EP0415971A1 - Gleichspannungsversorgungssystem mit mehreren gleichspannungsquellen - Google Patents

Gleichspannungsversorgungssystem mit mehreren gleichspannungsquellen

Info

Publication number
EP0415971A1
EP0415971A1 EP89905683A EP89905683A EP0415971A1 EP 0415971 A1 EP0415971 A1 EP 0415971A1 EP 89905683 A EP89905683 A EP 89905683A EP 89905683 A EP89905683 A EP 89905683A EP 0415971 A1 EP0415971 A1 EP 0415971A1
Authority
EP
European Patent Office
Prior art keywords
voltage
output
switching
time
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP89905683A
Other languages
English (en)
French (fr)
Inventor
Werner Pollmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wincor Nixdorf International GmbH
Original Assignee
Wincor Nixdorf International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wincor Nixdorf International GmbH filed Critical Wincor Nixdorf International GmbH
Publication of EP0415971A1 publication Critical patent/EP0415971A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the invention relates to a DC voltage supply system with a plurality of voltage outputs fed from at least two DC voltage sources, one of which is alternatively fed from a first or at least one further DC voltage source, and at least one further is permanently fed from one of the voltage sources.
  • Such a system is required to supply high-quality electronic systems, for example computer systems or security devices. If one voltage source fails, it automatically supplies the affected voltage output from another voltage source, thus ensuring an uninterruptible power supply. In many applications there is another voltage output that is permanently supplied by one of these two voltage sources.
  • the voltage supply of electronic systems can be divided up in such a way that the units sensitive to voltage loss, for example memories, are supplied from the alternatively fed voltage output and the further voltage output takes over the main load of the voltage supply.
  • Known DC voltage supply systems alternatively feed a voltage output from different DC voltage sources, for which purpose there is a coupling element between each voltage source and the voltage output. This coupling element consists of a diode which is operated in the forward direction.
  • the voltage output is then fed from the voltage source that has the higher voltage level.
  • the diodes prevent feeding back into the voltage source with a lower voltage level.
  • Such a voltage supply system has a very simple circuit structure, but has considerable disadvantages. This creates a power loss at the coupling element, the amount of which is proportional to the product of the voltage drop at the coupling element and the forward current.
  • Power supply systems for electronic devices are often designed in such a way that they have a low voltage of, for example, 5 volts at their output, but instead deliver high currents.
  • a diode as a coupling element, a high power loss is generated at this, which must be dissipated to the environment in the form of heat loss via heat sinks. This power loss increases the total power loss of the power supply system and reduces its efficiency.
  • Such voltage supply systems therefore have large housing dimensions and are relatively heavy.
  • Another disadvantage of the known systems is that the voltage levels of the voltage sources for alternatively feeding a voltage output are at least around. must differentiate the amount of forward voltage of a diode to ensure that in normal Operating state of the voltage output is fed from only one voltage source. With alternative food from the other voltage source, the voltage level at the voltage output then inevitably changes. With a typical forward voltage of a diode of approximately 0.7 volts and with an output voltage of 5 volts, the voltage difference at the voltage output can be greater than 10% with alternative supply. The permissible range of voltage fluctuations is thus clearly exceeded for sensitive electronic systems. The same applies to the further voltage output, which is permanently connected to one of the voltage sources that alternatively feed a voltage output. The voltage level of the further voltage output is at least higher than that of the alternatively fed voltage output by the forward voltage of the coupling element. The problems mentioned do not occur if the voltage drop at the coupling element can be reduced.
  • This object is achieved in a voltage supply system of the type mentioned above in that the alternative feeding of a voltage output is caused by control signals which are generated depending on the operating state of the respective DC voltage source and / or externally and the switching state of the respective coupling element designed as a switch arrangement while prolonging the switching time controls , wherein mutually opposite switching operations overlap each other.
  • the invention makes use of the knowledge that a switch arrangement, which can be designed, for example, as a semiconductor component, has a very low forward voltage and a low forward resistance. If such a switch arrangement is used as a coupling element, there is only a small voltage drop across it, even with high currents, and the power loss remains small.
  • the outlay for dissipating the lost heat or for cooling can be reduced, as a result of which the size and the weight of the voltage supply system are reduced.
  • the efficiency of the voltage supply system is increased by using a low-loss coupling element, so that its rated power can increase for a given housing size.
  • the reduction in the voltage drop at the coupling element also has the effect that the voltage levels of different voltage outputs fed from a voltage source are at approximately the same potential.
  • the voltage sources which alternatively feed a voltage output can have the same voltage, because the respective voltage source can be switched on specifically via the switch arrangement and the other voltage sources can be switched off, so that simultaneous feeding of the voltage output from two voltage sources is prevented.
  • the switching state of a switch arrangement is controlled via control signals which are generated as a function of the operating state of the respective voltage source. If, for example, the voltage of a first voltage source begins to drop below a predetermined value, a control signal is generated that the 1 controls the switch arrangement of the voltage source in question in the blocking state and thus switches off the feeding of the corresponding voltage output via this voltage source. At the same time, a second control signal is formed which controls a switch arrangement belonging to another voltage source to the conductive state and thereby ensures the voltage supply of the voltage output. To ensure a seamless power supply to the
  • a steep rise in voltage can result in a surge of current at the affected voltage source, which overloads the voltage source.
  • the extended switching time ensures that the voltage sources are switched on or off smoothly.
  • 25 switching time is meant the transition time from the off to the conducting state and vice versa the 'switch assembly.
  • control signals which are formed depending on the operating state of the respective voltage source
  • these externally e.g. to generate in a higher-level headquarters.
  • the voltage sources can be specifically activated or deactivated and the voltages at the voltage outputs can be switched on or off.
  • This measure makes it possible to control the supply of the further voltage output by means of the switch arrangement belonging to it. In this way, the switching on or switching off of the supply voltage of certain device parts can be initiated in a simple manner from a control center.
  • a further development can consist in that at least one switch arrangement as a series regulator is included in a control device provided at the associated voltage output. This ensures that a regulated voltage is provided at the voltage output.
  • the power transistor normally required for voltage regulation can be omitted if the switch arrangement is integrated into the series regulating branch of a regulating circuit and thereby takes on the task of a regulating transistor.
  • Fig. 2 shows a circuit arrangement for generating control signals
  • FIG. 3 shows the course of control signals and the state of switch arrangements in the switching arrangement according to FIG. 1 over time.
  • FIG. 1 shows a voltage supply system, the voltage output 10 of which can alternatively be supplied by a switched-mode power supply 12 connected to the 220 volt AC network or, in an emergency, from a battery 14.
  • the battery 14 is connected to the emitter of a pnp transistor T1, the collector of which is led to the voltage output 10.
  • the base of the transistor Tl is connected to the collector terminal of an auxiliary transistor TA which is of the conductivity type NPN and whose emitter electrode is connected to ground via a resistor 15.
  • the base electrode is connected to the output of an operational amplifier 16, the inverted input of which is connected to the center tap of a voltage divider consisting of resistors 18, 20, which is connected to voltage output 10.
  • the operational amplifier 16 is connected as an integrator and has a capacitor 22 between its output and its inverting input.
  • a series resistor 26 and a zener diode 24 are connected in series between the voltage output 10 and the reference potential.
  • a cathode connection of the Zener diode 24, a reference voltage 25 is tapped and fed to a voltage divider consisting of the series connection of a resistor 28, a resistor 30 and a capacitor 32.
  • the capacitor 32 is connected to the non-inverting input of the operational amplifier 16.
  • a control signal S1 is fed to the connection point of the resistors 28, 30.
