EP0413280A2 - Polyamid-Polyester-Verbundfaser und Verfahren zur Herstellung derselben - Google Patents

Polyamid-Polyester-Verbundfaser und Verfahren zur Herstellung derselben Download PDF

Info

Publication number
EP0413280A2
EP0413280A2 EP90115458A EP90115458A EP0413280A2 EP 0413280 A2 EP0413280 A2 EP 0413280A2 EP 90115458 A EP90115458 A EP 90115458A EP 90115458 A EP90115458 A EP 90115458A EP 0413280 A2 EP0413280 A2 EP 0413280A2
Authority
EP
European Patent Office
Prior art keywords
composite fiber
polyamide
temperature
polyester
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90115458A
Other languages
English (en)
French (fr)
Other versions
EP0413280A3 (en
Inventor
Takanori Shinoki
Nobuyuki Yamamoto
Yasuo Yamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP21018089A external-priority patent/JPH0376817A/ja
Priority claimed from JP1210689A external-priority patent/JPH0376818A/ja
Priority claimed from JP2189455A external-priority patent/JPH0482913A/ja
Priority claimed from JP19920490A external-priority patent/JPH0491289A/ja
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of EP0413280A2 publication Critical patent/EP0413280A2/de
Publication of EP0413280A3 publication Critical patent/EP0413280A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent

