EP0412399B1 - Dug volume control for a bucket wheel excavator - Google Patents

Dug volume control for a bucket wheel excavator Download PDF

Info

Publication number
EP0412399B1
EP0412399B1 EP90114612A EP90114612A EP0412399B1 EP 0412399 B1 EP0412399 B1 EP 0412399B1 EP 90114612 A EP90114612 A EP 90114612A EP 90114612 A EP90114612 A EP 90114612A EP 0412399 B1 EP0412399 B1 EP 0412399B1
Authority
EP
European Patent Office
Prior art keywords
conveying
bucket wheel
profile
bucket
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114612A
Other languages
German (de)
French (fr)
Other versions
EP0412399A1 (en
Inventor
Edmund Heimes
Hans-Jörg Nüsslin
Johann Hipp
Franz-Josef Hartlief
Franz-Arno Fassbender
Ralf Eckoldt
Dieter Dr. Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Siemens AG
Original Assignee
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Rheinische Braunkohlenwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan, Rheinbraun AG, Rheinische Braunkohlenwerke AG, Siemens AG filed Critical Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Priority to AT90114612T priority Critical patent/ATE99758T1/en
Publication of EP0412399A1 publication Critical patent/EP0412399A1/en
Application granted granted Critical
Publication of EP0412399B1 publication Critical patent/EP0412399B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the invention relates to the regulation of the delivery rate of a bucket wheel excavator or bucket wheel pickup in open-cast mining, in which the swiveling speed of the bucket wheel boom and / or its altitude is regulated depending on the solid material delivery volume cut by the bucket wheel, with a radiation transmitter / receiver arranged in the vicinity of the bucket wheel for scanning the profile of the solid material in the swivel direction in front of the paddle wheel.
  • DE-A-34 11 540 a method for measuring the delivery volume in belt conveyors is known, the surface of the bulk material being scanned across the conveying direction at several measuring points with the aid of laser distance measuring devices operating according to the pulse transit time measuring principle.
  • a laser distance measuring device is provided for each measuring point, so that the number of devices required depends on the width of the belt conveyor.
  • the invention has for its object to provide an operationally safe and open-cast mining flow control with the help of a contactless determination of the solid material delivery amount detected by the paddle wheel.
  • the object is achieved in that the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam, by measurement, in the delivery rate control of the type specified at the outset the distance from the laser scanner to the material surface with the aid of time-of-flight measurements of the pulsed laser beam evaluated in a computer and by measuring the angle of the laser beam to the material surface, the profile of the solid material next to the paddle wheel can be detected.
  • the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam, by measurement, in the delivery rate control of the type specified at the outset the distance from the laser scanner to the material surface with the aid of time-of-flight measurements of the pulsed laser beam evaluated in a computer and by measuring the angle of the laser beam to the material surface, the profile of the solid material next to the paddle wheel can be detected.
  • the scanning of the contour of the solid material in the swivel direction in front of the paddle wheel by a laser beam which preferably works with a wavelength of 905 nanometers, a pulse rate of 3.6 kHz and a pulse duration of approx. 10 nanoseconds, and the evaluation of the transit time measurements of the pulsed laser light in one Computers allowed a particularly precise determination of the cutting volume to be reduced, which was insensitive to different temperatures, whirled up dust and other environmental influences. A reliable measurement of the cutting volume to be removed is thus available, which enables reliable control of the delivery rate of the bucket wheel excavator or bucket wheel pickup.
  • the use of the laser scanner has the advantage that the area to be machined is recorded in a line.
  • the line-by-line or wavy-line scanning not only makes it possible to record individual data, but also the configuration of the dismantling front. Thanks to the low-cost optics, the low scattering light of the laser scanner enables a high instantaneous energy density to be achieved, thereby avoiding or reducing errors caused by excessive scattering, insufficient reflection, etc. Overall, this results in a particularly reliable measurement and control method that is suitable for open-cast mining.
  • the laser scanners 8, 9 are mounted next to the paddle wheel 6 with the paddles 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downwards.
  • the profile is determined from distance / angle value pairs. It is primarily the profile 1, 2 of that side that is used for the control towards which the paddle wheel 6 moves. If there is a uniform movement in only one direction and if there is no difference measurement, the second profile scanner can also be dispensed with.
  • the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.
  • the rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away.
  • the cross-sectional area 14 of the respective chip is calculated from the rear contour 12 and the measured profile 13.
  • the overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference area.
  • the bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator. The faster the swivel movement, the greater the volume of the chip.
  • the volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away.
  • the necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cut surface and oversize are carried out in a computer which is connected downstream of the laser scanner.
  • This computer can be integrated in the laser scanner.
  • For the calculation essentially the swivel radius, the swivel speed, the lifting angle ( ⁇ ) of the bucket wheel boom, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are necessary. This information can easily be saved in the computer of the laser scanner.
  • the computer is advantageously equipped with a writable permanent memory.
  • the stroke angle ( ⁇ ) of the bucket wheel boom can be used directly in the laser scanner 8, 9 or in the downstream computer.
  • the length of the bucket wheel boom is a known parameter.
  • the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer. If the excavator 16 is tilted, a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable.
  • the spatial profile must be oriented in space by reference to the solder 15.
  • the profile part on the level 3 can be approximated by a straight line.
  • the slope of this straight line can be calculated.
  • the height of the paddle wheel 6 above the level can also be determined from the profile in which the projection onto the vertical is calculated from the oblique distance to the approximated straight line in the level.
  • ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 is thus relative to the position of the excavator 16 continuously avoidable. If 6 DESIRED values are specified for the location of the impeller, a control variable for controlling the impeller 6 on any surface shapes can be derived from the difference between the ACTUAL values and REQUIRED values.
  • the distance of the boom 7 from the material in question can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.
  • the above invention which solves a basic problem previously considered unsolvable when working with bucket wheel excavators, can preferably be carried out with laser scanners, in particular IR laser scanners.
  • laser scanners in particular IR laser scanners.
  • other radiation sources comparable to a laser can also be used, e.g. electromagnetic radiators of very high frequency and comparable beam bundling.
  • other positions of the measurement laser than those shown in the drawing are possible. If there is a lot of dust, e.g. an attachment to the excavator and a contour detection of the mining front at a distance of 10-20 m from the bucket wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Operation Control Of Excavators (AREA)
  • Control And Safety Of Cranes (AREA)
  • Ship Loading And Unloading (AREA)
  • Earth Drilling (AREA)