  • the voltage tap of the switching power supply 12 is led out at a terminal 34, which is connected directly to a further voltage output 36 of the voltage supply system.
  • One of a first MOS transistor T2 is located between voltage output 10 and terminal 34 and a second MOS transistor T3 existing switch arrangement.
  • the gate connections of the transistors T2, T3 are routed together to the output of an operational amplifier 38.
  • the source connections of the transistors T2, T3 are connected directly to one another.
  • Transistor T2 is connected to terminal 34 and the drain connection of transistor T3 to voltage output 10.
  • the MOS transistors T2, T3 are normally-off n-channel field effect transistors and can only block in the drain-source direction. In the opposite direction, these transistors are conductive via their so-called inverse diode.
  • the inverse diodes 40 and 42 belonging to the transistors T2, T3 are shown in dashed lines in FIG. 1 between the respective drain-source connections. By interconnecting the transistors T2, T3 at their source connections, one of the transistors T2, T3 is operated inversely, in the example according to FIG. 1 the transistor T3.
  • the output of the operational amplifier 38 connected as an integrator is connected to its inverting input via a capacitor 44. This is connected to the center tap of the voltage divider consisting of resistors 46, 48, which is fed via the voltage output 10.
  • the non-inverting input of operational amplifier 38 is connected to a capacitor 50 which is connected to ground.
  • the encoder 50 is connected to the cathode connection of the Zener diode 24 via the series ends 52, 54.
  • a second control signal S2 is supplied at the connection point of the resistors 52, 54.
  • the control signals S1, S2 are generated by a controller 56, which monitors the voltage level of the switched-mode power supply 12 or processes control signals from a higher-level control center (not shown). The circuit arrangement of such a controller 56 is shown in FIG. 2.
  • a threshold value switch 58 is supplied with a reference voltage 60 at its inverting input and a voltage signal Im proportional to the line voltage of the switching power supply 12 at its non-inverting input.
  • the threshold switch 58 produces at its output an output signal Sw with a high level if the level of the voltage signal Un is higher than the reference voltage 60, otherwise an output signal Sw with a low level.
  • the output of the threshold switch 58 is connected to a timer 62 which delays the falling edge of the output signal S by a time t1 and to a timer 64 which delays the rise of the output signal Sw by the time t3. This is followed by an inverter 66 with an open collector output.
  • a further timer 68 is connected downstream of the timer 62, which delays the rising edge of the output Sw by a time t2.
  • the timer 68 controls a gate 70, which also has an open collector output and generates the control signal S2.
  • the voltage signal Un can fluctuate between a nominal value, which is indicated as 100%, and the value 0.
  • the output signal Sw of the threshold switch 58 can assume the states L (low level) and H (high level) as described.
  • the control signals S1, S2 also have two states, which are designated with logic 0 and logic 1. In the logic 0 state, the control signals S1, S2 are at ground potential, in the logic 1 state they are in a high-resistance state.
  • the transistors T1, T2 have the states “blocking” and “conducting”, which are labeled "off” and "on” in FIG. 3.
  • the transistors T1, T2 are switched back and forth between these states in a predetermined switching time, so that the voltage rise or the voltage drop at the output of the transistors T1, T2 is flat.
  • control signal S1 carries ground potential
  • the voltage at the non-inverting input of the operational amplifier 16 in FIG. 1 is approximately zero.
  • the training output voltage of the operational amplifier 16 is therefore equal to zero, and the transistors T4 and Tl block.
  • the high-resistance control signal S2 does not load the voltage divider consisting of resistors 54, 52.
  • the reference voltage 25 of the Zener diode 24 is thus supplied to the non-inverting input of the operational amplifier 38.
  • the operational amplifier 38 forms a control loop together with the transistors T2, T3. In this, the operational amplifier 38 works as a PI controller and the transistors T2, T3 as actuators.
  • the actual value is fed to the inverting input of the operational amplifier 38, and the setpoint is fed to its non-inverting input.
  • the operational amplifier 38 carries out the target / actual comparison and sets a voltage at its output such that the transistors T2, T3 are controlled in a conductive manner via their gate electrode and the target / actual value deviation is minimal.
  • the time behavior of the control loop is set by the time constant resulting from the resistors 46, 48 and the capacitor 44.
  • the threshold switch 58 in FIG. 2 switches its output signal Sw to low level, and the inverter 66 generates the control signal S1 with the logic 1 state at its output.
  • the falling edge of the output signal Sw of the threshold switch 58 is caused by the Timer 62 delays by a time tl and switches control signal S2 to logic 0 via gate 70.
  • the capacitor 32 in FIG. 1 is charged to the reference voltage 25 via the resistors 28, 30 connected in series.
  • the operational amplifier 16 operating as a controller controls the transistor T4, which supplies the transistor Tl with base current, so that the latter is switched on.
  • the switching time of the transistor T1 is determined by the time constant of the operational amplifier 16, which results from its connection to the resistors 18, 20 and the capacitor 22, and by the time constant from the resistors 28, 30 and the capacitor 32.
  • the voltage output by the transistor T1 is fed to the operational amplifier 16 via the voltage divider, consisting of the resistors 18, 20, compared with the voltage level of the zener diode 24 and regulated to a constant value.
  • control signal S2 leads to ground potential after the time t1, ie the capacitor 50 is discharged with a time constant formed by the resistor 52 and the capacitor 50.
  • the operational amplifier 38 operating as a controller thus receives a setpoint voltage going to zero and controls the MOS transistors T2, T3 in the blocking state. Since the MOS transistors T2, T3 on their source electrodes are connected, one of the inverse diodes 40, 42 is switched in the reverse direction, so that there is no feedback of the switching power supply 12.
  • the described opposite switching operations i.e. the switching on of the transistor T1 or the switching off of the transistors T2, T3 are set via the time constants mentioned in such a way that they overlap by a time t4, as shown in FIG. 3.
  • the voltage output 10 maintains its voltage level unchanged during these switching operations.
  • the operating state of the voltage return of the switched-mode power supply 12 is dealt with below, which is shown in FIG. 3 under c.
  • the voltage signal Un rises and exceeds the reference voltage 60 at the threshold value 72.
  • the threshold value 58 in FIG. 2 switches its output signal Sw from low level to high level.
  • the control signal S1 is controlled into the logic 0 state by the inverter 66, while the control signal S2 is switched to a high-resistance state after the time t2.
  • the time 12 is set so that the switching power supply l2 has reached its full operating voltage before this time has expired.
  • the control signal S2 now no longer loads the voltage divider consisting of the resistors 52, 54 and the capacitor 50, and the capacitor 50 is charged to the voltage 25 of the Zener diode 25 via the resistors 52, 54.
  • the operational amplifier 38 controls the transistors T2, T3 in accordance with the rising charging voltage on the capacitor 50 in the conductive state and the switching power supply 12 supplies the voltage output 10 with voltage.
  • the control signal S1 which has approximately ground potential, causes the capacitor 32 to discharge via the resistor 30.
  • the transistor T1 is consequently switched into the blocking state via the transistor T4 and the operational amplifier 16 and the battery 14 is decoupled from the voltage output 10.
  • the switching processes for switching transistors T2, T3 and Tl on and off are also overlapping, ie the time constants are chosen such that an overlap time t5 occurs, Q, in which the transistors T1, T2, T3 are controlled to be conductive. as shown in Fig. 3.
  • the switching times of the transistors T1, T2, T3 are each to be set such that they are longer than the settling time of the switching power supply 12. This ensures that the switching power supply 12 is not overloaded by dynamic control processes when correcting faults.
  • the voltage of the Zener diode 24, which serves as the setpoint voltage for regulating the output voltage at the voltage output 10, is tapped off at the voltage output 10 via the series resistor 26. A brief voltage drop at the voltage output 10 thus also causes the voltage at the zener diode 24 to drop, as a result of which the transistors T1, T2, T3 are regulated to a lower output voltage. 5 This means that the voltage supply system works reliably even in the event of a brief overload.
  • Fig. 1 The embodiment shown in Fig. 1 can be supplemented by various circuit measures. It is thus possible to insert further transistors, which work as a switch arrangement, between the voltage output 36 and the terminal 34.
  • the voltage output 36 can be connected or disconnected to the output voltage of the switching power supply 12 via control signals which control these transistors. Furthermore, it is also possible to connect a plurality of transistors in parallel in order to divide the current and thus reduce the power loss occurring at a transistor and the voltage drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

