EP0407901B1 - Procédé pour la fabrication de fibres de polyéthylène par filage à grande vitesse de polyéthylène à très haut poids moléculaire - Google Patents

Procédé pour la fabrication de fibres de polyéthylène par filage à grande vitesse de polyéthylène à très haut poids moléculaire Download PDF

Info

Publication number
EP0407901B1
EP0407901B1 EP90112905A EP90112905A EP0407901B1 EP 0407901 B1 EP0407901 B1 EP 0407901B1 EP 90112905 A EP90112905 A EP 90112905A EP 90112905 A EP90112905 A EP 90112905A EP 0407901 B1 EP0407901 B1 EP 0407901B1
Authority
EP
European Patent Office
Prior art keywords
polyethylene
process according
spinning
molecular weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90112905A
Other languages
German (de)
English (en)
Other versions
EP0407901A3 (en
EP0407901A2 (fr
Inventor
Albert J. Prof. Dr. Pennings
Mees Roukema
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo NV
Original Assignee
Akzo NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV filed Critical Akzo NV
Publication of EP0407901A2 publication Critical patent/EP0407901A2/fr
Publication of EP0407901A3 publication Critical patent/EP0407901A3/de
Application granted granted Critical
Publication of EP0407901B1 publication Critical patent/EP0407901B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Definitions