Definitions

  • the present invention relates to a polyamide-polyester composite fiber and a process for producing same. More particularly, the present invention relates to a side-by-side type polyamide-­polyester composite fiber which has a latent crimping property, can be evenly dispersed in water, and is useful for producing a nonwoven fabric having a high bulkiness and strong elastic recovery.
  • nonwoven fabrics having a uniform basis weight and thickness are in strong demand.
  • the nonwoven fabrics are advantageous in that they can be produced not only from organic fibers, for example, rayon fibers, water-insolubilized polyvinyl alcohol fibers, polyamide fibers, polyacrylic fibers, polyester fibers, aramide fibers and polyolefin fibers, but also from inorganic fibers, for example, glass fibers and ceramic fibers.
  • organic fibers for example, rayon fibers, water-insolubilized polyvinyl alcohol fibers, polyamide fibers, polyacrylic fibers, polyester fibers, aramide fibers and polyolefin fibers, but also from inorganic fibers, for example, glass fibers and ceramic fibers.
  • the wet method nonwoven fabrics are disadvantageous in that, since the starting fibers must be dispersed in water and then subjected to the wet paper-forming process, the resultant nonwoven fabrics always have a paper-like stiff touch.
  • the conventional nonwoven fabrics are not practical for uses such as medical protective gowns, drops, and sanitation top sheets and bottom sheets, which are brought into contact with the human body, and for resin-coated paper sheets and roofing sheets, which must be produced by being impregnated with various resinous treating materials.
  • a heat treatment which effectively stabilizes the fine structure in the composite fibers, should not be applied to the composite fibers. Therefore, even if the nonwoven fabrics are heat-treated to allow the composite fibers therein to be crimped, the resultant crimps exhibit a poor stability, and thus the bulkiness of the resultant nonwoven fabrics is also very low.
  • the conventional side-by-side type conventional composite fibers composed of two polymers which are the same type but have different shrinkages, suffer from restriction in the processing method and conditions thereof, and thus exhibit a limited crimp-forming property.
  • the inventors of the present invention carried out research into combinations of different types of polymer used for making composite fibers, and into the bonding mechanism of the different polymer segments in the composite fibers, and as a result, disclosed, in Japanese Examined Patent Publication No. 45-28728, a side-by-side type composite fiber in which a polyamide filamentary segment and a metal sulfonate group-­containing polyester filamentary segment are firmly bonded to each other and which exhibits a high crimp-­durability.
  • Japanese Examined Patent Publication No. 57-55806 discloses a method of providing a composite fiber having a latent spiral crimp-forming property, comprising the steps of drawing an undrawn composite fiber in a single step, applying a mechanical crimping procedure to the drawn composite fiber, and heat-treating the crimped composite fiber in a dry relaxed condition. Also, Japanese Examined Patent Publication No.
  • 57-55807 discloses another method of providing a composite fiber having a latent spiral crimp-forming property, comprising the steps of drawing an undrawn composite fiber in a single step, heat-­treating the drawn composite fiber under tension, and then applying a mechanical crimping procedure to the heat-treated composite fiber.
  • Japanese Examined Patent Publication Nos. 63-44843 and 63-44844 disclose a moisture-sensitive crimping composite fiber. A degree of crimping of this fiber can vary in response to the humidity of the ambient atmosphere, but this Japanese Publication does not disclose a method of completely eliminating spiral crimps from the fiber.
  • U.S. Patent No. 4,118,534 and Japanese Unexamined Patent Publication No. 59-116417 disclose composite fibers useful for woven or knitted fabrics
  • Japanese Examined Patent Publication No. 52-30628 discloses a process for producing a nonwoven fabric from split fine fibers, but these publications do not teach composite fibers free from spiral crimps.
  • Japanese Unexamined Patent Publication No. 63-92721 discloses a composite fiber composed of a nylon 46 segment and a metal sulfonate group-containing polyester segment, but does not teach or suggest how to make the spiral crimps completely latent in the composite fiber.
  • the conventional composite fibers having a latent crimping property are still provided with a certain number of spiral crimps, and when converted to spun yarns, the productivity of the carding procedure thus becomes very low. Therefore, the industrial utilization of the conventional crimp-forming composite fibers is still restricted.
  • Japanese Examined Patent Publication No. 52-30628 discloses a method of producing a nonwoven fabric in which, after the composite fibers are passed through a carding procedure, the composite fibers in the card are divided into segment fibers. This method, however, does not teach or suggest how to completely eliminate the spiral crimps.