Gleichspannungsversorgungssystem mit mehreren Gleichspannungsquellen
Die Erfindung betrifft ein Gleichspannungsversorgungs¬ system mit mehreren aus mindestens zwei Gleichspannungs¬ quellen gespeisten Spannungsausgängen, von denen einer aus einer ersten oder mindestens einer weiteren Gleich- spannungsquelle jeweils über ein Koppelglied alternativ und mindestens ein weiterer fest aus einer der Spannungsquellen gespeist wird.
Ein solches System wird zur Spannungsversorgung hochwertiger elektronischer Systeme, beispielsweise Computersysteme oder Sicherheitseinrichtungen, benötigt. Bei Ausfall einer Spannungsquelle versorgt es den betroffenen Spannungsausgang selbsttätig aus einer anderen Spannungsquelle und gewährleistet so eine unterbrechungsfreie Spannungsversorgung. In vielen Anwendungen existiert ein weiterer Spannungsausgang, der fest aus einer dieser beiden Spannungsquellen gespeist wird. Dadurch kann eine Aufteilung der Spannungsversorgung elektronischer Systeme in der Art vorgenommen werden, daß die gegen Spannungsverlust empfindlichen Baueinheiten, z.B. Speicher, aus dem alternativ gespeisten Spannungsausgang versorgt werden und der weitere Spannungsausgang die Hauptlast der SpannungsVersorgung übernimmt. Bekannte Gleichspannungsversorgungssysteme speisen einen Spannungsausgang alternativ aus verschiedenen Gleich¬ spannungsquellen, wozu zwischen einer Spannungsquelle und dem Spannungsausgang jeweils ein Koppelglied liegt. Dieses Koppelglied besteht aus einer Diode, die in Durchlaßrichtung betrieben wird. Der Spannungsausgang vird dann jeweils aus der Spannungsquelle gespeist, die den höheren Spannungspegel hat. Die Dioden verhindern dabei ein Rückspeisen in die Spannungsquelle mit niedrigerem Spannungspegel. Ein solches Spannungsversorgungssystem hat zwar einen sehr einfachen Schaltungsaufbau, besitzt jedoch erhebliche Nachteile. So entsteht am Koppelglied eine Verlustleistung, deren Betrag proportional dem Produkt aus Spannungsabfall am Koppelglied und Durchlaßstrom ist.
Spannungsversorgungssysteme für elektronische Geräte sind oft so ausgelegt, daß sie an ihrem Ausgang eine niedrige Spannung von beispielsweise 5 Volt haben, dafür aber hohe Ströme liefern. Bei der Verwendung einer Diode als Koppelglied wird bei starken Strömen an dieser eine Verlustleistung erzeugt, die in Form von Verlustwärme über Kühlkörper an die Umgebung abgeführt werden muß. Diese Verlustleistung erhöht die Gesamtverlustleistung des Spannungsversorgungssystems und setzt seinen Wirkungsgrad herab. Solche Spannungsversorgungssysteme haben daher große Gehäuseabmessungen und sind relativ schwer.
Ein weiterer Nachteil der bekannten Systeme besteht darin, daß sich die Spannungspegel der Spannungsquellen zum alternativen Speisen eines Spannungsausganges mindestens um. den Betrag der Durchlaßspannung einer Diode unterscheiden müssen, um sicherzustellen, daß im normalen Betriebszustand der Spannungsausgang aus nur einer Spannungsquelle gespeist wird. Beim alternativen Speisen aus der anderen Spannungsquelle verändert sich dann aber zwangsläufig der Spannungspegel am Spannungsausgang. Bei einer typischen Durchgangspannung einer Diode von etwa 0,7 Volt und bei einer Ausgangsspannung von 5 Volt kann der Spannungsunterschied am Spannungsausgang bei alternativer Speisung größer als 10 % sein. Der zulässige Bereich von Spannungsschwankungen wird für empfindliche Elektroniksysteme damit deutlich überschritten. Gleiches gilt für den weiteren Spannungsausgang, der mit einer der Spannungsquellen fest verbunden ist, die einen Spannungsausgang alternativ speisen. Der Spannungspegel des weiteren Spannungsausgangs ist mindestens um die Durchlaßspannung des Koppelgliedes höher als der des alternativ gespeisten Spannungsausgangs. Die genannten Probleme treten dann nicht auf, wenn es gelingt, den Spannungsabfall am Koppelglied zu reduzieren.
Es ist Aufgabe der Erfindung, ein Spannungsversorgungs¬ system anzugeben, das die Verlustleistung am Koppelglied verringert und weitgehend übereinstimmende Spannungspegel an den Spannungsausgängen erzeugt.
Diese Aufgabe wird bei einem Spannungsversorgungssystem eingangs genannter Art dadurch gelöst, daß das alternative Speisen eines Spannungsausgangs durch Steuersignale veranlaßt ird, die abhängig vom Betriebszustand der jeweiligen Gleichspannungsquelle und/oder extern erzeugt werden und den Schaltzustand des jeweiligen, als Schalteranordnung ausgebildeten Koppelglieds unter Verlängerung der Schaltzeitsteuern, wobei zueinander gegensinnige Schaltvorgänge einander überlappen . Die Erfindung nutzt die Erkenntnis, daß eine Schalteranordnung, die beispielsweise als Halbleiterbaustein ausgebildet sein kann, eine sehr geringe Durchlaßspannung sowie einen geringen Durchlaßwiderstand besitzt. Wird eine solche Schalteranordnung als Koppelglied verwendet, so entsteht an diesem auch bei starken Strömen nur ein geringer Spannungsabfall und die Verlustleistung bleibt klein. Dadurch kann der Aufwand zur Abfuhr der Verlustwärme bzw. zur Kühlung reduziert werden, wodurch sich die Baugröße und das Gewicht des Spannungsversorgungssys ems verringern. Gleichzeitig wird durch Verwendung eines verlustarmen Koppelgliedes der Wirkungsgrad des Spannungsversorgungssystems erhöht, so daß dessen Nennleistung bei einer vorgegebenen Gehäusegröße zunehmen kann. Die Verrringerung des Spannungsabfalls am Koppelglied bewirkt weiterhin, daß die Spannungspegel verschiedener und aus einer Spannungsquelle gespeisten Spannungsausgänge auf annähernd gleichem Potential liegen. Ferner können die Spannungsquellen, welche einen Spannungsausgang alternativ speisen, gleiche Spannung haben, denn die jeweils speisende Spannungsquelle kann über die Schalteranordnung gezielt eingeschaltet und die anderen Spannungsquellen abgeschaltet werden, so daß eine gleichzeitige Speisung des -Spannungsausgangs aus zwei Spannungsquellen unterbunden wird.