  • the invention relates to a process for the production of polyethylene threads by rapid spinning of solutions of ultra-high molecular weight polyethylene, which due to their good strength and their high modulus, e.g. for use as technical yarns, for plastic reinforcement in general, etc. are suitable.
  • Polyethylene has a number of advantages due to its chemical structure, e.g. against polymers as obtained by polycondensation. For example, not the risk of hydrolysis, which is frequently observed with the ester bonds or amide bonds of polyesters and polyamides.
  • Polyethylene as a synthetic material that can be produced in practically any quantity, is also less susceptible to the fluctuations in supply and demand, as is the case with pulp, quite apart from the fact that the depletion of forests means that the raw material base for pulp is increasingly at risk.
  • the Dutch patent application 79/04990 describes a process for the production of polyethylene threads with high strength and a high modulus, in which, as can be seen in particular from the examples, relatively low concentration solutions are used. In order to obtain satisfactory mechanical properties, it is necessary to heat-draw the filaments after spinning, winding and extracting, which reduces the productivity of the process.
  • the object of the invention is therefore to provide a method for high-speed spinning of ultra-high molecular weight polyethylene which allows high productivity, which works without stretching the spun threads and which in a simple manner provides polyethylene threads which have good mechanical properties, in particular high strengths and have a high modulus and are suitable for use as technical yarns, as reinforcing material for plastics, etc.
  • the molecular weight is M w ⁇ 3.5 ⁇ 106.
  • the temperature below the nozzle exit surface is preferably set to 150-190 ° C. It is advantageous to work with a take-off speed of at least 1000 m / min. Take-off speeds of 1500 to 4000 m / min are very advantageous.
  • spinnerets with nozzle openings are used, the cross-section of which becomes smaller in the direction of extrusion.
  • spinnerets with nozzle openings can be used, the cross-sectional profile of which can be called trumpet-shaped or funnel-shaped or pseudo-hyperbolic.
  • trumpet-shaped or funnel-shaped or pseudo-hyperbolic Such a favorable pseudo-hyperbolic cross-sectional shape is shown in the figure.
  • a pseudo-hyperbolic cross-sectional shape is to be understood in the course that approximates a hyperbolic course, but can have more or less large deviations both at the beginning and at the end.
  • Such a solvent is preferably used to prepare the solutions so that the solution has a viscosity of 1 to 100 Pa.s at the extrusion temperature.
  • Polyethylene which is as linear as possible is used in the preparation of the solutions, which does not preclude the possibility of branching to a small extent.
  • the polymer used is a polyethylene obtained by low pressure polymerization. It is commercially available and is often referred to as HDPE (high density polyethylene).
  • a polyethylene as the polymer which is wholly or largely present as a homopolymer.
  • a copolymer e.g. a copolymer composed of up to about 5% by weight of monomers other than ethylene such as propylene or butylene.
  • monomers other than ethylene such as propylene or butylene.
  • copolymers can also be used which contain more or less of the other monomer (s).
  • the polyethylene used for the production of the polyethylene threads according to the invention belongs to the types of polyethylene which are generally referred to as ultra-high molecular weight polyethylene. This is understood to mean polyethylene, which is a molecular weight M w of at least 1 million, under M w
  • M w molecular weight of at least 1 million
  • M n is the number average, which can be determined, for example, using osmotic methods.
  • polyethylenes with a customary molecular weight distribution which can be more or less wide and, for example, have a non-uniformity of 20, for example, it is nevertheless advantageous to use a polyethylene which has the narrowest possible molecular weight distribution has, whose values for the inconsistency are as low as possible.
  • the non-uniformity of the polymer used can be controlled by the way in which it is produced; it is of course also possible to go from a polyethylene with a very broad molecular weight distribution by fractionation to a polymer with a narrow molecular weight distribution.
  • the polyethylene solvent system should be chosen so that the solution forms a gel by cooling to temperatures below the extrusion temperature.
  • the gel formation temperature should preferably be 130 ° C. or lower. It can also be below 70 ° C.
  • the spinning solutions mentioned are elastic.
  • the dissolution of the polyethylene in the solvent preferably takes place at temperatures which correspond to the extrusion temperature. It is advantageous if the dissolving under an inert atmosphere, e.g. takes place under nitrogen.
  • a stabilizing agent can be added to the solution.
  • Paraffin oils are particularly suitable as solvents. Hydrocarbons such as cyclooctane, paraxylene, decalin or petroleum ether can also be used.
  • solutions with concentrations of approximately 1 to 6% by weight can be used, preferably those with concentrations of 1-3% by weight.
  • concentrations of about 1 to 2% by weight.
  • Extrusion speed is to be understood as the amount of spinning liquid which leaves the nozzle in the time unit per unit area of the nozzle outlet openings. It is given in m3 / m2 x min or m / min.
  • the linear speed, in m / min, at which the threads are drawn off at the lower end of the spinning shaft is indicated under take-off speed. Since the threads are no longer fed after being drawn further, this take-off speed generally corresponds to the take-up speed.
  • the withdrawal speeds that can be achieved depend on the concentration selected. In general it can be said that the maximum withdrawal speed decreases with increasing concentration of the polyethylene. However, spinning may be difficult in the lower concentration range; these can be remedied by reducing the extrusion rate.
  • the most suitable combinations of extrusion speed, draw-off speed and concentration of the solution can be determined by a few experiments.
  • the spinning shaft As a device with which the spinning shaft is brought to the required temperature below the spinneret, e.g. simple annular heaters can be used. Depending on the size of the spinning equipment used, the length of the heating zone can be between a few centimeters, e.g. 4 cm up to 200 cm.