Abstract

The invention relates to an extracted-quantity control system for a bucket wheel excavator (6), in which the slewing speed of the bucket wheel boom (7) and/or its vertical position is controlled while taking into account the bucket-wheel drive current as well as the weight and volume of the extracted material, the extracted volume of solid material cut by the bucket wheel being used as a further control variable. <IMAGE>

Description

Die Erfindung betrifft die Fördermengenregelung eines Schaufelradbaggers oder Schaufelradaufnehmers im Tagebau, bei der die Schwenkgeschwindigkeit des Schaufelradauslegers und/oder seine Höhenlage in Abhängigkeit von dem von dem Schaufelrad geschnittenen Festmaterial-Fördervolumen geregelt wird, mit einem in Schaufelradnähe angeordneten Strahlungssender/-empfänger zum Abtasten des Profils des Festmaterials in Schwenkrichtung vor dem Schaufelrad.The invention relates to the regulation of the delivery rate of a bucket wheel excavator or bucket wheel pickup in open-cast mining, in which the swiveling speed of the bucket wheel boom and / or its altitude is regulated depending on the solid material delivery volume cut by the bucket wheel, with a radiation transmitter / receiver arranged in the vicinity of the bucket wheel for scanning the profile of the solid material in the swivel direction in front of the paddle wheel.

Eine derartige Fördermengenregelung ist aus der DE-A-1 634 712 bekannt, wobei die Abtastung des Festmaterials mit Hilfe von Strahlen, wie z.B. von Ultraschallwellen, elektromagnetischen Schwingungen oder photoelektrischen Lichtschranken als eine Alternative zu einer mechanischen Abtasteinrichtung angegeben ist. Wie jedoch die Abtastung des Festmaterials mit Hilfe der Strahlen realisiert werden soll, ist der DE-A-1 634 712 nicht zu entnehmen und ist auch bisher nicht bekannt geworden.Such a flow rate control is known from DE-A-1 634 712, the scanning of the solid material with the aid of beams, e.g. ultrasonic waves, electromagnetic vibrations or photoelectric light barriers is given as an alternative to a mechanical scanning device. However, it is not clear from DE-A-1 634 712 how the scanning of the solid material is to be realized with the aid of the beams, and it has not yet become known.