Das Steuern des Schaltzustandes einer Schalteranordnung erfolgt über Steuersignale, die abhängig vom Betriebszustand der jeweiligen Spannungsquelle erzeugt werden. Beginnt z.B. die Spannung einer ersten Spannungsquelle unter einen vorgegebenen Wert abzusinken, so wird ein Steuersignal erzeugt, das die 1 Schalteranordnung der betreffenden Spannungsquelle in den Sperrzustand steuert und damit das Speisen des entsprechenden Spannungsausgangs über diese Spannungsquelle abschaltet. Gleichzeitig wird ein zweites 5 Steuersignal gebildet, das eine zu einer anderen Spannungsquelle gehörende Schalteranordnung in den leitenden Zustand steuert und dadurch die Spannungsversorgung des Spannungsausgangs sicherstellt. Um eine lückenlose Spannungsversorgung der an den
-]_Q alternativ gespeisten Spannungsausgang angeschlossenen Geräte zu gewährleisten, sollten die Schaltvorgänge der Schalteranordnungen zueinander gegensinnig ablaufen und sich zeitlich überlappen. Dies bedeutet, daß eine Spannungsquelle durch ihre nachgeschaltete
15 Schalteranordnung erst dann abgeschaltet werden soll, wenn die andere Spannungsquelle über ihre Schalteranordnung eingeschaltet worden ist und umgekehrt. Der jeweilige Schaltvorgang sollte nicht abrupt, sondern in einer verlängerten Schaltzeit ablaufen, denn ein zu
20 steiler Spannungsanstieg kann bei der betroffenen Spannungsquelle einen Stromstoß zur Folge haben, der die Spannungsquelle überlastet. Durch die verlängerte Schaltzeit wird erreicht, daß ein weiches Einschalten bzw. Abschalten der Spannungsquellen erfolgt. Unter
25 Schaltzeit wird die Übergangszeit vom sperrenden in den leitenden Zustand und umgekehrt der' Schalteranordnung verstanden .
Neben der Steuerung der Schalteranordnungen über 30 Steuersignale, die abhängig vom Betriebszustand der jeweiligen Spannungsquelle gebildet werden, ist es auch möglich, diese extern z.B. in einer übergeordneten Zentrale zu erzeugen. Damit können die Spannungsquellen gezielt irksam bzw. unwirksam sowie die Spannungen an 35 den Spannungsausgängen ein- bzw. ausgeschaltet werden.
Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß auch zwischen dem jeweiligen weiteren Spannungsausgang und er ihn speisenden Spannungsquelle eine Schalteranordnungen vorgesehen ist. Durch diese Maßnahme wird es möglich, die Speisung des weiteren Spannungsausgangs durch die ihm zugehörige Schalteranordnung zu steuern. Damit kann auf einfache Weise das Einschalten bzw. Abschalten der Versorgungsspannung bestimmter Geräteteile von einer Zentrale aus veranlaßt werden.
Eine Weiterbildung kann darin bestehen, daß mindestens eine Schalteranordnung als Längsregler in eine am zugehörigen Spannungsausgang vorgesehene Regeleinrichtung einbezogen ist. Dadurch wird erreicht, daß am Spannungsausgang eine geregelte Spannung bereitgestellt wird. Der zur Spannungsregelung normalerweise notwendige Leistungstransistor kann entfallen, wenn die Schalteranordnung in den Längsregelzweig einer Regelschaltung eingegliedert wird und dabei die Aufgabe eines Regeltransistors übernimmt.
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 ein Spannungsversorgungssystem mit zwei Span¬ nungsquellen und zwei Spannungsausgängen,
Fig. 2 eine Schaltungsanordnung zum Erzeugen von Steuersignalen, und
Fig. 3 den Verlauf von Steuersignalen und den Zustand von Schalteranordnungen in der Schaltanord¬ nung nach Fig. 1 über der Zeit. In Fig.l ist ein Spannungsversorgungssystem dargestellt, dessen Spannungsausgang 10 alternativ von einem an das 220-Volt-Wechselstromnetz angeschlossenen Schaltnetzteil 12 oder im Notfall aus einer Batterie 14 gespeist werden kann. Die Batterie 14 ist mit dem Emitter eines pnp-Transistors Tl verbunden, dessen Kollektor zum Spannungsausgang 10 geführt ist. Die Basis des Transistors Tl ist mit dem Kollektoranschluß eines Hilfstransistors TA verbunden, der vom Leitfähi keitstyp npn ist und dessen Emitterelektrode über einen Widerstand 15 an Masse liegt. Seine Basiselektrode ist mit dem Ausgang eines Operationsverstärkers 16 verbunden, dessen invertierte Eingang an den Mittelabgriff eines aus iderständen 18, 20 bestehenden Spannungsteilers gelegt ist, der mit dem Spannungsausgang 10 verbunden ist. Der OpertionsVerstärker 16 ist als Integrator geschaltet und hat zwischen seinem Ausgang und seinem invertierenden Eingang einen Kondensator 22. Zwischen dem Spannungsausgang 10 und Bezugspotential sind ein Vorwiderstand 26 und eine Zenerdiode 24 in Reihe geschaltet. A Kathodenanschluß der Zenerdiode 24 wird eine Referenzspannung 25 abgegriffen und einem Spannungsteiler, bestehend aus der Reihenschaltung eines Widerstandes 28, eines Widerstandes 30 und eines Kondensators 32 zugeführt. Der Kondensator 32 ist mit dem nicht invertierenden Eingang des Operationsverstärkers 16 verbunden. Dem Verbindungspunkt der iderstände 28, 30 ird ein Steuersignal Sl zugeführt.
Der Spannungsabgriff des Schaltnetzteils 12 ist an einer Klemme 34 herausgeführt, die direkt mit einem weiteren Spannungsausgang 36 des SpannungsVersorgungssystems verbunden ist. Zwischen dem Spannungsausgang 10 und der Klemme 34 liegt eine aus einem ersten MOS-Transistor T2 und einem zweiten MOS-Transistor T3 bestehende Schalter¬ anordnung. Die Gate-Anschlüsse der Transistoren T2 , T3 sind gemeinsam an den Ausgang eines Operationsverstärkers 38 geführt. Die Source-Anschlüsse der Transistoren T2 , T3 sind direkt miteinander verbunden. Der Drain-Anschluß des
Transistors T2 ist an die Klemme 34 und der Drain-An¬ schluß des Transistors T3 an den Spannungausgang 10 gelegt.
Die MOS-Transistoren T2, T3 sind selbstsperrende n-Kanal-Feldef f ekt-Transistoren und können nur in Drain-Source-Richtung sperren. In der Gegenrichtung sind diese Transistoren über ihre sogenannte Inversdiode leitend. Die zu den Transistoren T2, T3 gehörenden In- versdioden 40 bzw. 42 sind in Fig. 1 zwischen den jewei¬ ligen Drain-Source-Anschlüssen gestrichelt eingezeichnet. Durch das Zusammenschalten der Transistoren T2 , T3 an ihren Source-Anschlüssen wird einer der Transistoren T2 , T3 invers betrieben, beim Beispiel nach Fig. 1 der Tran- sistor T3.
