EP0412395B1 - Bucket wheel excavator steering for building planned surfaces - Google Patents

Bucket wheel excavator steering for building planned surfaces Download PDF

Info

Publication number
EP0412395B1
EP0412395B1 EP90114608A EP90114608A EP0412395B1 EP 0412395 B1 EP0412395 B1 EP 0412395B1 EP 90114608 A EP90114608 A EP 90114608A EP 90114608 A EP90114608 A EP 90114608A EP 0412395 B1 EP0412395 B1 EP 0412395B1
Authority
EP
European Patent Office
Prior art keywords
laser scanner
bucket wheel
excavator
laser
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114608A
Other languages
German (de)
French (fr)
Other versions
EP0412395A1 (en
Inventor
Edmund Heimes
Hans-Jörg Nüsslin
Johann Hipp
Franz-Josef Hartlief
Franz-Arno Fassbender
Ralf Eckoldt
Dieter Dr. Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Siemens AG
Original Assignee
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Rheinische Braunkohlenwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan, Rheinbraun AG, Rheinische Braunkohlenwerke AG, Siemens AG filed Critical Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Publication of EP0412395A1 publication Critical patent/EP0412395A1/en
Application granted granted Critical
Publication of EP0412395B1 publication Critical patent/EP0412395B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for

Definitions

  • the invention relates to a method for guiding an excavator bucket wheel for generating predetermined areas in open-cast mining, in particular in open-cast or lignite mining, by continuously scanning the area exposed by the bucket wheel with a radiation transmitter / receiver carried by the excavator and regulated tracking of the bucket wheel into the necessary position to generate the predetermined area.
  • DE-A-1 634 712 Such guidance of an excavator bucket wheel is known from DE-A-1 634 712, the scanning of the surface exposed by the bucket wheel with the aid of rays such as e.g. B. of ultrasonic waves, electromagnetic vibrations or photoelectric light barriers is specified as an alternative to mechanical scanning.
  • DE-A-1 634 712 does not show how the area is to be scanned with the aid of the beams.
  • DE-A-34 11 540 a method for measuring the delivery volume in belt conveyors is known, the surface of the bulk material being scanned transversely to the conveying direction at several measuring points with the aid of laser distance measuring devices operating according to the pulse transit time measuring principle.
  • a laser distance measuring device is provided for each measuring point, so that the number of devices required depends on the width of the belt conveyor.
  • the invention has for its object to achieve an open-cast guidance of an excavator bucket wheel for generating predetermined areas with high accuracy.
  • the object is achieved in that in the method mentioned above for guiding an excavator bucket wheel, the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam and the course of the exposed area by measuring the distance and the angle of the Laser scanner measures to points on the exposed surface, the distance between the points and the laser scanner being measured in a computer by evaluating the transit time of the pulsed laser beam.
  • the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam and the course of the exposed area by measuring the distance and the angle of the Laser scanner measures to points on the exposed surface, the distance between the points and the laser scanner being measured in a computer by evaluating the transit time of the pulsed laser beam.
  • the laser scanner is position-oriented via a plumb sensor.
  • the determination can be carried out either by the computer, which also evaluates the transit time of the laser beam and thus determines the distance of the laser scanner from the individual points of the exposed area, as well as in a computer which can simultaneously serve as a control computer.
  • the position of the laser scanner carrying out the continuous measurements is either either in the vicinity of the bucket wheel or on the pylon of the excavator, in any case in such a way that undisturbed measurement of the exposed area (planum) is possible.
  • the exact choice of the position of the laser depends on other tasks transferred to the laser scanner and the computer.
  • the laser scanners 8, 9 are mounted next to the paddle wheel 6 with the blades 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downward on the excavator is also possible and is recommended if there is a lot of dust.
  • IR lasers are particularly suitable for use.
  • the profile is determined from distance / angle value pairs.
  • the distance to individual points of the exposed surface 2, 3 is measured by evaluating the transit time of the laser beam generated in a computer arranged downstream of the laser scanner 8, 9.