  • An object of the present invention is to provide a polyamide-polyester composite fiber which is substantially free from crimps when subjected to a fabric-forming process in a wet or dry condition and in which crimps can be created by applying a crimping treatment, for example, a heat-treatment, to the fabric.
  • a crimping treatment for example, a heat-treatment
  • Another object of the present invention is to provide a polyamide-polyester composite fiber which can be formed into a uniform-nonwoven fabric by a wet paper-forming process without creating crimps therein, and then spiral crimps having a satisfactory durability can be created therein by applying a drying treatment or heat treatment to the nonwoven fabric, to provide a nonwoven fabric having a high bulkiness.
  • the polyamide-polyester composite fiber of the present invention comprising a polyamide filamentary segment; and a polyester copolymer filamentary segment comprising a copolymerization product of an aromatic dicarboxylic acid component comprising 2.0 to 10.0 molar% of 5-sodiumsulfo-isophthalic acid and the balance consisting of terephthalic acid with a glycol component comprising at least one type of alkylene glycol having 2 to 10 carbon atoms, the polyamide filamentary segment and the polyester copolymer filamentary segment extending in parallel to each other along the longitudinal axis of the composite fiber and being bonded together in a side-by-side relationship, and the composite fiber having a crimp number of 2 crimps/25 mm or less in water or under a wet condition at a temperature of 100°C or less, and of 5 crimp/25 mm or more under an equilibrium condition of a temperature of 20°C and a relative humidity of 65%.
  • the above-mentioned polyamide-polyester composite fiber can be produced by the process of the present invention comprising the steps of: preparing an undrawn composite fiber which comprises a polyamide filamentary segment and a polyester copolymer filamentary segment comprising a copolymerization product of an aromatic dicarboxylic acid component comprising 2.0 to 10.0 molar% of 5-sodiumsulfo-isophthalic acid and the balance consisting of terephthalic acid with a glycol component comprising at least one type of alkylene glycol having 2 to 10 carbon atoms, and in which the polyamide filamentary segment and the polyester copolymer filamentary segments extend in parallel to each other along the longitudinal axis of the undrawn composite fiber and are bonded to each other in a side-by-side relationship, by a melt-spinning procedure; drawing the undrawn composite fiber at a draw ratio corresponding to 88% to 98% of the ultimate draw ratio thereof; and restrictively relaxing the drawn composite fiber in hot water at a temperature of 80°C
  • a polyamide filamentary segment and a polyester copolymer filamentary segment extend in parallel to each other along the longitudinal axis of the composite fiber, and are bonded together in a side-by-side relationship or in the form of a bi-metal, to form a composite fiber.
  • the polyamide filamentary segment preferably comprises at least one member selected from the group consisting of nylon 4, nylon 46, nylon 6, nylon 66 and nylon 12, and copolymers of the above-mentioned polymers. Those polymers may contain a small amount of another polymer.
  • Nylon 6 and nylon 66 are most preferably employed for the present invention.
  • the polyamide usable for the present invention preferably has a melt viscosity close to that of the polyester copolymer, to ensure a smooth production of the composite fiber by a melt-spinning process.
  • the polyamide has a limiting viscosity [ ⁇ ] of 1.0 to 1.4 determined in m-cresol at a temperature of 30°C.
  • the polyester copolymer usable for the present invention comprises a copolymerization product of an aromatic dicarboxylic acid component comprising 2.0 to 10.0 molar%, preferably 2.0 to 5.0 molar%, of 5-sodiumsulfo-isophthalic acid and the balance consisting of terephthalic acid with a glycol component comprising at least one type of alkylene glycol having 2 to 10 carbon atoms, for example, ethylene glycol, propylene glycol, and butylene glycol.
  • the resultant polyester copolymer filamentary segment exhibits an unsatisfactory bonding property to the polyamide filamentary segment and thus, in the resultant composite fiber, the polyester copolymer filamentary segment is sometimes peeled from the polyamide filamentary segment when the composite fiber is drawn.
  • the polyester copolymer preferably has a limiting viscosity ( ⁇ ) of 0.35 to 0.70 determined in 0-chlorophenol at a temperature of 25°C.
  • the principal polyester chains preferably consist of polyethylene terephthalate or polybutylene terephthalate.
  • the polyester copolymer optionally contains a small amount of copolymerized another component or is mixed with another polymer.
  • One or both of the polyamide segment and the polyester copolymer segment optionally contains an additive comprising at least one member selected from, for example, delustering agents, coloring agents, and anti-static agents.
  • the polyamide filamentary segment and the polyester copolymer filamentary segment are present preferably in a volume ratio to each other of 35:65 to 65:35.
  • the polyamide-polyester composite fiber of the present invention preferably has a denier of 0.1 to 15.0 (a d tex of 1/9 to 150/9) and a length of 3 to 30 mm.