Der Ausgang des als Integrator geschalteten Operations¬ verstärkers 38 ist über einen Kondensator 44 mit seinem invertierenden Eingang verbunden. Dieser ist an den Mittelabgriff des aus Widerständen 46, 48 bestehenden Spannungsteilers angeschlossen, der über den Spannungs¬ ausgang 10 gespeist wird. Der nicht invertierende Eingang des Operationsverstärkers 38 ist mit einem Kondensator 50 verbunden, der mit einem Anschluß an Masse liegt. Der Kodensator 50 ist über in Serie geschaltete iderst nde 52, 54 mit dem Kathodenanschluß der Zenerdiode 24 verbun¬ den. Am Verbindungspunkt der Widerstände 52, 54 wird ein zweites Steuersignal S2 zugeführt. Die Steuersignale Sl, S2 werden von einer Steuerung 56 erzeugt, welche den Spannungspegel des Schaltnetzteils 12 überwacht bzw. Steuersignale einer nicht dargestellten übergeordneten Zentrale verarbeitet. Die Schaltungsanord¬ nung einer solchen Steuerung 56 ist in Fig. 2 darge¬ stellt. Einem Schwellwertschalter 58 ist an seinem inver¬ tierenden Eingang eine Referenzspannung 60 und an seinem nicht invertierenden Eingang ein der Netzspannung des Schaltnetzteils 12 proportionales Spannungssignal Im zugeführt. Der Sch ellwertschalter 58 erzeugt an seinem Ausgang ein Ausgangssignal Sw mit High-Pegel, enn der Pegel des Spannungssignals Un höher als die Referenzspannung 60 ist, anderfalls ein Ausgangssignal Sw mit Low-Pegel. Der Ausgang des SchwellwertSchalters 58 ist mit einem die abfallende Flanke des Ausgangssignals S um eine Zeit tl verzögernden Zeitglied 62 sowie mit einem den Anstieg des Ausgangssignals Sw um die Zeit t3 verzögernden Zeitglied 64 verbunden. Diesem ist ein Inverter 66 mit Open-Kollektor-Ausgang nachgeschaltet.
Dieser erzeugt ein Signal mit annähernd assepotential, enn an den Eingang des Inverters 66 ein Signal it High-Pegel gelegt ird. Bei einen Eingangssignal mit Lo -Pegel geht der Ausgang des Inverters 66 in einen hochohmigen Zustand über, d.h. den Steuersignal Sl wird über den Inverter 66 kein bestimmter Spannungspegel vorgegeben. Dem Zeitglied 62 ist ein weiteres Zeitglied 68 nachgeschaltet, elches die Anstiegsflanke des Ausgangs Sw um eine Zeit t2 verzögert. Das Zeitglied 68 steuert ein Gatter 70, das ebenfalls einen Open-Kollektor-Ausgang besitzt und das Steuersignal S2 erzeugt.
Fig. 3 zeigt den Verlauf verschiedener Signale so ie den Zustand der Transistoren Tl , T2 über der Zeit t in ver- schiedenen Betriebszuständen a,b,c, die noch näher erläu¬ tert werden. Das Spannungssignal Un kann zwischen einem Nennwert, der mit 100 % angegeben ist, und dem Wert 0 schwanken. Das Ausgangsignal Sw des Schwellwertschal- ters 58 kann wie beschrieben die Zustände L (Low-Pegel) und H (High-Pegel) annehmen. Die Steuersignale Sl, S2 besitzen ebenfalls zwei Zustände, die mit logisch 0 und logisch 1 bezeichnet sind. Im Zustand logisc 0 liegen die Steuersignale Sl, S2 auf Massepotential, im Zustand logisch 1 sind diese in einen hochohmigen Zustand. Die Transistoren Tl , T2 besitzen die Zustände "Sperren" und "Leiten", die in Fig. 3 mit "Aus" bzw. "Ein" bezeichnet sind. Zwischen diesen Zuständen werden die Transistoren Tl , T2 in einer vorgegebenen Schaltzeit hin- und hergeschaltet, so daß der Spannungsanstieg bzw. der Spannungsabfall am Ausgang der Transistoren Tl, T2 flach verläuft.
Die Funktion des Spannungsversorgungsystem wird nun unter Bezugnahme auf die Fig. 1, 2 und 3 erläutert. Zunächst wird angenommen, daß das Schaltnetzteil 12 ordnungsgemäß arbeitet und an der Klemme 34 positive Spannung anliegt (Betriebszustand a in Fig. 3). Das Spannungssignal Un ist im normalen Betriebszustand größer als die Referenzspan- nung 60, und der Schwellwertschalter 58 in Fig. 2 hat an seinem Ausgang ein Ausgangsignal Sw mit High-Pegel. Demzufolge wird am Ausgang des Inverters 66 ein Steuer¬ signal Sl mit Zustand logisch 0 und am Ausgang des Gatters 70 ein Steuersignal S2 mit Zustand logisch 1 erzeugt.
Da das Steuersignal Sl Massepotential führt, ist auch die Spannung am nicht invertierenden Eingang des Operations¬ verstärkers 16 in Fig. 1 annähernd Null. Auch die Aus- gangspannung des Operationsverstärkers 16 ist somit gleich Null, und die Transistoren T4 und Tl sperren. Die
Batterie 14 ist damit vom Spannungsausgang 10 abgekop¬ pelt.
Das hochohmige Steuersignal S2 belastet dagegen den aus den iderständen 54, 52 bestehenden Spannungsteiler nicht. Dem nicht invertierenden Eingang des Operationsverstärkers 38 wird somit die Referenzspannung 25 der Zenerdiode 24 zugeführt. Der Operationsverstärker 38 bildet zusammen mit den Transistoren T2 , T3 einen Regelkreis. Der Operationsverstärkers 38 arbeitet in diesem als PI-Regler und die Transistoren T2 , T3 als Stellglieder. Am invertierenden Eingang des Operationsverstärkers 38 wird der Istwert zugeführt, an seinem nicht invertierenden Eingang der Sollwert. Der Operationsverstärker 38 führt den Soll-Ist ertvergleich durch und stellt an seinem Ausgang eine Spannung so ein, daß die Transistoren T2 , T3 über ihre Gate-Elektrode leitend gesteuert werden und die Soll-Istwertabweichung minimal ird. Das Zeitverhalten des Regelkreises wird dabei durch die Zeitkonstante, die sich aus den iderständen 46, 48 und dem Kondensator 44 ergibt, eingestellt .
Für den nächsten Betriebszustand b der Fig. 3 sei ange¬ nommen, daß die Netzspannung, die das Schaltnetzteil versorgt, ausfällt. Das Spannungssignal Un fällt dann exponentiell ab und unterschreitet bei der Schwelle 72 die Referenzspannung 60. Ein Ausfall der Netzspannung des Schaltnetzteils 12 bedeutet aber nicht, daß auch seine Ausgangsspannung abrupt abfällt, sondern die in Kondensatoren des Schaltnetztei1s gespeicherte Energie reicht noch aus, um für eine bestimmte Zeit weiterhin Spannung abzugeben. Nachdem das Spannungssignal Un die
Referenzspannung 60 unterschritten hat, schaltet der Schwellwertschalter 58 in Fig. 2 sein Ausgangssignal Sw auf Low-Pegel um, und der Inverter 66 erzeugt an seinem Ausgang das Steuersignal Sl mit Zustand logisch 1. Die abfallende Flanke des Ausgangssignals Sw des Schwellwertschalters 58 wird durch das Zeitglied 62 um eine Zeit tl verzögert und schaltet über das Gatter 70 das Steuersignal S2 in den Zustand logisch 0.
