,6,7,8 in bezug auf die Hauptachse 13 bewegt werden, nicht gleich sind.With this embodiment of the transducer 1, other space-curved lines 3 can also be represented as a circular ring, namely if the distances by which the individual segments 5, 6, 7, 8 are moved with respect to the main axis 13 are not the same.

In Figur 4 ist eine weitere Ausführungsform des Wandlers 1 dargestellt, welche wie jene gemäß Figur 3 von nicht­rotationssymmetrischer Gestalt ist. Gegenüber jenem weist der Wandler vorliegend in seiner maximal ausgefahrenen Stellung (b) eine kreisförmige Außenkontur auf, während dies beim Wandler gemäß Figur 3 dann der Fall ist, wenn alle Einzelsegmente 5,6,7,8 weitestmöglich an die Hauptachse 13 des Wandlers 1 herangefahren sind. Dann nimmt der Wandler 1 im Prinzip die Stellung (a) des Wandlers 16 ein.FIG. 4 shows a further embodiment of the converter 1, which like the one according to FIG. 3 has a non-rotationally symmetrical shape. Compared to that, the transducer has a circular outer contour in its maximally extended position (b), while this 3 is the case when all the individual segments 5, 6, 7, 8 have moved as far as possible to the main axis 13 of the converter 1. Then the converter 1 takes the position (a) of the converter 16 in principle.

In Figur 5 (a) sind Kalottensegmente 5,6 an ihrer Basis in einem gewissen Abstand voneinander entfernt angeordnet. Die Einzelfoki 9,10 sind in dieser Stellung koinzident. Ausgehend von dieser Stellung können die Einzelsegmente 5,6 nun in Richtung der Hauptachse 13 verfahren werden. Die Endstellung (b) ist erreicht, wenn sich beide Segmente 5,6 an der Hauptachse 13 berühren. In dieser Stellung (b) überlappen sich die von den Einzelsegmenten 5,6 ausgehenden Schallkegel, so daß die Einzelfoki 9,10 sich voneinander entfernen. Zwischen Stellung (a) und Stellung (b) ist selbstverständlich jede beliebige Zwischenstellung möglich.In FIG. 5 (a), dome segments 5, 6 are arranged at their base at a certain distance from one another. The individual foci 9, 10 are coincident in this position. Starting from this position, the individual segments 5, 6 can now be moved in the direction of the main axis 13. The end position (b) is reached when both segments 5, 6 touch on the main axis 13. In this position (b) the sound cones emanating from the individual segments 5, 6 overlap, so that the individual focuses 9, 10 move away from one another. Any intermediate position is of course possible between position (a) and position (b).

Figur 6 zeigt schematisch eine weitere Ausführungsform des Wandlers. Hier sind die Segmente 5,6 in bezug auf die Hauptachse 13 im Winkel schwenkbar. Ausgehend von der Extremposition (a), in der die Einzelfoki 9,10 koinzident sind, können die Segmente 5,6 beispielsweise in die Stellung (b) geschwenkt werden, wodurch sich die Einzel­foki 9,10 voneinander entfernen. Selbstverständlich brauchen die einzelnen Winkel, um welche die Einzelsegmente geschwenkt werden, nicht stets gleich groß sein. Durch unterschiedliche Verschwenkwinkel lassen sich von einem Kreisring unter­schiedliche raumgekrümmte Linien erzeugen, auf denen die Einzelfoki zu liegen kommen.FIG. 6 schematically shows a further embodiment of the converter. Here, the segments 5, 6 can be pivoted at an angle with respect to the main axis 13. Starting from the extreme position (a), in which the individual foci 9, 10 are coincident, the segments 5, 6 can, for example, be pivoted into position (b), as a result of which the individual foci 9, 10 move away from one another. Of course, the individual angles around which the individual segments are pivoted do not always have to be of the same size. By means of different pivoting angles, different curved lines can be created from a circular ring, on which the individual foci come to rest.