  • cross-sectional profile of the polyamide-polyester composite fiber of the present invention there is no limitation to the cross-sectional profile of the polyamide-polyester composite fiber of the present invention, but a preferable cross-sectional profile is a circle.
  • the composite fiber having a length of 3 to 30 mm can be uniformly dispersed in water. If the crimp number is 1 crimp/25 mm, the length of the composite fiber is preferably 3 to 10 mm, and if the crimp number is 2 crimp/25 mm, the length of the composite fiber is preferably 3 to 5 mm.
  • the polyamide-polyester composite fiber of the present invention has the following characteristic properties.
  • the polyamide-polyester composite fiber of the present invention can be produced by a process comprising the steps of, preparing an undrawn composite fiber, drawing the undrawn composite fiber, and restrictively relaxing the drawn composite fiber.
  • the undrawn composite fiber is prepared from a polyamide and a polyester copolymer, by a usual composite fiber-melt spinning method.
  • the resultant undrawn composite fiber comprises a polyamide filamentary segment and a polyester copolymer filamentary segment comprising a copolymerization product of an aromatic dicarboxylic acid component with a glycol component.
  • the aromatic dicarboxylic acid component comprises 2.0 to 10.0 molar% of 5-sodiumsulfo-isophthalic acid and the balance consisting of terephthalic acid.
  • the glycol component comprises at least one type of alkylene glycol having 2 to 10 carbon atoms.
  • the polyamide filamentary segment and the polyester copolymer filamentary segment in the undrawn composite fiber extend in parallel to each other along the longitudinal axis of the undrawn composite fiber, and are bonded to each other in a side-by-side relationship or in the form of a bi-metal.
  • the resultant undrawn composite fiber is subjected to a drawing procedure, which is carried out by using a usual drawing machine for the production of polyester staple fiber, at a specific draw ratio corresponding to 88% to 98% of the ultimate draw ratio at which the drawn composite fiber is broken.
  • the polyamide and polyester copolymer filamentary segments are oriented with a high degree of orientation.
  • the drawing procedure is carried out in hot water at a temperature of 65°C to 75°C.
  • the draw ratio is determined in consideration of the drawing temperature, the cooling conditions, the melt-spinning speed, the drawing speed, and the thickness of the undrawn composite fiber.
  • the resultant composite fiber is unsatisfactory in that, when the resultant composite fiber is immersed in water, the crimps in the fiber are not substantially removed. Also, if the draw ratio is more than 98% of the ultimate draw ratio of the undrawn composite fiber, the composite fiber is partly broken, and thus the resultant drawn composite fiber tow has fluffs and contains undrawn composite fibers.
  • the drawn composite fiber is restrictively relaxed in hot water at a temperature of 80°C to 90°C, to an extent such that the drawn composite fiber is allowed to shrink to a length thereof corresponding to 85% to 98% of the length of the drawn composite fiber.
  • the relaxing temperature is less than 80°C, or more than 90°C, the resultant composite fiber is unsatisfactory in that, even when the resultant composite fiber is immersed in water, the crimps created in the fiber cannot be substantially removed.
  • the length of the relaxed composite fiber is more than 98% of the corresponding length of the drawn composite fiber, i.e., the shrinkage is very small, the crimps in the fiber cannot be removed by treating the fiber with water. If the length of the relaxed composite fiber is less than 80% of the corresponding length of the drawn composite fiber, the relaxed composite fiber often becomes wound around a delivery roll in the drawing machine, and thus the production efficiency of the composite fiber is lowered.
  • the composite fiber is conveyed at a speed of 80 to 150 m/min. This speed does not strongly affect the property of the resultant composite fiber.
  • the resultant drawn and relaxed composite fiber is heat-set, preferably at a temperature of 90°C to 150°C.
  • the heat-setting procedure can be carried out by using a heating roll or a heating oven.
  • the resultant drawn and relaxed composite fiber is oiled with a predetermined amount of a hydrophilic oiling agent, which effectively increases the dispersing property of the composite fiber in water, dried at a temperature close to room temperature, preferably 40°C or less over a time of about 30 minutes or more to an extent such that the content of water in the composite fiber is decreased to about 30% by weight, and then drawn to a predetermined length.
  • a hydrophilic oiling agent which effectively increases the dispersing property of the composite fiber in water
  • the hydrophilic oiling agent comprises at least one member selected from, for example, nonionic oiling agents, for example, polyethyleneglycol and anionic oiling agents, for example, sulfate compounds, sulfonate compounds and phosphate compounds of polyethyleneglycol-copolymerized polyesters.