Aus der EP-A-0 192 993 ist ein Verfahren zur dreidimensionalen optischen Erfassung von Objekten mit Hilfe eines periodisch intensitätsmodulierten oder gepulsten Lasers bekannt, wobei Laufzeitunterschiede des von dem Objekt reflektierten und mit einem Empfänger erfaßten Lichts in Form von Helligkeitsunterschieden erfaßt und in Höhenstufen des Objekts umgerechnet werden. Zur vollständigen Ausleuchtung des Objekts ist zwischen diesem und dem Laser eine Strahlaufweitungsoptik angeordnet, mit der das Laserlicht zu einem Strahlungskegel aufgeweitet wird. Da das Objekt an unterschiedlichen Stellen unterschiedliche Reflexionseigenschaften aufweisen kann, wird von diesem zunächst ein allgemeines Grauwertbild erzeugt, das als Referenzbild für die Umrechnung der von den Laufzeitunterschieden abhangigen Helligkeitsunterschiede in die Höhenstufen dient.From EP-A-0 192 993 a method for the three-dimensional optical detection of objects with the aid of a periodically intensity-modulated or pulsed laser is known, differences in transit time of the light reflected from the object and detected by a receiver being detected in the form of differences in brightness and in height levels of Object can be converted. For complete Illumination of the object has a beam expansion optics arranged between it and the laser, with which the laser light is expanded into a radiation cone. Since the object can have different reflection properties at different points, a general gray value image is first generated by this object, which serves as a reference image for converting the brightness differences, which are dependent on the runtime differences, into the height levels.

Aus der Zeitschrift "Braunkohle", 41 (1989), Heft 5, Seiten 148-150, ist die Verwendung von Rotationslasern bei Schaufelradbaggern im Tagebau bekannt, wobei mit dem Laser direkt auf einen zugehörigen Empfänger gemessen wird. Eine Abtastung der von dem Schaufelrad freigelegten Flächen ist nicht vorgesehen.From the magazine "Braunkohle", 41 (1989), No. 5, pages 148-150, the use of rotary lasers in bucket-wheel excavators in open-cast mining is known, with the laser being measured directly on an associated receiver. A scanning of the surfaces exposed by the paddle wheel is not provided.

Schließlich ist aus der DE-A-34 11 540 ein Verfahren zur Fördervolumenmessung bei Bandförderern bekannt, wobei die Oberfläche des Schüttgutes quer zur Förderrichtung an mehreren Meßpunkten mit Hilfe von nach dem Impuls-Laufzeitmeßprinzip arbeitenden Laserentfernungsmeßgeräten abgetastet wird. Dabei ist für jeden Meßpunkt jeweils ein Laserentfernungsmeßgerät vorgesehen, so daß sich die Anzahl der benötigten Geräte nach der Breite des Bandförderers richtet.Finally, from DE-A-34 11 540 a method for measuring the delivery volume in belt conveyors is known, the surface of the bulk material being scanned across the conveying direction at several measuring points with the aid of laser distance measuring devices operating according to the pulse transit time measuring principle. A laser distance measuring device is provided for each measuring point, so that the number of devices required depends on the width of the belt conveyor.

Der Erfindung liegt die Aufgabe zugrunde, eine betriebssichere und tagebaugerechte Fördermengenregelung mit Hilfe einer berührungslosen Ermittlung der vom Schaufelrad erfaßten Festmaterial-Fördersumme anzugeben.The invention has for its object to provide an operationally safe and open-cast mining flow control with the help of a contactless determination of the solid material delivery amount detected by the paddle wheel.

Gemäß der Erfindung wird die Aufgabe dadurch gelöst, daß bei der Fördermengenregelung der eingangs angegebenen Art, der Strahlungssender/-empfänger ein Laserscanner ist, der einen gepulsten Laserstrahl erzeugt, wobei durch Messung der Entfernung von dem Laserscanner zur Materialoberfläche mit Hilfe von in einem Rechner ausgewerteten Laufzeitmessungen des gepulsten Laserstrahls und durch Messung des Winkels des Laserstrahls zur Materialoberfläche das Profil des neben dem Schaufelrad anstehenden Festmaterials erfaßbar ist.According to the invention, the object is achieved in that the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam, by measurement, in the delivery rate control of the type specified at the outset the distance from the laser scanner to the material surface with the aid of time-of-flight measurements of the pulsed laser beam evaluated in a computer and by measuring the angle of the laser beam to the material surface, the profile of the solid material next to the paddle wheel can be detected.