In Figur 7 (b) ist eine weitere Variante des Wandlers dargestellt, der hier aus einem einzigen rotationssymmetrischen Körper besteht. Er geht aus dem kalottenförmigen, bekannten Wandler (a) durch Kippen der Querschnittshälften hervor und besitzt einen Ringfokus.FIG. 7 (b) shows a further variant of the converter, which here consists of a single rotationally symmetrical body. It emerges from the dome-shaped, known transducer (a) by tilting the cross-section halves and has a ring focus.

Figur 8 zeigt eine weitere interessante Ausführungs­form des Wandlers 1. Auf der Abstrahlfläche 2 des Wandlers 1 ist eine akustische Linse 14 aufgebracht, die mehrere Foki 17,18 aufweist. Hierbei wird eine Vergrößerung des Fokusgebietes also nicht durch Verfahren oder Verschwenken von Einzelelementen in bezug auf die Hauptachse 13 erzielt, sondern durch ein "akustisches Kippen".FIG. 8 shows a further interesting embodiment of the transducer 1. An acoustic lens 14, which has a plurality of foci 17, 18, is applied to the radiation surface 2 of the transducer 1. Here, an enlargement of the focus area is thus not achieved by moving or pivoting individual elements with respect to the main axis 13, but rather by "acoustically tilting".

Im gezeigten Ausführungsbeispiel ist die Linse 14 einstückig und rotationssymmetrisch ausgebildet. Ihre Dicke nimmt vom Rand des Wandlers 1 zu dessen Mitte hin stetig zu.In the exemplary embodiment shown, the lens 14 is formed in one piece and is rotationally symmetrical. Its thickness increases steadily from the edge of the transducer 1 to its center.

Der gezeigte Wandler weist ein Fokusgebiet auf, welches auf einem geschlossenen Kreisring als raumgekrümmte Linie liegt. In Abhängigkeit von der Linsendicke in der Wandlermitte und von der Schallgeschwindigkeit in ihrem Material lassen sich unterschiedliche Durchmesser der geschlossenen kreisringförmigen Linie und damit unter­schiedliche Durchmesser des ringförmigen Fokusgebietes erzielen.The converter shown has a focus area, which lies on a closed circular ring as a space-curved line. Depending on the lens thickness in the center of the transducer and the speed of sound in its material, different diameters of the closed circular line and thus different diameters of the annular focus area can be achieved.

Claims (8)