  • nonionic oiling agents for example, polyethyleneglycol and anionic oiling agents, for example, sulfate compounds, sulfonate compounds and phosphate compounds of polyethyleneglycol-copolymerized polyesters.
  • the polyamide-polyester composite fiber of the present invention loses its crimps and is straightened. Also, the polyamide-polyester composite fiber of the present invention exhibits a satisfactory rigidity or stiffness, due to the polyester copolymer filamentary segment, and a high hydrophilic property due to the polyamide filamentary segment, and therefore, shows an excellent uniform dispersing or suspending property in water.
  • the aqueous slurry containing the polyamide-­polyester composite fibers of the present invention is subjected to a wet paper-forming process in a TAPPI paper-forming machine, and the resultant wet nonwoven fabric is dried in a hot air-circulating oven, for example, at a temperature of 150°C for 10 minutes, the resultant dry nonwoven fabric having, for example, a basis weight of 50 g/m2, exhibits a high bulkiness. This is due to the fact that, in the drying procedure, a number of spiral crimps are created in the composite fibers. In the wet paper-forming procedure, however, the composite fibers are uncrimped and straightened, and therefore uniformly dispersed in water, and the oiling agent is washed out from the composite fibers.
  • the drawing procedure is carried out at a draw ratio corresponding to 90% to 98% of the ultimate draw ratio of the undrawn composite fiber, and the resultant composite fiber has a crimp number of substantially zero per 25 mm length of the fiber when immersed in water or placed in a wet condition at a temperature of 0°C to 100°C, and of 20 crimps/25 mm or more in an equilibrium condition of a temperature of 20°C and a relative humidity of 65°C.
  • the polyamide-polyester composite fibers of the present invention can be utilized for providing a wet process-produced nonwoven fabric which comprises 20 to 90% by weight of the polyamide-polyester composite fibers of the present invention and the balance consisting of at least one type of other fibers.
  • This wet process-produced nonwoven fabric is advantageous in that it has a high dimensional stability, and a satisfactory bulkiness and stretchability.
  • the resultant nonwoven fabric When the content of the polyamide-polyester composite fibers is less than 20% by weight, the resultant nonwoven fabric has an unsatisfactory bulkiness. Also, if the content of the polyamide-­polyester composite fibers is more than 90% by weight, the resultant nonwoven fabric exhibits an unsatisfactory mechanical strength.
  • the other fibers to be blended with the polyamide-­polyester composite fibers of the present invention are preferably selected from drawn and undrawn polyester fibers.
  • the polyester fibers are preferably selected from polyethylene terephthalate fibers, 5-sodiumsulfo­isophthalic acid-copolymerized polyethylene terephtha­late copolymer fibers.
  • the content of 5-sodiumsulfo­isophthalic acid in the polyester copolymer is preferably in the range of from 2 to 10 molar%.
  • the other fibers may be selected from nylon 6, nylon 66, nylon 4, nylon 46 and nylon 12 fibers.
  • JIS Japanese Industrial Standard
  • side-by-side type undrawn composite filaments were prepared from a nylon 66 resin having a limiting viscosity [ ⁇ ] of 1.17 determined in m-cresol at 30°C, and a polyester copolymer resin composed of polyethylene terephthalate copolymerized with 4.5 molar% of 5-sodiumsulfo-isophthalic acid and having a limiting viscosity [ ⁇ ] of 0.37 determined in o-chlorophenol at 25°C, by a usual melt-spinning process for side-by-side type composite fibers, at a spinning temperature of 285°C and a taking off speed of 1,100 m/min.
  • the volume ratio of the polyamide filamentary segment to the polyester copolymer filamentary segment in each undrawn filament was 50:50.
  • the shrinkage (S) of the composite filaments was determined in accordance with the following equation: wherein S h represents a shrinkage of the filaments, S f represents a peripheral speed of a feeding roll for feeding the filaments to the relaxing step, and S d represents a peripheral speed of a delivery roll for delivering the filaments from the relaxing step.
  • the resultant drawn and relaxed filament tow was cut to a length of 51 mm in a water-wet condition, to provide short composite fibers.
  • the crimp number of the short composite fibers was measured in a wet condition, and after drying at room temperature. The results are shown in Table 1.
  • the individual short composite fibers had an average thickness of about 2.5 denier.
  • the drying procedure at room temperature was carried out by storing the cut wet composite fibers in a closed room at a temperature of 20°C and a relative humidity of 65%, for 24 hours.
  • the melt-spinning procedure was carried out by using a composite filament spinneret having 100 orifices at an extruding rate of 40 ml/min.
  • the resultant undrawn composite filaments had an ultimate draw ratio of 3.1.
  • the wet crimp number and the dry crimp number of the resultant composite filaments were measured.
  • Example 19 to 22 the heat-set composite fibers mentioned in Examples 15 to 18 were employed to prepare nonwoven fabrics, respectively.