  • a start pulse is first generated, the reflected portion of which is extended by delay lines, preferably in the form of a coil, and used for a start-stop measurement. It is primarily the profile 1, 2 of that side that is used for the control towards which the paddle wheel 6 moves. With even movement in only one direction, the second laser scanner can also be dispensed with. During the swiveling movement, the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.
  • the rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away.
  • the cross-sectional area 14 of the respectively cut chip is calculated from the rear contour 12 and the measured profile 13.
  • the overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference area.
  • the bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator.
  • the volume of the chip is greater the faster this swiveling movement takes place.
  • the volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away.
  • the necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cut surface and oversize are carried out in the computer which is the laser scanner 8, 9 is connected downstream.
  • This computer can be integrated in the laser scanner 8, 9.
  • the swivel radius, the swivel speed, the stroke angle ⁇ of the bucket wheel boom 7, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are essentially necessary.
  • This information can easily be stored in the computer of the laser scanner 8, 9.
  • the computer is advantageously equipped with a permanent memory.
  • the stroke angle ⁇ of the bucket wheel boom 7 can be used directly in the laser scanner 8, 9 or in the downstream computer.
  • the length of the bucket wheel boom 7 is a known parameter.
  • the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer. If the excavator 16 is tilted, a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable.
  • the spatial profile must be oriented in space by reference to the solder 15.
  • the profile part on the level 3 can be approximated by a straight line.
  • the slope of this straight line can be calculated.
  • the height of the paddle wheel 6 above the level 3 can also be determined from the profile by calculating the projection onto the vertical from the oblique distance to the approximated straight line in the level.
  • ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 relative to the position of the excavator 16 can thus be continuously avoided. If you specify 6 TARGET values for the location of the paddle wheel, you can A control variable for controlling the impeller 6 on any surface shapes can be derived from the difference between the actual values and the desired values.
  • the distance of the boom 7 from the material in question can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Shovels (AREA)
  • Earth Drilling (AREA)
  • Operation Control Of Excavators (AREA)
  • Road Repair (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention relates to the steering of a bucket wheel excavator (6) for producing planned surfaces in open-cast mining, in particular in quarrying and open-cast lignite mining, by a continuous measurement of the area exposed by the bucket wheel and controlled follow-up of the bucket wheel into the required position for producing the predetermined surface, the bucket wheel being steered by a pulsed laser beam produced in a rotary laser (8, 9) carried along by the machine. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Führung eines Bagger-Schaufelrades zum Erzeugen vorherbestimmter Flächen im Tagebau, insbesondere im Stein- oder Braunkohletagebau, durch eine fortlaufende Abtastung der vom Schaufelrad freigelegten Flache mit einem vom Bagger mitgeführten Strahlungssender/-empfänger und geregelte Nachführung des Schaufelrades in die notwendige Position zur Erzeugung der vorherbestimmten Fläche.The invention relates to a method for guiding an excavator bucket wheel for generating predetermined areas in open-cast mining, in particular in open-cast or lignite mining, by continuously scanning the area exposed by the bucket wheel with a radiation transmitter / receiver carried by the excavator and regulated tracking of the bucket wheel into the necessary position to generate the predetermined area.

Eine derartige Fuhrung eines Bagger-Schaufelrades ist aus der DE-A-1 634 712 bekannt, wobei die Abtastung der vom Schaufelrad freigelegten Fläche mit Hilfe von Strahlen, wie z. B. von Ultraschallwellen, elektromagnetischen Schwingungen oder photoelektrischen Lichtschranken als eine Alternative zu einer mechanischen Abtastung angegeben ist. Wie jedoch die Abtastung der Flache mit Hilfe der Strahlen realisiert werden soll, ist der DE-A-1 634 712 nicht zu entnehmen.Such guidance of an excavator bucket wheel is known from DE-A-1 634 712, the scanning of the surface exposed by the bucket wheel with the aid of rays such as e.g. B. of ultrasonic waves, electromagnetic vibrations or photoelectric light barriers is specified as an alternative to mechanical scanning. However, DE-A-1 634 712 does not show how the area is to be scanned with the aid of the beams.