1. Ultraschall-Stoßwellenwandler für die Anwendung in der Lithotripsie, Hyperthermie und dergl., der von ihm er­zeugte Ultraschall-Stoßwellen auf das zu zerstörende Konkrement oder Gewebe sendet, dadurch gekennzeichnet, daß er die Energie der Ultraschall-Stoßwellen anteilig auf mindestens zwei Punkte fokussiert, welche auf einer gedachten, um seine Hauptachse (13) liegenden und von seiner Abstrahlfläche (2) beabstandeten beliebig raumgekrümmten Linie (3) angeordnet sind (Figuren 1 bis 8).1. Ultrasonic shock wave transducer for use in lithotripsy, hyperthermia and the like. Sends the ultrasonic shock waves it generates to the calculus or tissue to be destroyed, characterized in that it focuses the energy of the ultrasonic shock waves proportionally on at least two points , which are arranged on an imaginary, arbitrarily space-curved line (3) lying about its main axis (13) and spaced from its radiation surface (2) (FIGS. 1 to 8). 2. Ultraschall-Stoßwellenwandler nach Anspruch 1, dadurch gekennzeichnet, daß er die Energie der Ultraschall-­Stoßwellen auf unendlich viele Punkte fokussiert, so daß diese eine in sich geschlossene raumgekrümmte Linie (3) bilden (Figuren 1,2,8).2. Ultrasonic shock wave transducer according to claim 1, characterized in that it focuses the energy of the ultrasonic shock waves on an infinite number of points, so that they form a self-contained space-curved line (3) (Figures 1,2,8). 3. Ultraschall-Stoßwellenwandler nach Anspruch 2 als die von ihm erzeugten Ultraschall-Stoßwellen selbst auf das Konkrement oder Gewebe lenkender Wandler, dadurch gekennzeichnet, daß er eine rotationssymmetrische Gestalt aufweist und rückseitig so geformt ist, daß die an ihm reflektierten Schallwellen nicht konphas im Fokus zusammenlaufen können (Figuren 1, 2).3. Ultrasonic shock wave transducer according to claim 2 as the ultrasonic shock waves generated by it itself on the calculus or tissue directing transducer, characterized in that it has a rotationally symmetrical shape and is shaped on the back so that the sound waves reflected on it are not in focus can converge (Figures 1, 2). 4. Ultraschall-Stoßwellenwandler nach Anspruch 1 als die von ihm erzeugten Ultraschall-Stoßwellen selbst auf das Konkrement oder Gewebe lenkender Wandler, dadurch gekennzeichnet, daß er aus mehreren Einzelsegmenten (5, 6, 7, 8) mit jeweils einem Fokus (9, 10, 11, 12) besteht, die auf der gedachten beliebig raumgekrümmten Linie (3) liegen ( Figuren 3 bis 7).4. Ultrasonic shock wave transducer according to claim 1 as the ultrasonic shock waves generated by it itself the concrement or tissue-guiding transducer, characterized in that it consists of several individual segments (5, 6, 7, 8), each with a focus (9, 10, 11, 12), which lie on the imaginary space-curved line (3) (Figures 3 to 7). 5. Ultraschall-Stoßwellenwandler nach Anspruch 4, dadurch gekennzeichnet, daß die Einzelsegmente (5, 6, 7, 8) in einer Ebene in bezug auf die Hauptachse (13) des Wandlers (1) translatorisch verfahrbar sind ( Figuren 3 bis 5).5. Ultrasonic shock wave transducer according to claim 4, characterized in that the individual segments (5, 6, 7, 8) are translationally movable in one plane with respect to the main axis (13) of the transducer (1) (Figures 3 to 5). 6. Ultraschall-Stoßwellenwandler nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Einzelsegmente (5, 6, 7, 8) in bezug auf die Hauptachse (13) des Wandlers (1) im Winkel schwenkbar angeordnet sind ( Figuren 6,7).6. Ultrasonic shock wave transducer according to claim 4 or 5, characterized in that the individual segments (5, 6, 7, 8) with respect to the main axis (13) of the transducer (1) are arranged pivotably at an angle (Figures 6, 7) . 7. Ultraschall-Stoßwellenwandler nach Anspruch 1 oder 2 als kalottenförmiger Wandler, dadurch gekennzeichnet, daß auf der Abstrahlfläche (2) des Wandlers (1) eine Linse (14) aufgebracht ist, welche mehr als einen akustischen Fokus aufweist.7. Ultrasonic shock wave transducer according to claim 1 or 2 as a dome-shaped transducer, characterized in that a lens (14) is applied to the radiation surface (2) of the transducer (1), which has more than one acoustic focus. 8. Ultraschall-Stoßwellenwandler nach Anspruch 7, dadurch gekennzeichnet, daß die Linse (14) einstückig und rotationssymmetrisch ausgebildet ist und ihre Dicke vom Rand des Wandlers (1) zu dessen Mitte hin stetig zunimmt.8. Ultrasonic shock wave transducer according to claim 7, characterized in that the lens (14) is integrally and rotationally symmetrical and its thickness from the edge of the transducer (1) increases steadily towards the center thereof.
EP90118644A 1989-10-03 1990-09-28 Ultrasonic shock wave transducer Withdrawn EP0421290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3932967A DE3932967A1 (en) 1989-10-03 1989-10-03 ULTRASONIC SHOCK WAVE CONVERTER
DE3932967 1989-10-03