  • Comparative Exam­ples 11 to 15 the heat-set composite fibers mentioned in Comparative Examples 7 to 10 were employed to prepare nonwoven fabrics, respectively.
  • Comparative Example 15 comparative side-by-side type polyester-­polyester composite fibers were employed to prepare a nonwoven fabric.
  • This comparative composite fiber is composed of 50% by volume of a polyethylene terephtha­late filamentary segment and 50% by volume of a poly­ethylene terephthalate copolymer filamentary segment containing 3.0 molar% of copolymerized 5-sodiumsulfo­isophthalic acid.
  • Undrawn polyethylene terephthalate filaments were prepared by melt-spinning a polyethylene terephthalate resin having a limiting viscosity [ ⁇ ] of 0.64 through a spinning orifices having a circular cross-section at a take-up speed of 1000 m/min.
  • the resultant individual undrawn polyester filaments had a denier of 1.2.
  • a portion of the undrawn polyester filaments were drawn to provide drawn polyester filaments having a denier of 0.5.
  • the above-mentioned composite filaments, the undrawn polyester filaments and the drawn polyester filaments were cut to a length of 5 mm.
  • the composite fibers, the undrawn polyester fibers and the drawn polyester fibers were evenly blended in a blend ratio of 40:30:30 by weight and dispersed in water in a beater.
  • the resultant fiber slurry was subjected to a wet paper-forming process by a cylinder paper machine.
  • the resultant wet sheet was dehydrated and dried in a dryer at a temperature of 120°C.
  • the resultant nonwoven fabric had a basis weight of 25 g/m2.
  • the properties of the nonwoven fabric are shown in Table 4.
  • the touch and hand of the resultant padding cloth was compared with that of a conventional padding cloth composed of a nylon 6 nonwoven fabric. Also, the resultant padding cloth was adhered to a polyester fabric at a temperature of 150°C. The bonding property of the padding cloth was compared with that of the conventional padding cloth.
  • the polyester copolymer consisted of a copolymeri­zation product of an aromatic dicarboxylic acid component consisting of 3.5 molar% of 5-sodiumsulfo­isophthalic acid and 96.5 molar% of terephthalic acid with a glycol component consisting of 5 molar% of tetramethylene glycol and 95 molar% of ethylene glycol, and had a limiting viscosity [ ⁇ ] of 0.50.
  • a nonwoven fabric was prepared from composite fibers, wood pulp and polyolefin fibers each having a length of 5 mm, by a wet paper-forming process.
  • Example 26 to 28 the composite fibers men­tioned in Examples 23 to 25 were respectively employed.
  • Comparative Example 18 and 20 the composite fibers mentioned in Comparative Examples 16 and 17 were respec­tively employed.
  • Comparative Example 20 the same polyester-polyester copolymer composite fibers as mentioned in Comparative 15 were used.
  • the composite fibers, the wood pulp and the polyolefin fibers were blended in a blending weight ratio of 50:30:20 and dispersed in water in a beater.
  • the wood pulp had a freeness (Canadian) of 600 ml and polyolefin fibers had a denier of 3 and a length of 5 mm, and were available under the trademark of ES fibers from Chisso K.K.
  • the wet paper-forming process was carried out by using a cylinder paper machine and the resultant wet sheet was dried at a temperature of 115°C.
  • the dried nonwoven fabric was heat treated in a hot air dryer at a temperature of 130°C for 30 seconds.
  • the resultant nonwoven fabric had a basis weight of 40 g/m2.
  • Table 8 clearly shows that the nonwoven fabrics of the present invention exhibit a satisfactory bulkiness and mechanical strength, whereas in Comparative Example 21 in which the composite fibers were used in a small content of less than 20% by weight, the resultant nonwoven fabric has a poor bulkiness and in Comparative Example 22 in which the composite fibers were used in a large amount of more than 90% by weight, the resultant nonwoven fabric exhibited a poor mechanical strength.
  • the resultant composite fibers had the wet crimp number and the dry crimp number as indicated in Table 9.
  • Example 41 to 47 the composite fibers as mentioned in Examples 34 to 40 were respectively employed, in Comparative Examples 28 to 33, the com­posite fibers as mentioned in Comparative Examples 23 to 26 were respectively employed, and in Comparative Example 33, the same polyester-polyester copolymer composite fibers as mentioned in Comparative Example 15 were used.
  • the composite fibers were blended with the same undrawn polyester fibers and the drawn polyester fibers as those mentioned in Example 19 in the blending weight ratio of 40:30:30, and the blend was converted to a nonwoven fabric in the same manner as in Example 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)
EP19900115458 1989-08-16 1990-08-11 Polyamide-polyester composite fiber and process for producing same Withdrawn EP0413280A3 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP21018089A JPH0376817A (ja) 1989-08-16 1989-08-16 ポリアミド/ポリエステル系複合繊維及びその製造方法
JP210180/89 1989-08-16
JP210689/89 1989-08-17
JP1210689A JPH0376818A (ja) 1989-08-17 1989-08-17 ポリアミド/ポリエステル2成分系繊維及びその製造方法
JP2189455A JPH0482913A (ja) 1990-07-19 1990-07-19 ポリアミド/ポリエステル系複合繊維及びその製造方法
JP189455/90 1990-07-19
JP199204/90 1990-07-30
JP19920490A JPH0491289A (ja) 1990-07-30 1990-07-30 湿式不織布