Aus der EP-A-0 192 993 ist ein Verfahren zur dreidimensionalen optischen Erfassung von Objekten mit Hilfe eines periodisch intensitätsmodulierten oder gepulsten Lasers bekannt, wobei Laufzeitunterschiede des von dem Objekt reflektierten und mit einem Empfänger erfaßten Lichts in Form von Helligkeitsunterschieden erfaßt und in Höhenstufen des Objekts umgerechnet werden. Zur vollständigen Ausleuchtung des Objekts ist zwischen diesem und dem Laser eine Strahlaufweitungsoptik angeordnet, mit der das Laserlicht zu einem Strahlungskegel aufgeweitet wird. Da das Objekt an unterschiedlichen Stellen unterschiedliche Reflexionseigenschaften aufweisen kann, wird von diesem zunächst ein allgemeines Grauwertbild erzeugt, das als Referenzbild für die Umrechnung der von den Laufzeitunterschieden abhängigen Helligkeitsunterschiede in die Höhenstufen dient.From EP-A-0 192 993 a method for the three-dimensional optical detection of objects with the aid of a periodically intensity-modulated or pulsed laser is known, differences in transit time of the light reflected from the object and detected by a receiver being detected in the form of differences in brightness and in height levels of Object can be converted. For complete illumination of the object, a beam expansion lens is arranged between the object and the laser, with which the laser light is expanded into a radiation cone. Because the object has different reflection properties at different points , a general gray value image is first generated by this, which serves as a reference image for converting the brightness differences, which are dependent on the travel time differences, into the height levels.

Aus der Zeitschrift "Braunkohle", 41 (1989), Heft 5, Seiten 148 - 150, ist die Verwendung von Rotationslasern bei Schaufelradbaggern im Tagebau bekannt, wobei mit dem Laser direkt auf einen zugehörigen Empfänger gemessen wird. Eine Abtastung der von dem Schaufelrad freigelegten Flächen ist nicht vorgesehen.From the magazine "Braunkohle", 41 (1989), No. 5, pages 148-150, the use of rotary lasers in bucket-wheel excavators in open-cast mining is known, with the laser being measured directly on an associated receiver. A scanning of the surfaces exposed by the paddle wheel is not provided.

Schließlich ist aus der DE-A-34 11 540 ein Verfahren zur Fördervolumenmessung bei Bandförderern bekannt, wobei die Oberfläche des Schuttgutes quer zur Förderrichtung an mehreren Meßpunkten mit Hilfe von nach dem Impuls-Laufzeitmeßprinzip arbeitenden Laserentfernungsmeßgeräten abgetastet wird. Dabei ist für jeden Meßpunkt jeweils ein Laserentfernungsmeßgerät vorgesehen, so daß sich die Anzahl der benötigten Geräte nach der Breite des Bandförderers richtet.Finally, from DE-A-34 11 540 a method for measuring the delivery volume in belt conveyors is known, the surface of the bulk material being scanned transversely to the conveying direction at several measuring points with the aid of laser distance measuring devices operating according to the pulse transit time measuring principle. A laser distance measuring device is provided for each measuring point, so that the number of devices required depends on the width of the belt conveyor.

Der Erfindung liegt die Aufgabe zugrunde, eine tagebaugerechte Führung eines Bagger-Schaufelrades zum Erzeugen vorherbestimmter Flächen mit hoher Genauigkeit zu erreichen.The invention has for its object to achieve an open-cast guidance of an excavator bucket wheel for generating predetermined areas with high accuracy.

Gemäß der Erfindung wird die Aufgabe dadurch gelöst, daß bei dem eingangs genannten Verfahren zur Führung eines Bagger-Schaufelrades der Strahlungssender/-empfänger ein Laserscanner ist, der einen gepulsten Laserstrahl erzeugt und den Verlauf der freigelegten Fläche durch Messung der Entfernung und des Winkels von dem Laserscanner zu Punkten auf der freigelegten Fläche mißt, wobei die Messung der Entfernung zwischen den Punkten und dem Laserscanner in einem Rechner durch Auswertung der Laufzeit des gepulsten Laserstrahls erfolgt.According to the invention, the object is achieved in that in the method mentioned above for guiding an excavator bucket wheel, the radiation transmitter / receiver is a laser scanner which generates a pulsed laser beam and the course of the exposed area by measuring the distance and the angle of the Laser scanner measures to points on the exposed surface, the distance between the points and the laser scanner being measured in a computer by evaluating the transit time of the pulsed laser beam.