Die Abtastung der Kontur des Festmaterials in Schwenkrichtung vor dem Schaufelrad durch einen Laserstrahl, der vorzugsweise mit einer Wellenlänge von 905 Nanometer, einer Pulsrate von 3,6 kHz und einer Pulsdauer von ca. 10 Nanosekunden arbeitet und die Auswertung der Laufzeitmessungen des gepulsten Laserlichts in einem Rechner erlaubten ein besonders genaues, gegen unterschiedliche Temperaturen, aufgewirbelten Staub und weitere Umwelteinflüsse unempfindliches Ermitteln des abzubauenden Schnittvolumens. So steht eine betriebssichere Messung des abzubauenden Schnittvolumens zur Verfügung, die eine sichere Regelung der Fördermenge des Schaufelradbaggers oder Schaufelradaufnehmers erlaubt. Dabei hat die Verwendung des Laserscanners den Vorteil, daß eine linienformige Erfassung des abzuspanenden Gebietes erfolgt. Durch die zeilenweise oder wellenlinienförmige Abtastung werden nicht nur Einzeldaten, sondern die Konfiguration der Abbaufront erfaßbar. Durch eine aufwandsarme Optik kann über das gering streuende Licht des Laserscanners eine hohe momentane Energiedichte erreicht werden, wodurch Fehler durch zu starke Streuung, ungenugender Reflektion etc. vermieden oder verkleinert werden. Insgesamt ergibt sich so ein besonders betriebssicheres, tagebaugerechtes Meß- und Regelverfahren.The scanning of the contour of the solid material in the swivel direction in front of the paddle wheel by a laser beam, which preferably works with a wavelength of 905 nanometers, a pulse rate of 3.6 kHz and a pulse duration of approx. 10 nanoseconds, and the evaluation of the transit time measurements of the pulsed laser light in one Computers allowed a particularly precise determination of the cutting volume to be reduced, which was insensitive to different temperatures, whirled up dust and other environmental influences. A reliable measurement of the cutting volume to be removed is thus available, which enables reliable control of the delivery rate of the bucket wheel excavator or bucket wheel pickup. The use of the laser scanner has the advantage that the area to be machined is recorded in a line. The line-by-line or wavy-line scanning not only makes it possible to record individual data, but also the configuration of the dismantling front. Thanks to the low-cost optics, the low scattering light of the laser scanner enables a high instantaneous energy density to be achieved, thereby avoiding or reducing errors caused by excessive scattering, insufficient reflection, etc. Overall, this results in a particularly reliable measurement and control method that is suitable for open-cast mining.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, anhand der Zeichnung und in Verbindung mit den Unteransprüchen. Es zeigen.

Fig. 1
eine Sicht auf den Abbauort,
FIG 2
eine Darstellung der geometrischen Verhältnisse bei einer Spanmessung und
FIG 3
eine Darstellung der geometrischen Verhältnisse am Abbauort in vereinfachter Form.
Further advantages and details of the invention result from the following description, with reference to the drawing and in connection with the subclaims. Show it.
Fig. 1
a view of the mining site,
FIG 2
a representation of the geometric relationships in a chip measurement and
FIG 3
a representation of the geometric conditions at the mining site in a simplified form.