Publications (1)

Publication Number Publication Date
EP0421290A1 true EP0421290A1 (en) 1991-04-10

Family

ID=6390740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90118644A Withdrawn EP0421290A1 (en) 1989-10-03 1990-09-28 Ultrasonic shock wave transducer

Country Status (3)

Country Link
US (1) US5193527A (en)
EP (1) EP0421290A1 (en)
DE (1) DE3932967A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008413A1 (en) * 1990-11-20 1992-05-29 Storz Medical Ag Device for producing focussed sound waves
WO1993021626A1 (en) * 1991-01-28 1993-10-28 Siemens Aktiengesellschaft Acoustic pressure pulse generator, in particular for healing bone diseases
DE19927481C1 (en) * 1999-06-16 2000-06-29 Siemens Ag Acoustic focusing arrangement for focusing acoustic and shock waves with variable focusing distance enables focusing distance to be varied and has simple, easily produced design
WO2008003910A1 (en) * 2006-07-05 2008-01-10 Edap S.A. Therapy apparatus with sequential functioning

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
FR2695788B1 (en) * 1992-09-14 1994-12-23 Framatome Sa Method for producing the exit surface of a translator with focused ultrasound beam and translator comprising an exit surface thus produced.
DE4238645C1 (en) * 1992-11-16 1994-05-05 Siemens Ag Therapeutic ultrasonic applicator for urogenital area - has ultrasonic waves focussed onto working zone defined by envelope curve with two perpendicular main axes
JP3243047B2 (en) * 1993-03-12 2002-01-07 呉羽化学工業株式会社 Wave receiving piezoelectric element
WO1994023793A1 (en) * 1993-04-15 1994-10-27 Siemens Aktiengesellschaft Therapeutic appliance for the treatment of conditions of the heart and of blood vessels in the vicinity of the heart
US5415175A (en) * 1993-09-07 1995-05-16 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5743855A (en) * 1995-03-03 1998-04-28 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5438998A (en) * 1993-09-07 1995-08-08 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5371483A (en) * 1993-12-20 1994-12-06 Bhardwaj; Mahesh C. High intensity guided ultrasound source
FR2715313B1 (en) * 1994-01-27 1996-05-31 Edap Int Method for controlling a hyperthermia treatment device using ultrasound.
DE19733233C1 (en) * 1997-08-01 1998-09-17 Wolf Gmbh Richard Electroacoustic transducer
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
DE19914809B4 (en) * 1999-03-31 2006-10-05 Dornier Medtech Holding International Gmbh Use of an imaging system in a device for producing focused shockwaves
DE19928491A1 (en) 1999-06-22 2001-01-04 Wolf Gmbh Richard Device, in particular therapy device, for sonicating objects with focused sound
US6571444B2 (en) * 2001-03-20 2003-06-03 Vermon Method of manufacturing an ultrasonic transducer
DE10138434C1 (en) * 2001-08-06 2003-02-13 Wolf Gmbh Richard Focusing electroacoustic transducer and method for testing its output power
US20030171701A1 (en) * 2002-03-06 2003-09-11 Eilaz Babaev Ultrasonic method and device for lypolytic therapy
US7410464B2 (en) * 2002-06-04 2008-08-12 Moshe Ein-Gal Wave generating device
US7167415B2 (en) * 2004-09-15 2007-01-23 Packaging Technologies & Inspection Llc Transducers for focusing sonic energy in transmitting and receiving device
US7666152B2 (en) * 2006-02-06 2010-02-23 Moshe Ein-Gal Focusing electromagnetic acoustic wave source