Der Kondensator 32 in Fig. 1 wird über die in Reihe geschalteten Widerstände 28, 30 auf die Referenzspannung 25 aufgeladen. Der als Regler arbeitende Operationsver¬ stärker 16 steuert den Transistor T4 leitend, der den Transistor Tl mit Basisstrom versorgt, so daß dieser eingeschaltet wird. Die Schaltzeit des Transistors Tl ist dabei durch die Zeitkonstante des Operationsverstärkers 16, die sich aus seiner Beschaltung mit den Widerständen 18, 20 sowie dem Kondensator 22 ergibt, sowie durch die Zeitkonstante aus den Widerständen 28, 30 und dem Kondensator 32 bestimmt. Die vom Transistor Tl abgegebene Spannung wird über den Spannungsteiler, bestehend aus den Widerständen 18, 20, dem Operationsverstärker 16 zugeführt, mit dem Spannungspegel der Zenerdiode 24 verglichen und auf einen konstanten Wert geregelt.
Wie bereits beschrieben, führt das Steuersignal S2 nach Ablauf der Zeit tl Massepotential, d.h. der Kondensator 50 wird mit einer Zeitkonstante entladen, die der Widerstand 52 und der Kondensator 50 bilden. Der als Regler arbeitende Operationsverstärker 38 erhält somit eine gegen Null gehende Sollwertspannung und steuert die MOS-Transistoren T2, T3 in den sperrenden Zustand. Da die MOS-Transistoren T2 , T3 an ihren Source-Elektroden verbunden sind, ist eine der Inversdioden 40, 42 in Sperrichtung geschaltet, so daß eine Rückspeisung des Schaltnetzteils 12 unterbleibt.
Die beschriebenen gegensinnigen SchaltVorgänge, d.h. das Einschalten des Transistors Tl bzw. das Ausschalten der Transistoren T2 , T3 werden über die genannten Zeitkon¬ stanten so eingestellt, daß sie sich um eine Zeit t4 überlappen, wie in der Fig. 3 dargestellt ist. Der Spannungsausgang 10 behält während dieser Schaltvorgänge seinen Spannungspegel unverändert bei.
Nachfolgend wird der Betriebszustand der SpannungsWieder¬ kehr des Schaltnetzteils 12 behandelt, der in der Fig. 3 unter c dargestellt ist. Bei Spannungs iederkehr steigt das Spannungsignal Un an und überschreitet beim Schwell¬ wert 72 die Referenzspannung 60. Der Schwellwert 58 in Fig. 2 schaltet sein Ausgangssignal Sw von Low-Pegel nach High-Pegel um. Nach einer Zeit 3 wird das Steuersignal Sl durch den Inverter 66 in den Zustand logisch 0 gesteu¬ ert, während das Steuersignal S2 nach Ablauf der Zeit t2 in einen hochohmigen Zustand umgeschaltet ird. Die Zeit 12 wird dabei so eingestellt, daß vor Ablauf dieser Zeit das Schaltnetzteil l2 seine volle Betriebsspannung erreicht hat. Das Steuersignal S2 belastet nunmehr den aus den iderständen 52, 54 und dem Kondensator 50 bestehenden Spannungsteiler nicht mehr, und der Kondensator 50 wird über die iderstände 52, 54 auf die Spannung 25 der Zenerdiode 25 aufgeladen. Der Operationsverstärker 38 steuert die Transistoren T2 , T3 entsprechend der ansteigenden Ladespannung am Kondensator 50 in den leitenden Zustand und das Schaltnetzteil 12 speist den Spannungsausang 10 mit Spannung. Das Steuersignal Sl, das annähernd Massepotential hat, bewirkt ein Entladen des Kondensators 32 über den Wider¬ stand 30. Der Transistor Tl wird demzufolge über den Transistor T4 und den Operationsverstärker 16 in den sperrenden Zustand geschaltet und die Batterie 14 vom Spannungsausgang 10 abgekoppelt. Auch die Schaltvorgänge zum Ein- bzw. Ausschalten der Transistoren T2, T3 bzw. Tl erfolgen überlappend, d.h. die Zeitkonstanten sind je¬ weils so gewählt, daß eine Überlappungszeit t5 entsteht, Q in der die Transistoren Tl , T2, T3 leitend gesteuert sind, wie in Fig. 3 dargestellt ist.
Die Schaltzeiten der Transistoren Tl , T2, T3 sind jeweils so einzustellen, daß sie länger als die Ausregelzeit des 5 Schaltnetzteils 12 sind. Dadurch wird sichergestellt, daß das Schaltnetzteil 12 durch dynamische Regelvorgänge beim Ausregeln von Störungen nicht überlastet wird. Die Spannung der Zenerdiode 24, die als Sollwertspannung zum Regeln der Ausgangsspannung am Spannungsausgang 10 dient, 0 wird über den Vorwiderstand 26 am Spannungsausgang 10 abgegriffen. Ein kurzzeitiger Spannungseinbruch am Spannungsausgang 10 läßt somit auch die Spannung an der Zenerdiode 24 absinken, wodurch die Transistoren Tl , T2 , T3 auf eine niedrigere Ausgangsspannung geregelt werden. 5 Damit arbeitet das Spannungsversorgungssystem auch bei kurzzeitiger Überlastung zuverlässig. Gleiches gilt auch für die Operationsverstärker 16, 38, deren Betriebsspannung (nicht dargestellt) ebenfalls am Spannungsausgang 10 abgegriffen vird. Bei Absinken der 0 Spannung am Spannungsausgang 10 sinken die Ausgangsspannungen der Operationsverstärker, wodurch die Transistoren T2, T3 jeweils in den sicheren Sperrzustand gesteuert werden .
5 Das in Fig. 1 dargestellte Ausführungsbeispiel kann noch durch verschiedene Schaltungsmaßnahmen ergänzt werden. So ist es möglich, zwischen den Spannungsausgang 36 und die Klemme 34 weitere Transistoren, die als Schalteranordnung arbeiten, einzufügen. Über Steuersignale, die diese Transistoren steuern, kann der Spannungsausgang 36 an die Ausgangsspannung des Schaltnetzteils 12 an- bzw. abgekop¬ pelt erden. eiterhin ist es auch möglich, mehrere Transistoren parallel zu schalten, um den Strom aufzutei- len und so die an einem Transistor auftretende Verlust¬ leistung sowie den Spannungsabfall eiter zu verringern.
Ebenso ist es möglich, den Anschluß des Widerstandes 54 nicht mit der Zenerdiode 24 sondern über einen eiteren Spannungsteiler (nicht dargestellt) mit der Klemme 34 zu verbinden. Die als Soll ert dienende Spannung des Kondensators 50 ist dann proportional der Spannung des Schaltnetzteils 12. Bei Abfallen dieser Spannung werden die Transistoren T2 , T3 über den als Regler arbeitenden Operationsverstärker 38 gesperrt und bei Spannungs iederkehr diese erst nach Erreichen der vollen Betriebsspannung des Schaltnetzteils 12 leitend geschaltet. Durch diese Maßnahme wird die Zuverlässigkeit des SpannungsVersorgungssystems weiter erhöht.