Die FIG 1 zeigt die Ermittlung der Einzelheiten des Abbauortes durch zwei Meßlaser, insbesondere Laserscanner 8, 9, die das Oberflächenprofil auf dem Abbaumaterial 1 und die abgearbeitete Fläche 3 durch scannen auf den Scanlinien 10, 11 vertikal vermessen. Die Laserscanner 8, 9 sind neben dem Schaufelrad 6 mit den Schaufeln 5 am Schaufelradträger 7 angebracht und vermessen vornehmlich den nach unten gerichteten Profilteil 2. Das Profil wird aus Entfernung/Winkel-Wertepaaren ermittelt. Es wird in erster Linie das Profil 1, 2 derjenigen Seite für die Regelung verwendet, auf die sich das Schaufelrad 6 zubewegt. Bei gleichmäßiger Bewegung in nur eine Richtung und wenn keine Differenzmessung erfolgt, kann auch auf den zweiten Profilscanner verzichtet werden. Während der Schwenkbewegung dreht sich das Schaufelrad 6 und fräst das Festmaterial 1 um das Oberflächenmaß 4 ab.1 shows the determination of the details of the mining site by two measuring lasers, in particular laser scanners 8, 9, which measure the surface profile on the mining material 1 and the processed area 3 by scanning on the scan lines 10, 11 vertically. The laser scanners 8, 9 are mounted next to the paddle wheel 6 with the paddles 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downwards. The profile is determined from distance / angle value pairs. It is primarily the profile 1, 2 of that side that is used for the control towards which the paddle wheel 6 moves. If there is a uniform movement in only one direction and if there is no difference measurement, the second profile scanner can also be dispensed with. During the swiveling movement, the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.

Das hintere Profil 12 (weggefrästes Festmaterial) ist, wie FIG 2 zeigt, durch die Kontur des Schaufelrades 6 vorgegeben, da alles vorstehende Material zwangsweise weggefräst wird. Aus der hinteren Kontur 12 und dem gemessenen Profil 13 wird die Querschnittsfläche 14 des jeweiligen Spans errechnet. Die Überlappung des Schaufelrades 6 über das gemessene Profil des Laserscanners stellt diese Differenzfläche dar. Durch die Schwenkbewegung des Baggers fräst sich das Schaufelrad 6 seitlich in das Festmaterial. Das Volumen des Spans ist umso größer, je schneller diese Schwenkbewegung erfolgt. Das von der Spanquerschnittsfläche 14 überstrichene Volumen pro Zeiteinheit stellt den geförderten Volumenstrom des momentan weggefrästen Festmaterials dar. Die erforderlichen Rechnungen für Festmaterial, Fördervolumen, Spandicke, Spanhöhe, Lage der Schnittfläche und Aufmaß (separat vermessen), werden in einem Rechner vorgenommen, der dem Laserscanner nachgeschaltet ist. Dieser Rechner kann im Laserscanner integriert sein. Für die Berechnung ist im wesentlichen der Schwenkradius, die Schwenkgeschwindigkeit, der Hubwinkel (α) des Schaufelradauslegers, die Anbauposition des Laserscanners 8, 9, weitere geometrische Abmessungen des Baggers sowie seine Lage im Raum notwendig. Diese Informationen können im Rechner des Laserscanners leicht gespeichert werden. Vorteilhaft wird der Rechner mit einem beschreibbaren Permanentspeicher ausgerüstet.The rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away. The cross-sectional area 14 of the respective chip is calculated from the rear contour 12 and the measured profile 13. The overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference area. The bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator. The faster the swivel movement, the greater the volume of the chip. The volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away. The necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cut surface and oversize (separately measured) are carried out in a computer which is connected downstream of the laser scanner. This computer can be integrated in the laser scanner. For the calculation, essentially the swivel radius, the swivel speed, the lifting angle (α) of the bucket wheel boom, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are necessary. This information can easily be saved in the computer of the laser scanner. The computer is advantageously equipped with a writable permanent memory.

Da der Montageort und die Ausrichtung des Laserscanners 8, 9 relativ zum Bagger 16 bekannt ist, bzw. einmalig bestimmt werden kann, ist der Hubwinkel (α) des Schaufelradauslegers direkt im Laserscanner 8, 9 oder im nachgeschalteten Rechner zu verwerten. Die Länge des Schaufelradauslegers ist ein bekannter Parameter. In Verbindung mit der Schwenkgeschwindigkeit reichen die Informationen aus, um im Laserscanner 8, 9 oder im nachgeschalteten Rechner den Festmaterial-Volumenstrom aus den Profildaten zu berechnen, ohne daß weitere Meßwerte dem Laserscanner 8, 9 bzw. dem nachgeschalteten Rechner zugeleitet werden müssen. Bei einer Schrägstellung des Baggers 16 ist gegebenenfalls eine Korrektur notwendig, die aus einer Lotmessung ermittelt werden kann und als Korrekturgröße dem Rechner aufgegeben wird. Für die Vorgabe einer Schnittfläche ist, wie FIG 2 zeigt, das räumliche Profil durch Bezug auf das Lot 15 im Raum zu orientieren.Since the installation location and the orientation of the laser scanner 8, 9 relative to the excavator 16 are known or can be determined once, the stroke angle (α) of the bucket wheel boom can be used directly in the laser scanner 8, 9 or in the downstream computer. The length of the bucket wheel boom is a known parameter. In connection with the swiveling speed, the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer. If the excavator 16 is tilted, a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable. For the specification of a cut surface, as shown in FIG. 2, the spatial profile must be oriented in space by reference to the solder 15.