Publications (2)

Publication Number Publication Date
EP0413280A2 true EP0413280A2 (de) 1991-02-20
EP0413280A3 EP0413280A3 (en) 1991-10-30

Family

ID=27475438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900115458 Withdrawn EP0413280A3 (en) 1989-08-16 1990-08-11 Polyamide-polyester composite fiber and process for producing same

Country Status (1)

Country Link
EP (1) EP0413280A3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
EP1788127A1 (de) * 2004-09-03 2007-05-23 Teijin Fibers Limited Verbundfaser
JP2007231452A (ja) * 2006-03-01 2007-09-13 Teijin Fibers Ltd 複合繊維
JP2007239141A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 混繊糸
JP2007239139A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 複合仮撚加工糸
JP2007239140A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 仮撚加工糸
EP1995358A1 (de) * 2006-03-01 2008-11-26 Teijin Fibers Limited Garn aus konjugatfaser
TWI452187B (zh) * 2007-04-04 2014-09-11 Kb Seiren Ltd 抗靜電性、吸水性及接觸冷感性優異之複合纖維
TWI460325B (zh) * 2007-04-18 2014-11-11 Kb Seiren Ltd 分割型複合纖維、使用其之纖維構造物及拭布、以及纖維構造物與拭布之製造方法
JP2015086504A (ja) * 2013-09-27 2015-05-07 Kbセーレン株式会社 ポリアミド潜在捲縮糸及びその製造方法
CN109957856A (zh) * 2017-12-25 2019-07-02 上海凯赛生物技术研发中心有限公司 一种并列复合纤维及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482772A (en) 1992-12-28 1996-01-09 Kimberly-Clark Corporation Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038236A (en) * 1954-02-26 1962-06-12 Du Pont Crimped textile products
JPH01169000A (ja) * 1987-12-25 1989-07-04 Nippon Ester Co Ltd 湿式不織布用ポリエステル複合繊維