Claims

P A T E N T A N S P R Ü C H E
1. Gleichspannungsversorgungssystem mit mehreren aus mindestens zwei Gleichsspannungsquellen gespeisten
Spannungsausgängen, von denen einer aus einer ersten oder mindestens einer weiteren Gleichsspannungsquelle jeweils über ein Koppelglied alternativ und mindestens ein veiterer fest aus einer der Spannungsquellen gespeist vird, dadurch g e k e n n ¬ z e i c h n e t, daß das alternative Speisen eines Spannungsausganges (10) durch Steuersignale (Sl, S2) veranlaßt vird, die abhängig vom Betriebszustand der jeweiligen Gleichspannungsquelle (14, 12) und/oder extern erzeugt werden und den Schaltzustand des jeveiligen, als Schalteranordnung (Tl, T2, T3) ausgebildeten Koppelgliedes unter Verlängerung der Schaltzeit steuern, wobei zueinander gegensinnige Schaltvorgänge einander überlappen.
2. System nach Anspruch 1, dadurch e k e n n¬ z e i c h n e t, daß auch zwischen dem jeweiligen weiteren Spannungsausgang (36) und der ihn speisenden Spannungsquelle (12) eine Schalteranordnung vorgesehen ist.
System nach Anspruch 1 oder 2, dadurch g e k e n n ¬ z e i c h n e t, daß mindestens eine Schalteranord¬ nung (Tl , T2 , T3) als Längsregler in eine am zugehör¬ igen Spannungsausgang (10) vorgesehene Regeleinrich¬ tung einbezogen ist.
System nach Anspruch 3, dadurch g e k e n n z e i c h n e t , daß die Betriebspannung der Regeleinrichtung an ihrem Spannungsausgang (10) abgegriffen wird.
System nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, daß die Schal¬ teranordnung (Tl, T2 , T3) aus einem oder mehreren parallelgeschalteten Transistoren besteht.
System nach Anspruch 5, dadurch g e k e n n ¬ z e i c h n e t , daß die Transistoren ( T2 , T3) MOS-Feldeffektransistoren sind.
7. System nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, daß die Schalteranordnung aus einem oder mehreren parallelgeschalteten Paaren von MOS-Feldeffekttran- sistoren (T2, T3) besteht, die mit ihren Source- Drain-Strecken in Reihe geschaltet sind, von denen ein MOS-Feldeffekttransistor (T3) invers betrieben wird .
8. System nach einem der vorhergehenden Ansprüche, mit einem geregelten Schaltnetzteil (12) als Spannungs¬ quelle, dadurch g e k e n n z e i c h n e t, daß die Schaltzeit länger als die Ausregelzeit des Schalt¬ netzteils ist.
9. System nach einem der Ansprüche 3 bis 8. dadurch g e k e n n z e i c h n e t, daß die Sollwertspannung der Regeleinrichtung aus der zugehörigen Spannungs¬ quelle (12, 14) erzeugt wird.
10. System nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß die Verlängerung der Schaltzeit durch einstellbare Zeitglieder (28, 30, 32 und 54, 52, 50) veränderbar is .
11. System nach Anspruch 10, dadurch g e k e n n ¬ z e i c h n e t , daß die Zeitkonstante des jevei- ligen Zeitgliedes durch dessen Widerstand einstellbar ist.
EP89905683A 1988-05-18 1989-05-18 Gleichspannungsversorgungssystem mit mehreren gleichspannungsquellen Pending EP0415971A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3816944A DE3816944A1 (de) 1988-05-18 1988-05-18 Spannungsversorgungssystem mit mehreren spannungsquellen
DE3816944 1988-05-18

Publications (1)

Publication Number Publication Date
EP0415971A1 true EP0415971A1 (de) 1991-03-13

Family

ID=6354633

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89905683A Pending EP0415971A1 (de) 1988-05-18 1989-05-18 Gleichspannungsversorgungssystem mit mehreren gleichspannungsquellen
EP89109035A Expired - Lifetime EP0342693B1 (de) 1988-05-18 1989-05-18 Gleichspannungsversorgungssystem mit mehreren Gleichspannungsquellen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89109035A Expired - Lifetime EP0342693B1 (de) 1988-05-18 1989-05-18 Gleichspannungsversorgungssystem mit mehreren Gleichspannungsquellen

Country Status (8)