Der Profilteil auf dem Planum 3 (abgearbeitete Fläche) ist durch eine Gerade approximierbar. Die Steigung dieser Geraden ist berechenbar. Die Höhe des Schaufelrades 6 über Planum kann ebenfalls aus dem Profil bestimmt werden, in dem aus der Schrägentfernung auf die approximierte Gerade in Planum die Projektion auf die Vertikale berechnet wird. Aus beiden Größen können IST-Werte für den Ort des Schaufelrades 6 berechnet werden. Damit ist der Ort des Schaufelrades 6 relativ zum Standpunkt des Baggers 16 kontinuierlich vermeßbar. Gibt man für den Ort des Schaufelrades 6 SOLL-Werte vor, so kann aus der Differenz der IST-Werte und SOLL-Werte eine Regelgröße zur Steuerung des Schaufelrades 6 auf beliebige Oberflächenformen abgeleitet werden.The profile part on the level 3 (machined surface) can be approximated by a straight line. The slope of this straight line can be calculated. The height of the paddle wheel 6 above the level can also be determined from the profile in which the projection onto the vertical is calculated from the oblique distance to the approximated straight line in the level. ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 is thus relative to the position of the excavator 16 continuously avoidable. If 6 DESIRED values are specified for the location of the impeller, a control variable for controlling the impeller 6 on any surface shapes can be derived from the difference between the ACTUAL values and REQUIRED values.

Da sowohl die Lage des Schaufelradauslegers 7 als auch die Oberflächenkontur des Planums 3 und der Fräsfläche bekannt sind, kann auch der Abstand des Auslegers 7 zum anstehenden Material berechnet werden. Die Unterschreitung eines bestimmten Abstandes kann sehr vorteilhaft dazu benutzt werden, einen Kollisionsalarm auszulösen.Since both the position of the bucket wheel boom 7 and the surface contour of the formation 3 and the milling surface are known, the distance of the boom 7 from the material in question can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.

Die vorstehende Erfindung, die ein bisher als unlösbar angesehenes Grundproblem bei der Arbeit von Schaufelradbaggern löst, ist bevorzugt mit Laserscannern, insbesondere IR-Laserscannern, durchführbar. Es versteht sich jedoch für den Fachmann von selbst, daß auch andere, einem Laser vergleichbare Strahlungsquellen eingesetzt werden können, z.B. elektromagnetische Strahler sehr hoher Frequenz und vergleichbarer Strahlbündelung. Desgleichen sind auch andere, als in der Zeichnung angegebene, Positionen der Maßlaser möglich. Bei großer Staubentwicklung empfiehlt sich z.B. eine Anbringung am Bagger und eine Konturerfassung der Abbaufront in einem Abstand von 10-20 m vom Schaufelrad.The above invention, which solves a basic problem previously considered unsolvable when working with bucket wheel excavators, can preferably be carried out with laser scanners, in particular IR laser scanners. However, it goes without saying for the person skilled in the art that other radiation sources comparable to a laser can also be used, e.g. electromagnetic radiators of very high frequency and comparable beam bundling. Likewise, other positions of the measurement laser than those shown in the drawing are possible. If there is a lot of dust, e.g. an attachment to the excavator and a contour detection of the mining front at a distance of 10-20 m from the bucket wheel.