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038236A (en) * 1954-02-26 1962-06-12 Du Pont Crimped textile products
JPH01169000A (ja) * 1987-12-25 1989-07-04 Nippon Ester Co Ltd 湿式不織布用ポリエステル複合繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 442 (C-641)(3790) October 4, 1989 & JP-A-1 169 000 (NIPPON ESTER CO LTD ) July 4, 1989 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
EP1788127A4 (de) * 2004-09-03 2008-10-29 Teijin Fibers Ltd Verbundfaser
EP1788127A1 (de) * 2004-09-03 2007-05-23 Teijin Fibers Limited Verbundfaser
US7654071B2 (en) 2004-09-03 2010-02-02 Teijin Fibers Limited Composite fibers
TWI413715B (zh) * 2006-03-01 2013-11-01 Teijin Fibers Ltd 含有複合纖維之紗線
US8153253B2 (en) 2006-03-01 2012-04-10 Teijin Fibers Limited Conjugate fiber-containing yarn
JP2007231452A (ja) * 2006-03-01 2007-09-13 Teijin Fibers Ltd 複合繊維
EP1995358A1 (de) * 2006-03-01 2008-11-26 Teijin Fibers Limited Garn aus konjugatfaser
EP1995358A4 (de) * 2006-03-01 2009-07-01 Teijin Fibers Ltd Garn aus konjugatfaser
CN101395307B (zh) * 2006-03-01 2012-03-21 帝人纤维株式会社 含复合纤维的纱线
JP2007239141A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 混繊糸
JP2007239140A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 仮撚加工糸
JP2007239139A (ja) * 2006-03-08 2007-09-20 Teijin Fibers Ltd 複合仮撚加工糸
TWI452187B (zh) * 2007-04-04 2014-09-11 Kb Seiren Ltd 抗靜電性、吸水性及接觸冷感性優異之複合纖維
TWI460325B (zh) * 2007-04-18 2014-11-11 Kb Seiren Ltd 分割型複合纖維、使用其之纖維構造物及拭布、以及纖維構造物與拭布之製造方法
JP2015086504A (ja) * 2013-09-27 2015-05-07 Kbセーレン株式会社 ポリアミド潜在捲縮糸及びその製造方法
CN109957856A (zh) * 2017-12-25 2019-07-02 上海凯赛生物技术研发中心有限公司 一种并列复合纤维及其制备方法
CN109957856B (zh) * 2017-12-25 2022-07-19 上海凯赛生物技术股份有限公司 一种并列复合纤维及其制备方法

Also Published As

Publication number Publication date
EP0413280A3 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
EP0860523B1 (de) Hohle Polyesterfasern und diese enthaltende Textilien
EP0821086B1 (de) Elastische Polyesterfasern und diese Fasern enthaltende dehnbare faserige Artikel
US4364996A (en) Synthetic fibers having down/feather-like characteristics and suitable for wadding
US6485828B2 (en) Flat synthetic fiber, method for preparing the same and non-woven fabric prepared using the same
WO2018216572A1 (ja) 多層構造布帛および繊維製品
EP0117937A1 (de) Polyesterbindefasern
EP0413280A2 (de) Polyamid-Polyester-Verbundfaser und Verfahren zur Herstellung derselben
KR100493342B1 (ko) 에어백용 특수 직물
US20040116027A1 (en) High stretch recovery non-woven fabric and process for preparing
EP0270019A2 (de) Multifilamentgarn aus synthetischen Polymeren für gekräuseltes Garn und Verfahren zur Herstellung desselben
EP0399392B1 (de) Gemischtes synthetisches Kurzfasergarn, das sich anfühlt wie ein hochwertiges Baumwollgarn und Verfahren zu seiner Herstellung
JPH09273096A (ja) ポリエステル系湿式不織布
US3282038A (en) Synthetic paper yarn
EP0193798A1 (de) Papierähnliches Polyesterfaserblatt
WO1992013120A1 (en) Improvements in polyester fibers
JPS61282500A (ja) ポリエステル繊維紙
IE860905L (en) Water-dispersible synthetic fiber
EP0432489A2 (de) Wärmeklebbare zusammengesetzte Fasern und damit hergestellter Vliesstoff
EP0953660B1 (de) Teilbare Hohlfasern und geteilte Fasern aus Copolyester, daraus hergestellte Gewebe, Gewirke, Kunstleder und Vlies
JPH02300398A (ja) 嵩高紙
KR880002440B1 (ko) 신규 수-분산 가능 합성 섬유
JPH0376817A (ja) ポリアミド/ポリエステル系複合繊維及びその製造方法
JPH0214035A (ja) シエニール糸
JPH0524279B2 (de)
JPH02289101A (ja) 芯地

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19901231

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950301