US20080009774A1 (en) * 2006-06-15 2008-01-10 Capelli Christopher C Methods of diminishing permanent tissue markings and related apparatus
US20080262483A1 (en) * 2007-04-17 2008-10-23 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method for removing permanent tissue markings
US9517359B2 (en) * 2009-02-18 2016-12-13 Eye Tech Care High intensity focused ultrasound device with a concave segment shaped transducer for eye treatment
EP2092916A1 (en) * 2008-02-19 2009-08-26 Institut National De La Sante Et De La Recherche Medicale (Inserm) A method of treating an ocular pathology by applying high intensity focused ultrasound and device thereof
DE102008038214B4 (en) * 2008-08-18 2013-12-05 Siemens Aktiengesellschaft Method and shockwave head for generating focused ultrasound shockwaves
US20100204617A1 (en) * 2009-02-12 2010-08-12 Shmuel Ben-Ezra Ultrasonic probe with acoustic output sensing
AU2009340220B2 (en) * 2009-02-18 2013-07-18 Eye Tech Care Ultrasound device comprising means to generate ultrasound beam presenting a concave segment shape having a single curvature
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
WO2011046879A1 (en) * 2009-10-12 2011-04-21 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US9174065B2 (en) * 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
DE102009049487B4 (en) * 2009-10-15 2015-05-13 Richard Wolf Gmbh Electroacoustic transducer
BR112012017977A2 (en) 2010-01-19 2016-05-03 Univ Texas apparatus and systems for generating high frequency shock waves, and methods of use.
US9833373B2 (en) 2010-08-27 2017-12-05 Les Solutions Médicales Soundbite Inc. Mechanical wave generator and method thereof
US11865371B2 (en) 2011-07-15 2024-01-09 The Board of Regents of the University of Texas Syster Apparatus for generating therapeutic shockwaves and applications of same
US20130340530A1 (en) * 2012-06-20 2013-12-26 General Electric Company Ultrasonic testing device with conical array
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
WO2016183307A1 (en) 2015-05-12 2016-11-17 Soliton, Inc. Methods of treating cellulite and subcutaneous adipose tissue
TWI793754B (en) 2016-07-21 2023-02-21 美商席利通公司 Apparatus for generating therapeutic shock waves, apparatus for use in generating therapeutic shock waves, and method of producing shockwaves
KR102587035B1 (en) 2017-02-19 2023-10-10 솔리톤, 인코포레이티드 Selective laser-induced optical destruction in biological media
CN107569271A (en) * 2017-09-22 2018-01-12 优超医疗科技(徐州)有限公司 A kind of blast wave stone-breaking device and its lithotripsy method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866711A (en) * 1973-06-04 1975-02-18 Us Navy Solid ultrasonic lens doublet
US4029395A (en) * 1975-10-31 1977-06-14 Westinghouse Electric Corporation Method for altering the focal zone of a lens system
DE3150513A1 (en) * 1981-12-21 1983-06-30 Battelle-Institut E.V., 6000 Frankfurt Device for local hyperthermia treatment
US4401910A (en) * 1981-11-30 1983-08-30 Analogic Corporation Multi-focus spiral ultrasonic transducer
GB2126901A (en) * 1982-09-15 1984-04-04 Varian Associates Hyperthermia applicator
EP0367117A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Shock wave generating apparatus forming wide concretion-dis-integrating region by focused shock wave