Claims (8)

  1. Conveying-quantity control of a bucket-wheel excavator or a bucket-wheel pick-up in open-cast mining, in which the pivoting speed of the bucket-wheel jib and/or its height are controlled as a function of the solid-material conveying volume cut by the bucket wheel, having a radiation transmitter/receiver arranged in the vicinity of the bucket wheel for sensing the profile of the solid material in the pivoting direction in front of the bucket wheel, characterized in that the radiation transmitter/receiver is a laser scanner, which generates a pulsed laser beam, it being possible to discern the profile of the solid material next to the bucket wheel by measurement of the distance of the laser scanner from the material surface with the aid of transit-time measurements of the pulsed laser beam and by measurement of the angle of the laser beam relative to the material surface.
  2. Conveying-quantity control according to Claim 1, characterized in that the cross-sectional area of the sliver seized by the bucket wheel is calculated from the discerned profile, the geometrical dimensions of the bucket wheel and the mounting position of the laser scanner.
  3. Conveying-quantity control according to one of the preceding claims, characterized in that the volume of the cut solid material is calculated from the difference between the surface profile and the outer contour of the bucket wheel and from the lifting angle and pivoting speed.
  4. Conveying-quantity control according to either of Claims 1 and 2, characterized in that the profile is determined on both sides next to the bucket wheel by continuous measurement and an instantaneous value of the cut solid material is determined from the profile difference and the pivoting speed.
  5. Conveying-quantity control according to one of the preceding claims, characterized in that the laser scanner and the computer are connected to a permanent write memory, in which parameters relating to the excavator and to the mounting position of the laser scanner and adjustment values are stored.
  6. Conveying-quantity control according to one of the preceding claims, characterized in that, in the angular sectors not used for the profile evaluation, the laser scanner measures in relation to a target within the appliance and the known distance thus measured is used as a checking value for the operating capacity of the appliance and as a calibration value.
  7. Conveying-quantity control according to one of the preceding claims, characterized in that the laser scanner works at pulse durations of 1 to 10 nanoseconds and at a pulse rate in the kilohertz range, preferably in the 3 - 30 kHz range.
  8. Conveying-quantity control according to one of the preceding claims, characterized in that for the pulse transit-time measurement a starting pulse is first generated, the reflected fraction of this being lengthened in terms of transit time via delay lines, preferably in coil form, and being used for a start-stop measurement.
EP90114612A 1989-08-08 1990-07-30 Dug volume control for a bucket wheel excavator Expired - Lifetime EP0412399B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90114612T ATE99758T1 (en) 1989-08-08 1990-07-30 FLOW RATE CONTROL OF A BUCKET-WHEEL EXCAVATOR OR BUCKET-WHEEL RECEIVER IN OPEN-CAST MINING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926222 1989-08-08
DE3926222 1989-08-08

Publications (2)

Publication Number Publication Date
EP0412399A1 EP0412399A1 (en) 1991-02-13
EP0412399B1 true EP0412399B1 (en) 1994-01-05

Family

ID=6386749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114612A Expired - Lifetime EP0412399B1 (en) 1989-08-08 1990-07-30 Dug volume control for a bucket wheel excavator

Country Status (5)

Country Link
EP (1) EP0412399B1 (en)
AT (1) ATE99758T1 (en)
AU (1) AU634802B2 (en)
DE (1) DE59004104D1 (en)
ES (1) ES2048372T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2295634C (en) * 1997-07-10 2007-11-27 Siemens Aktiengesellschaft Conveyor device
DE19748761A1 (en) * 1997-11-05 1999-05-06 Krupp Foerdertechnik Gmbh Coal extraction machine
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
EP3430428A4 (en) 2016-03-19 2019-11-20 Velodyne Lidar, Inc. Integrated illumination and detection for lidar based 3-d imaging
CA3024510C (en) 2016-06-01 2022-10-04 Velodyne Lidar, Inc. Multiple pixel scanning lidar
CA3057988A1 (en) 2017-03-31 2018-10-04 Velodyne Lidar, Inc. Integrated lidar illumination power control
WO2018208843A1 (en) 2017-05-08 2018-11-15 Velodyne Lidar, Inc. Lidar data acquisition and control
DE102018109498A1 (en) * 2018-02-23 2019-08-29 Liebherr-Components Biberach Gmbh Bucket wheel excavator and method for controlling a bucket wheel excavator
CN108661107A (en) * 2018-04-12 2018-10-16 王海燕 Hydraulic energy distributes controllable type excavator
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US12061263B2 (en) 2019-01-07 2024-08-13 Velodyne Lidar Usa, Inc. Systems and methods for a configurable sensor system
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
DE102019214626A1 (en) * 2019-09-25 2020-09-24 Thyssenkrupp Ag Device and method for optimizing mining processes, as well as use and computer program product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1634712A1 (en) * 1965-12-17 1970-07-16 Krupp Gmbh Device for regulating the performance of an excavator, debris removal device or debris discharge device
US4695163A (en) * 1985-06-17 1987-09-22 Schachar Ronald A Method and apparatus for determining surface shapes using reflected laser light