In Ausgestaltung der Erfindung ist vorgesehen, daß der Laserscanner über einen Lotsensor lageorientiert ist. Hierdurch ergibt sich vorteilhaft eine lageunabhängige Verlaufsermittlung der freigelegten Fläche über Referenzlinien, zwischen denen der genaue Flächenverlauf leicht durch Interpolation ermittelt werden kann. Die Ermittlung kann entweder durch den Rechner erfolgen, der auch die Laufzeit des Laserstrahls auswertet und damit den Abstand des Laserscanners von den einzelnen Punkten der freigelegten Fläche ermittelt als auch in einem Rechner, der gleichzeitig als Steuerungsrechner dienen kann.In an embodiment of the invention it is provided that the laser scanner is position-oriented via a plumb sensor. Hereby This advantageously results in a position-independent course determination of the exposed area via reference lines, between which the exact area course can easily be determined by interpolation. The determination can be carried out either by the computer, which also evaluates the transit time of the laser beam and thus determines the distance of the laser scanner from the individual points of the exposed area, as well as in a computer which can simultaneously serve as a control computer.

Die Position des die fortlaufenden Messungen durchführenden Laserscanners ist wahlweise entweder in der Nähe des Schaufelrades oder auf dem Pylon des Baggers, auf jeden Fall derart, daß ein ungestörtes Ausmessen der freigelegten Fläche (Planum) möglich ist. Die genaue Wahl der Position des Lasers hängt dabei von übrigen, dem Laserscanner und dem Rechner übertragenen Aufgaben ab, so z. B. einer Kollisionsüberwachung oder einer Lagerstätten-Verlaufsüberwachung.The position of the laser scanner carrying out the continuous measurements is either either in the vicinity of the bucket wheel or on the pylon of the excavator, in any case in such a way that undisturbed measurement of the exposed area (planum) is possible. The exact choice of the position of the laser depends on other tasks transferred to the laser scanner and the computer. B. a collision monitoring or a deposit history monitoring.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, anhand der Zeichnung und in Verbindung mit den Unteransprüchen. Es zeigen als Beispiel in Verbindung mit einer Schnittvolumenmessung:

FIG 1
eine Sicht auf den Abbauort,
FIG 2
eine Darstellung der geometrischen Verhältnisse bei einer Schnittvolumenmessung und
FIG 3
eine Darstellung der geometrischen Verhältnisse am Abbauort in vereinfachter Form.
Further advantages and details of the invention result from the following description, with reference to the drawing and in connection with the subclaims. As an example in connection with a cutting volume measurement, they show:
FIG. 1
a view of the mining site,
FIG 2
a representation of the geometric relationships in a cutting volume measurement and
FIG 3
a representation of the geometric conditions at the mining site in a simplified form.

Die FIG 1 zeigt die Ermittlung der Einzelheiten des Abbauortes durch zwei Laserscanner 8, 9, die das Oberflächenprofil auf dem Abbaumaterial 1 und die abgearbeitete Fläche 3 durch Abtasten auf den Scanlinien 10, 11 vertikal vermessen. Die Laserscanner 8, 9 sind neben dem Schaufelrad 6 mit den Schaufeln 5 am Schaufelradträger 7 angebracht und vermessen vornehmlich den nach unten gerichteten Profilteil 2. Eine Anbringung am Bagger ist ebenso möglich und empfiehlt sich bei starker Staubentwicklung. Zum Einsatz sind IR-Laser besonders geeignet, die z. B. mit Impulsdauern von 1-10 Nanosekunden und einer Impulsrate im Kilohertzbereich, vorzugsweise im 3-30 kHz-Bereiche, arbeiten.1 shows the determination of the details of the mining site by two laser scanners 8, 9, which measure the surface profile on the mining material 1 and the processed area 3 by scanning on the scan lines 10, 11 vertically. The laser scanners 8, 9 are mounted next to the paddle wheel 6 with the blades 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downward on the excavator is also possible and is recommended if there is a lot of dust. IR lasers are particularly suitable for use. B. with pulse durations of 1-10 nanoseconds and a pulse rate in the kilohertz range, preferably in the 3-30 kHz range.