Country Link
US (1) US5278453A (de)
EP (2) EP0415971A1 (de)
JP (1) JPH03503236A (de)
KR (1) KR930002934B1 (de)
AT (1) ATE96583T1 (de)
DE (2) DE3816944A1 (de)
ES (1) ES2046369T3 (de)
WO (1) WO1989011749A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69217029T2 (de) * 1991-05-17 1997-05-07 Alsthom Cge Alcatel Optimierungsvorrichtung für die Entladung von zwei elektrochemischen Stromgeneratoren
DE4203829C2 (de) * 1992-02-10 1994-05-05 Siemens Nixdorf Inf Syst Gleichspannungs-Speiseschaltung
JP2533840B2 (ja) * 1993-06-25 1996-09-11 株式会社愛知電機製作所 無瞬断電源切替方法及びその装置
US5552643A (en) * 1994-04-08 1996-09-03 Motorola, Inc. Power signal combining method and apparatus
US5640059A (en) * 1995-12-21 1997-06-17 Reltec Corporation Power supply system including thermal current limiting protection
DE19651612B4 (de) * 1996-12-12 2012-09-27 Robert Bosch Gmbh Elektronische Schaltung zur Spannungsversorgung
US5764032A (en) * 1997-03-06 1998-06-09 Maxim Integrated Products, Inc. Multiple battery switchover circuits
US6259171B1 (en) * 1999-01-27 2001-07-10 Mitac International Corp. Hot-swap device preventing system crash when switching power source
DE10017902C2 (de) * 2000-04-11 2002-11-28 Rohde & Schwarz Anordnung zum unterbrechungsfreien Umschalten zwischen zwei Spannungsquellen
US6600239B2 (en) * 2001-03-22 2003-07-29 Hewlett-Packard Development Company, L.P. Active circuit protection for switched power supply system
DE10228688A1 (de) * 2002-06-27 2004-01-29 Dr. Johannes Heidenhain Gmbh Schaltungsanordnung zur gepufferten Spannungsversorgung
CN100373744C (zh) * 2003-03-24 2008-03-05 新昌机械设备株式会社 单位住户常用/应急电源配电盘及其电源自动转换装置
DE102005011519B4 (de) * 2005-03-10 2012-08-30 Secop Gmbh Verfahren zur Steuerung einer Gleichspannungsquelle und Spannungsversorgungsvorrichtung
TWI326962B (en) * 2006-01-02 2010-07-01 Asustek Comp Inc Buck converter
TWI381616B (zh) * 2008-11-04 2013-01-01 Glacialtech Inc 閘控整流器及其應用於整流電路

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049623A (en) * 1961-03-30 1962-08-14 W W Henry Company Auxiliary power supply
US3932764A (en) * 1974-05-15 1976-01-13 Esb Incorporated Transfer switch and transient eliminator system and method
DE2531680C2 (de) * 1975-07-16 1982-05-27 Telefonbau Und Normalzeit Gmbh, 6000 Frankfurt Schaltungsanordnung für die Sicherstellung der Stromversorgung von zentralen Einrichtungen in Fernsprechvermittlungsanlagen
US4122359A (en) * 1977-04-27 1978-10-24 Honeywell Inc. Memory protection arrangement
GB2013048B (en) * 1978-01-21 1982-05-12 United Gas Industries Ltd Electrical stand-by power
US4297590A (en) * 1980-03-10 1981-10-27 Ande Vail Power supply system
US4323788A (en) * 1980-10-02 1982-04-06 Borg-Warner Corporation D-C Power supply for providing non-interruptible d-c voltage
DE3113523A1 (de) * 1981-03-31 1982-10-14 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zur sicherung der betriebsspannungsversorgung einer elektronischen schaltungseinheit
DE3118909C2 (de) * 1981-05-13 1983-02-10 Deutsche Automobilgesellschaft Mbh, 3000 Hannover Unterbrechungsfreie Stromversorgung für Gleichstromverbraucher
DE3209704A1 (de) * 1982-03-12 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zur aufrechterhaltung von speicherinformationen von fluechtigen schreiblesespeichereinrichtungen bei betriebsspannungsausfall
JPS5911740A (ja) * 1982-07-13 1984-01-21 日本電信電話株式会社 整流回路
US4492876A (en) * 1983-07-18 1985-01-08 At&T Bell Laboratories Power supply switching arrangement
US4517470A (en) * 1983-08-22 1985-05-14 Ncr Corporation High frequency inverter
US4617473A (en) * 1984-01-03 1986-10-14 Intersil, Inc. CMOS backup power switching circuit
WO1986007210A1 (fr) * 1985-05-20 1986-12-04 Cercle Loic Dispositif anti-micro coupures
JPS6231340A (ja) * 1985-05-29 1987-02-10 株式会社東芝 電池電源切換回路
JPH0521949Y2 (de) * 1985-12-02 1993-06-04
US4745299A (en) * 1986-04-17 1988-05-17 American Telephone And Telegraph Company, At&T Bell Laboratories Off-line switcher with battery reserve
DE3723727A1 (de) * 1987-07-17 1989-01-26 Siemens Ag Stromversorgungseinrichtung
US4812672A (en) * 1987-10-01 1989-03-14 Northern Telecom Limited Selective connection of power supplies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8911749A1 *

Also Published As

Publication number Publication date
US5278453A (en) 1994-01-11
DE3816944C2 (de) 1991-11-28
KR900702618A (ko) 1990-12-07
DE58905996D1 (de) 1993-12-02
JPH03503236A (ja) 1991-07-18
KR930002934B1 (ko) 1993-04-15
DE3816944A1 (de) 1989-11-30
ES2046369T3 (es) 1994-02-01
ATE96583T1 (de) 1993-11-15
EP0342693B1 (de) 1993-10-27
WO1989011749A1 (en) 1989-11-30
EP0342693A1 (de) 1989-11-23

Similar Documents

Publication Publication Date Title
DE3816944C2 (de)
DE102017212354B4 (de) Niederohmiger Lastschalter mit Ausgangsstromstärkesteuerung
DE69210651T2 (de) Spannungsregler mit niedrigem Spannungsfall
DE102011086264B4 (de) Elektronische Fahrzeugsteuervorrichtung
DE3015610A1 (de) Schaltung zur regelung eines gleichstroms
DE102014119097B4 (de) Spannungsregler mit schneller übergangsreaktion
EP0366940B1 (de) Stromversorgungssystem mit Leistungsaufteilung
WO2013056940A1 (de) Schaltungsanordnung zur kurzschlusserkennung bei dioden, beleuchtungsanordnung und verfahren dafür
DE69009285T2 (de) Gleichstromwandler.
DE602004003382T2 (de) Unterstromsensoranordnung und verfahren
EP0708998B1 (de) Gepuffertes gleichspannungsversorgungssystem
DE102016204571B4 (de) Ladungsinjektion zur ultraschnellen spannungssteuerung in spannungsregler
DE102010028149A1 (de) Bereitstellung einer Ausgangsspannung aus einer in weitem Bereich variablen und auch niedrigen Eingangsspannung
DE102016207714A1 (de) Spannungsregler mit Stromstärkeverringerungsmodus
DE10030795A1 (de) Gleichspannungswandlerschaltung
DE112019003896B4 (de) LDO-Spannungsreglerschaltung mit zwei Eingängen, Schaltungsanordnung und Verfahren mit einer derartigen LDO-Spannungsreglerschaltung
DE112017006477T5 (de) Stromversorgungsschaltung
DE19604041C1 (de) Schaltungsanordnung zur Erkennung eines durch eine Last fließenden Laststroms
EP0876699B1 (de) Strombegrenzungsschaltung
DE102013107088A1 (de) Schaltungsanordnung zum Schutz von mindestens einem Bauteil eines Zweidrahtstromkreises
DE112016000881T5 (de) Stromsteuereinrichtung und stromversorgungssystem
EP0881735A2 (de) Schaltungsanordnung einer Stromversorgungseinheit
DE4030123C2 (de)
DE102020129614B3 (de) Spannungsregelschaltkreis und Verfahren zum Betreiben eines Spannungsregelschaltkreises
EP0513910A2 (de) Gleichrichterschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19901031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 89109035.9/0342693 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 22.11.91.