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2420120A1 (en) * 1978-03-17 1979-10-12 Coal Industry Patents Ltd Face cutter control equipment for mines - has set of mirrors along mine shaft and computer determining profile from angular positions
FR2468101A1 (en) * 1979-10-17 1981-04-30 Sncf Radial dimensions of tunnel measurements appts. - employs laser whose output is deviated by constant angle by rotatable mirror assembly for alignment with reference beam
FR2637625B1 (en) * 1988-10-11 1994-04-08 Screg Routes Travaux Publics METHOD AND DEVICE FOR AUTOMATICALLY POSITIONING CONTINUOUSLY AN ADJUSTMENT TOOL FOR A PUBLIC WORKS MACHINE, ON A GROUND HAVING A REAL SURFACE TO BE WORKED

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1634712A1 (en) * 1965-12-17 1970-07-16 Krupp Gmbh Device for regulating the performance of an excavator, debris removal device or debris discharge device
US4695163A (en) * 1985-06-17 1987-09-22 Schachar Ronald A Method and apparatus for determining surface shapes using reflected laser light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9315967B2 (en) 2011-04-14 2016-04-19 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9567725B2 (en) 2011-04-14 2017-02-14 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel

Also Published As

Publication number Publication date
AU6027890A (en) 1991-02-14
DE59004104D1 (en) 1994-02-17
ES2048372T3 (en) 1994-03-16
AU634802B2 (en) 1993-03-04
EP0412399A1 (en) 1991-02-13
ATE99758T1 (en) 1994-01-15

Similar Documents

Publication Publication Date Title
EP0412398B1 (en) Dug volume measure according to the cutting profile of a bucket wheel excavator or the like
EP0412399B1 (en) Dug volume control for a bucket wheel excavator
EP0412400B1 (en) Collision safety device for earth moving machines
EP0412395B1 (en) Bucket wheel excavator steering for building planned surfaces
EP0520247B1 (en) Surveillance apparatus comprising, transmitter, receiver and signal processing circuit
EP3022584B1 (en) Optoelectronic detection device and method for detecting the environment of a motor vehicle in a scanning manner
DE68914553T2 (en) Laser measurement system.
DE102004028860B4 (en) Object recognition device intended to detect dirt adhering to a radar
DE4340756C5 (en) Laser range finding device
DE2826468C2 (en)
WO2018099755A1 (en) Method and device for determining a position of an excavator boom by means of a lidar-system arranged on the excavator
DE3888732T2 (en) Method and device for laser-optical navigation.
EP3479062B1 (en) Method for comparing a laser beam hitting a laser recipient with a rotating laser beam
DE19855478B4 (en) Method and device for optical detection of a contrast line
EP1286178A2 (en) Method for optical ground detection
DE19536000B4 (en) Level adjustment for distance measuring devices in vehicles
EP1224644B1 (en) Device for controlling the flow of traffic at a crossroads, especially for controlling traffic lights
EP1653202A1 (en) Method and device for measurement of a volume flow of a belt conveyor
DE19953006B4 (en) Device for controlling the traffic flow in the area of an intersection, in particular for traffic light control
EP3521860A1 (en) Opto-electronic sensor device
DE19841570C2 (en) Quay crane for loading and unloading containers
WO1982001420A1 (en) Method and installation for determining the move coordinates for the remote controlled path of a moving body
DE4427724C2 (en) Method and device for measuring an angle-dependent variable
WO1998021605A1 (en) Non contact object sensing device
DE9321459U1 (en) Laser distance determination device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19940105

Ref country code: NL

Effective date: 19940105

Ref country code: FR

Effective date: 19940105

Ref country code: SE

Effective date: 19940105

Ref country code: BE

Effective date: 19940105

Ref country code: GB

Effective date: 19940105

REF Corresponds to:

Ref document number: 99758

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59004104

Country of ref document: DE

Date of ref document: 19940217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048372

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010975

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940622

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940706

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940711

Year of fee payment: 5

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940731

Ref country code: LI

Effective date: 19940731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960131

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3010975

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060918

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201