Das Profil wird aus Entfernung/Winkel-Wertepaaren ermittelt. Dabei wird die Entfernung zu einzelnen Punkten der freigelegten Fläche 2, 3 durch Auswertung der Laufzeit des erzeugten Laserstrahls in einem dem Laserscanner 8, 9 nachgeordneten Rechner gemessen. Dazu wird zunächst ein Startimpuls generiert, dessen reflektierter Anteil über Verzögerungsleitungen, vorzugsweise in Spulenform, laufzeitverlängert und für eine Start-Stop-Messung verwendet wird. Es wird in erster Linie das Profil 1, 2 derjenigen Seite für die Regelung verwendet, auf die sich das Schaufelrad 6 zubewegt. Bei gleichmäßiger Bewegung in nur eine Richtung kann auch auf den zweiten Laserscanner verzichtet werden. Während der Schwenkbewegung dreht sich das Schaufelrad 6 und fräst das Festmaterial 1 um das Oberflächenmaß 4 ab.The profile is determined from distance / angle value pairs. The distance to individual points of the exposed surface 2, 3 is measured by evaluating the transit time of the laser beam generated in a computer arranged downstream of the laser scanner 8, 9. For this purpose, a start pulse is first generated, the reflected portion of which is extended by delay lines, preferably in the form of a coil, and used for a start-stop measurement. It is primarily the profile 1, 2 of that side that is used for the control towards which the paddle wheel 6 moves. With even movement in only one direction, the second laser scanner can also be dispensed with. During the swiveling movement, the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.

Das hintere Profil 12 (weggefrästes Festmaterial) ist, wie FIG 2 zeigt, durch die Kontur des Schaufelrades 6 vorgegeben, da alles vorstehende Material zwangsweise weggefräst wird. Aus der hinteren Kontur 12 und dem gemessenen Profil 13 wird die Querschnittsfläche 14 des jeweilig geschnittenen Spans errechnet. Die Überlappung des Schaufelrades 6 über das gemessene Profil des Laserscanners stellt diese Differenzfläche dar. Durch die Schwenkbewegung des Baggers fräst sich das Schaufelrad 6 seitlich in das Festmaterial. Das Volumen des Spans ist imso größer, je schneller diese Schwenkbewegung erfolgt. Das von der Spanquerschnittsfläche 14 überstrichene Volumen pro Zeiteinheit stellt den geförderten Volumenstrom des momentan weggefrästen Festmaterials dar. Die erforderlichen Rechnungen für Festmaterial, Fördervolumen, Spandicke, Spanhöhe, Lage der Schnittfläche und Aufmaß (separat vermessen), werden in dem Rechner vorgenommen, der dem Laserscanner 8, 9 nachgeschaltet ist. Dieser Rechner kann im Laserscanner 8, 9 integriert sein. Für die Berechnung ist im wesentlichen der Schwenkradius, die Schwenkgeschwindigkeit, der Hubwinkel α des Schaufelradauslegers 7, die Anbauposition des Laserscanners 8, 9, weitere geometrische Abmessungen des Baggers sowie seine Lage im Raum notwendig. Diese Informationen können im Rechner des Laserscanners 8, 9 leicht gespeichert werden. Vorteilhaft ist der Rechner hierzu mit einem Permanentspeicher ausgerüstet.The rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away. The cross-sectional area 14 of the respectively cut chip is calculated from the rear contour 12 and the measured profile 13. The overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference area. The bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator. The volume of the chip is greater the faster this swiveling movement takes place. The volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away. The necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cut surface and oversize (measured separately) are carried out in the computer which is the laser scanner 8, 9 is connected downstream. This computer can be integrated in the laser scanner 8, 9. For the calculation, the swivel radius, the swivel speed, the stroke angle α of the bucket wheel boom 7, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are essentially necessary. This information can easily be stored in the computer of the laser scanner 8, 9. For this purpose, the computer is advantageously equipped with a permanent memory.