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119295A1 (en) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DESTROYING CONCRETE IN BODIES
EP0068961A3 (en) * 1981-06-26 1983-02-02 Thomson-Csf Apparatus for the local heating of biological tissue
DE3417985C2 (en) * 1984-05-15 1986-03-27 Dornier System Gmbh, 7990 Friedrichshafen Device for the contact-free comminution of concretions
DE3510341A1 (en) * 1985-03-22 1986-10-02 Richard Wolf Gmbh, 7134 Knittlingen SOUND TRANSMITTER FOR GENERATING ACOUSTIC IMPULSES
DE3543867C3 (en) * 1985-12-12 1994-10-06 Wolf Gmbh Richard Device for the spatial location and destruction of concrements in body cavities
EP0310380B2 (en) * 1987-09-30 1997-04-02 Kabushiki Kaisha Toshiba Ultrasonic medical treatment apparatus
JPH0722578B2 (en) * 1988-12-09 1995-03-15 松下電器産業株式会社 Ultrasonic probe
DE3932959C1 (en) * 1989-10-03 1991-04-11 Richard Wolf Gmbh, 7134 Knittlingen, De
US5050588A (en) * 1990-02-08 1991-09-24 Richard Grey High energy ultrasonic lens assembly with mounting facets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866711A (en) * 1973-06-04 1975-02-18 Us Navy Solid ultrasonic lens doublet
US4029395A (en) * 1975-10-31 1977-06-14 Westinghouse Electric Corporation Method for altering the focal zone of a lens system
US4401910A (en) * 1981-11-30 1983-08-30 Analogic Corporation Multi-focus spiral ultrasonic transducer
DE3150513A1 (en) * 1981-12-21 1983-06-30 Battelle-Institut E.V., 6000 Frankfurt Device for local hyperthermia treatment
GB2126901A (en) * 1982-09-15 1984-04-04 Varian Associates Hyperthermia applicator
EP0367117A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Shock wave generating apparatus forming wide concretion-dis-integrating region by focused shock wave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008413A1 (en) * 1990-11-20 1992-05-29 Storz Medical Ag Device for producing focussed sound waves
WO1993021626A1 (en) * 1991-01-28 1993-10-28 Siemens Aktiengesellschaft Acoustic pressure pulse generator, in particular for healing bone diseases
DE19927481C1 (en) * 1999-06-16 2000-06-29 Siemens Ag Acoustic focusing arrangement for focusing acoustic and shock waves with variable focusing distance enables focusing distance to be varied and has simple, easily produced design
WO2008003910A1 (en) * 2006-07-05 2008-01-10 Edap S.A. Therapy apparatus with sequential functioning
FR2903316A1 (en) 2006-07-05 2008-01-11 Edap S A THERAPY PROBE AND THERAPY APPARATUS INCLUDING SUCH A PROBE

Also Published As

Publication number Publication date
DE3932967C2 (en) 1992-03-26
US5193527A (en) 1993-03-16
DE3932967A1 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
DE3932967C2 (en)
DE102008038214B4 (en) Method and shockwave head for generating focused ultrasound shockwaves
EP0701731B1 (en) Device for the treatment of biological tissue and concretions in the body
EP0189756B1 (en) Device for the production of out-of-phase sound shock waves
EP0308644B1 (en) Focusing ultrasonic transducer
EP0397980B1 (en) Lithotriptor
DE4110102C2 (en)
EP0369177B1 (en) Focused acoustic pressure wave generator
DE10301875B4 (en) Device for generating different acoustic pressure waves through variable reflection surfaces
DE3608877C2 (en)
DE3320998C2 (en) Device for adapting a shock wave field
EP1445758A2 (en) Lens system for a shock-wave generator
DE19548000C1 (en) Device for locating calculus in a patient&#39;s body
EP0400196B1 (en) Shock wave transducer for the destruction of concretions
DE202007001884U1 (en) Focusing, electromagnetic sound wave source
DE2718847C3 (en) Device for breaking kidney stones by means of one or more shock waves
CH696683A5 (en) Means for generating ultrasonic beams for the ultrasound therapy.
EP0513279B1 (en) Device for producing focussed sound waves
EP1062933A2 (en) Apparatus, in particular for therapy, for exposing objects to focused sound
EP0243650B1 (en) Shockwave generator with an improved focus zone
DE4421938C2 (en) Device for generating focused acoustic waves
EP1371336B1 (en) Bellows for coupling a source of acoustic waves to a living being
DE10209380B4 (en) Shock wave converter
DE102005017724A1 (en) Focusing device for a device for generating shockwaves
EP0387858A1 (en) Apparatus to generate focused acoustic waves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19910604

17Q First examination report despatched

Effective date: 19930511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19951103