Da der Montageort und die Ausrichtung des Laserscanners 8, 9 relativ zum Bagger 16 (FIG 3) bekannt ist, bzw. einmalig bestimmt werden kann, ist der Hubwinkel α des Schaufelradauslegers 7 direkt im Laserscanner 8, 9 oder im nachgeschalteten Rechner zu verwerten. Die Länge des Schaufelradauslegers 7 ist ein bekannter Parameter. In Verbindung mit der Schwenkgeschwindigkeit reichen die Informationen aus, um im Laserscanner 8, 9 oder im nachgeschalteten Rechner den Festmaterial-Volumenstrom aus den Profildaten zu berechnen, ohne daß weitere Meßwerte dem Laserscanner 8, 9 bzw. dem nachgeschalteten Rechner zugeleitet werden müssen. Bei einer Schrägstellung des Baggers 16 ist gegebenenfalls eine Korrektur notwendig, die aus einer Lotmessung ermittelt werden kann und als Korrekturgröße dem Rechner aufgegeben wird. Für die Vorgabe einer Schnittfläche ist, wie FIG 2 zeigt, das räumliche Profil durch Bezug auf das Lot 15 im Raum zu orientieren.Since the installation location and the orientation of the laser scanner 8, 9 relative to the excavator 16 (FIG. 3) are known or can be determined once, the stroke angle α of the bucket wheel boom 7 can be used directly in the laser scanner 8, 9 or in the downstream computer. The length of the bucket wheel boom 7 is a known parameter. In connection with the swiveling speed, the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer. If the excavator 16 is tilted, a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable. For the specification of a cut surface, as shown in FIG. 2, the spatial profile must be oriented in space by reference to the solder 15.

Der Profilteil auf dem Planum 3 (abgearbeitete Fläche) ist durch eine Gerade approximierbar. Die Steigung dieser Geraden ist berechenbar. Die Höhe des Schaufelrades 6 über dem Planum 3 kann ebenfalls aus dem Profil bestimmt werden, indem aus der Schrägentfernung auf die approximierte Gerade in Planum die Projektion auf die Vertikale berechnet wird. Aus beiden Größen können IST-Werte für den Ort des Schaufelrades 6 berechnet werden. Damit ist der Ort des Schaufelrades 6 relativ zum Standpunkt des Baggers 16 kontinuierlich vermeßbar. Gibt man für den Ort des Schaufelrades 6 SOLL-Werte vor, so kann aus der Differenz der IST-Werte und SOLL-Werte eine Regelgröße zur Steuerung des Schaufelrades 6 auf beliebige Oberflächenformen abgeleitet werden.The profile part on the level 3 (machined surface) can be approximated by a straight line. The slope of this straight line can be calculated. The height of the paddle wheel 6 above the level 3 can also be determined from the profile by calculating the projection onto the vertical from the oblique distance to the approximated straight line in the level. ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 relative to the position of the excavator 16 can thus be continuously avoided. If you specify 6 TARGET values for the location of the paddle wheel, you can A control variable for controlling the impeller 6 on any surface shapes can be derived from the difference between the actual values and the desired values.

Da sowohl die Lage des Schaufelradauslegers 7 als auch die Oberflächenkontur des Planums 3 und der Fräsfläche 12 bekannt sind, kann auch der Abstand des Auslegers 7 zum anstehenden Material berechnet werden. Die Unterschreitung eines bestimmten Abstandes kann sehr vorteilhaft dazu benutzt werden, einen Kollisionsalarm auszulösen.Since both the position of the bucket wheel boom 7 and the surface contour of the formation 3 and the milling surface 12 are known, the distance of the boom 7 from the material in question can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.

Claims (8)

  1. Method for the guidance of an excavator bucket wheel (6) for generating predetermined surfaces (2, 3) in open-cast mining, especially in hard-coal and brown-coal open-cast mining, by a continuous scanning of the surface exposed by the bucket wheel (6) with a radiation transmitter/receiver (8, 9) carried along by the excavator (16), and by a controlled follow-up of the bucket wheel (6) into the necessary position for generating the predetermined surface, characterized in that the radiation transmitter/receiver (8, 9) is a laser scanner (8, 9) which generates a pulsed laser beam and measures the course of the exposed surface (2, 3) by measurement of the distance and the angle of the laser scanner with respect to points on the exposed surface (2, 3), the measurement of the distance between the points and the laser scanner (8, 9) being carried out in a computer by evaluating the transit time of the pulsed laser beam.
  2. Method according to Claim 1, characterized in that the laser scanner (8, 9) is positionally oriented via a perpendicular sensor.
  3. Method according to Claim 1 or 2, characterized in that the geometry of the surface (2, 3) exposed by the bucket wheel (6) is determined from a measuring position on the bucket-wheel excavator (16).
  4. Method according to Claim 1, 2 or 3, characterized in that the laser scanner (8, 9) and the computer are connected to a permanent memory, in which parameters relating to the excavator (16) and to the mounting position of the laser scanner (8, 9) and adjustment values are stored.
  5. Method according to Claim 1, 2, 3 or 4, characterized in that, in those angular sectors not used for scanning the exposed surface (2, 3), the laser scanner (8, 9) measures in relation to a target within the excavator (16), and the known distance thus measured is used as a checking value for the operating capacity of the laser scanner (8, 9) and as a calibration value.
  6. Method according to Claim 1, 2, 3, 4 or 5, characterized in that the computer has a desired-value storage for the surface (2, 3) to be generated, and the bucket wheel (6) is guided accordingly controlled.
  7. Method according to one of the preceding claims, characterized in that the laser scanner (8, 9) is designed as an IR laser and works at pulse durations of 1-10 nanoseconds and at a pulse rate in the kilohertz range, preferably in the 10-50 kHz range.
  8. Method according to one of the preceding claims, characterized in that for the pulse transit-time measurement a starting pulse is first generated, the reflected fraction of this being lengthened in terms of transit time via delay lines, preferably in coil form, and is used for a start-stop measurement.
EP90114608A 1989-08-08 1990-07-30 Bucket wheel excavator steering for building planned surfaces Expired - Lifetime EP0412395B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926221 1989-08-08
DE3926221 1989-08-08

Publications (2)

Publication Number Publication Date
EP0412395A1 EP0412395A1 (en) 1991-02-13
EP0412395B1 true EP0412395B1 (en) 1994-09-21

Family

ID=6386748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114608A Expired - Lifetime EP0412395B1 (en) 1989-08-08 1990-07-30 Bucket wheel excavator steering for building planned surfaces

Country Status (4)

Country Link
EP (1) EP0412395B1 (en)
AT (1) ATE111994T1 (en)
AU (1) AU635762B2 (en)
DE (1) DE59007213D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
CN115492188A (en) * 2022-10-21 2022-12-20 四川鼎鸿智电装备科技有限公司 Perception follow-up control device and method for excavator and excavator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133392C1 (en) * 1991-10-09 1992-12-24 Rheinbraun Ag, 5000 Koeln, De Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
US8345926B2 (en) 2008-08-22 2013-01-01 Caterpillar Trimble Control Technologies Llc Three dimensional scanning arrangement including dynamic updating
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
WO2017164989A1 (en) 2016-03-19 2017-09-28 Velodyne Lidar, Inc. Integrated illumination and detection for lidar based 3-d imaging
US10393877B2 (en) 2016-06-01 2019-08-27 Velodyne Lidar, Inc. Multiple pixel scanning LIDAR
EP3593166B1 (en) 2017-03-31 2024-04-17 Velodyne Lidar USA, Inc. Integrated lidar illumination power control
CA3062701A1 (en) 2017-05-08 2018-11-15 Velodyne Lidar, Inc. Lidar data acquisition and control
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1412991A (en) * 1972-07-29 1975-11-05 Rolls Royce Method of and apparatus for inspecting the contour of an object
US4088408A (en) * 1976-11-08 1978-05-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Device for measuring the contour of a surface
DE3503231A1 (en) * 1985-01-31 1986-08-07 Helmut A. 6720 Speyer Kappner METHOD AND DEVICE FOR THE 3-D DETECTION OF SCENES BY MEANS OF THE OPTICAL 2-D SENSOR
US4820041A (en) * 1986-11-12 1989-04-11 Agtek Development Co., Inc. Position sensing system for surveying and grading

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9315967B2 (en) 2011-04-14 2016-04-19 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9567725B2 (en) 2011-04-14 2017-02-14 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US12018463B2 (en) 2011-04-14 2024-06-25 Joy Global Surface Mining Inc Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
CN115492188A (en) * 2022-10-21 2022-12-20 四川鼎鸿智电装备科技有限公司 Perception follow-up control device and method for excavator and excavator
CN115492188B (en) * 2022-10-21 2024-03-26 四川鼎鸿智电装备科技有限公司 Perception follow-up control device and control method for excavator and excavator

Also Published As

Publication number Publication date
DE59007213D1 (en) 1994-10-27
AU635762B2 (en) 1993-04-01
EP0412395A1 (en) 1991-02-13
AU6027990A (en) 1991-02-14
ATE111994T1 (en) 1994-10-15

Similar Documents

Publication Publication Date Title
EP0412398B1 (en) Dug volume measure according to the cutting profile of a bucket wheel excavator or the like
EP0412395B1 (en) Bucket wheel excavator steering for building planned surfaces
DE19713826B9 (en) radar device
EP0412399B1 (en) Dug volume control for a bucket wheel excavator
EP0412400B1 (en) Collision safety device for earth moving machines
DE102004028860B4 (en) Object recognition device intended to detect dirt adhering to a radar
DE10356797B4 (en) Object recognition device for a vehicle, vehicle-to-vehicle control device and distance measuring device
DE2826468C2 (en)
DE69812673T2 (en) METHOD AND DEVICE FOR ASSIGNING ANONYMOUS REFLECTORS TO THE DETECTED ANGLE POSITION
DE68914553T2 (en) Laser measurement system.
DE102005012107B4 (en) Measuring system and method for geodetic surveying of objects
DE10359212B4 (en) Obstacle detection system for a motor vehicle
DE19855478B4 (en) Method and device for optical detection of a contrast line
EP1628141B1 (en) Method of triangulation with laser-diodes and a mono-camera for determining distance in stop-and-go applications for motor vehicles
DE19832800A1 (en) Motor vehicle obstacle determination system
EP0547378B1 (en) Ultrasonic-control device for a mobile milling machine
EP2534443B1 (en) System for surveying a ground
DE19832790A1 (en) Obstacle detection system for vehicle
DE10060903A1 (en) Laser height control device for a construction machine
DE19757848A1 (en) Optical detection apparatus
DE4301637C2 (en) Method for docking an aircraft to a passenger boarding bridge of an airport building
DE10139237A1 (en) Distance measuring device
EP0668237B1 (en) Method for handling a load with a crane
DE2901908A1 (en) METHOD FOR REGULATING THE WORKING MOVEMENT OF A LOCAL BREAKING MACHINE TOOL OF A SECTOR DRIVING MACHINE AND DEVICE FOR CARRYING OUT THIS METHOD
EP1224644B1 (en) Device for controlling the flow of traffic at a crossroads, especially for controlling traffic lights

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19940921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940921

Ref country code: NL

Effective date: 19940921

Ref country code: FR

Effective date: 19940921

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940921

Ref country code: GB

Effective date: 19940921

Ref country code: BE

Effective date: 19940921

REF Corresponds to:

Ref document number: 111994

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59007213

Country of ref document: DE

Date of ref document: 19941027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941221

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950731

Ref country code: LI

Effective date: 19950731

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100730