  • the threads are blown with a gas to reduce the temperature. It is advantageous to set a gradient-like or graduated temperature profile by blowing on the threads, so that after the heating zone, in which e.g. there is a temperature of 160 ° C, initially there is a zone in which the temperature is only around e.g. Falls 10 ° C, e.g. to about 150 ° C, which is then followed by a next zone within which the temperature drops to, for example, 110 ° C, which then connects to a zone in which, using gas at room temperature, cooling to temperatures below 50 ° C takes place so that the threads have cooled sufficiently when they reach the take-off device. Temperature gradations can initially also be carried out with the help of one or more heating devices with which temperature gradations or temperature gradients can be set.
  • the cross-sectional shape of the spinning orifices is of great importance for the method according to the invention. It is imperative that the spinning orifices on the side where the spinning mass enters the nozzle orifices have an enlarged opening, ie that the cross section of the nozzle orifices on the exit side becomes smaller.
  • Nozzle openings with a pseudo-hyperbolic course are very suitable. There is a course under pseudo-hyperbolic to understand, which is approximated to a hyperbolic course and can deviate from an exactly hyperbolic course both in the more curved and in the more linear region. The figure schematically shows such a design.
  • nozzles with nozzle openings which initially have a funnel-shaped opening part, which can be trumpet-shaped or else conical, which then either changes abruptly or after a transition to a conical shape in which the cone has a more acute opening angle than that Cone or the parabola of the inlet part. It is possible to design the last part of the nozzle opening with a constant cross section.
  • the process according to the invention is particularly advantageous in comparison with known processes in that it is a so-called one-step process, i.e. in that it works without the previously required post-stretching. This makes the process particularly economical and allows high production speeds.
  • the process according to the invention permits spinning of high molecular weight polyethylene without the resulting fear of spinning breaks, which can be observed especially when spinning high molecular weight polyethylene in the form of elastic melts or solutions in the previously known processes . So the number of melt breaks, which in the known processes are often attributed to processes that already take place inside the spinneret, is considerably reduced or avoided entirely.
  • the process according to the invention allows take-off speeds of up to the order of 4000 m / min and above.
  • the threads obtained have such good mechanical properties that post-stretching is no longer necessary and is sometimes no longer possible.
  • the threads which can also be cut into staple fibers, are particularly suitable for use as technical yarns. They can be used very well with protective clothing e.g. bulletproof vests and the like, processing rope, parachutes etc.
  • the threads are very suitable, in particular as staple fibers in the reinforcement of plastic.
  • the stirrer is switched off as soon as the polyethylene is completely dissolved and the so-calledSteenberg effect occurs.
  • the temperature is then kept at 150 ° C. for 48 hours.
  • the solution is cooled to room temperature, at about 130 ° C a gel forms.
  • the gel is fed to a spinning device with spinning orifices which have a trumpet-shaped cross-sectional shape, as shown in the figure.
  • the outlet openings of the nozzle openings have a diameter of 0.5 mm.
  • the solution is extruded at 220 ° C at a speed of 1 m / min, the threads are quenched in air and wound up at the same speed.
  • the fiber thus obtained can be stretched to a ratio of 200 at a temperature of 148 ° C., producing fibers with a strength of 7.0 GPa.
  • Example 1 The solution described in Example 1 is processed in the same way, only an extrusion speed of 100 m / min and a winding speed of 500 m / min are used.
  • the fiber thus obtained can no longer be hot drawn; the strength after extraction of the paraffin oil with n-hexane was 0.3 GPa.
  • a spinning solution is processed as indicated in Example 3, but the process is carried out at an extrusion temperature of 190 ° C. and a winding speed of 2,000 m / min.
  • the strength of the extracted fibers is 1.7 GPa.
  • a spinning solution is processed as in Example 3, but with an extrusion speed of 10 m / min and a winding speed of 2,000 m / min.
  • the strength of the extracted fiber is 1.9 GPa.
  • the spinning solution is processed according to Example 3, but at an extrusion speed of 5 m / min using a spinneret with spinning orifices which have a diameter at the exit point of 1 mm.
  • a spinning shaft of 4 m length is used here. This length was necessary to allow the extruded filaments to cool sufficiently before they were wound up.
  • the winding speed is 2,000 m / min. After extraction, the threads have a strength of 1.4 GPa. on.
  • the extrusion temperature is 190 ° C. and the take-off speed is 3,000 m / min.
  • the strength of the extracted fiber is 0.8 GPa.
  • a spinning solution according to Example 7 is used at an extrusion temperature of 220 ° C. and at a winding speed of 4,000 m / min.
  • the strength of the extracted threads is 0.8 GPa.
  • a spinning solution corresponding to Example 7, but with a concentration of 5% by weight is extruded at a temperature of 220 ° C., the take-off speed is 3 500 m / min.
  • the strength of the extracted fiber is 0.6 GPa.
  • a spinning solution is prepared analogously to Example 1, but using decalin as the solvent.
  • the spinning mass is extruded at an extrusion temperature of 180 ° C. at a spinning speed of 100 m / min and wound up at 1,000 m / min.
  • the strength of the extracted fiber is 0.9 GPa.
  • Examples 3 to 10 according to the invention show that it is possible to work in a one-step process without the need for post-stretching, and in this way one obtains strengths which are twice or more than the strength compared to the procedure of Example 2nd

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (9)

  1. Procédé de fabrication de fils de polyéthylène par filage rapide de solutions de polyéthylène de masse moléculaire ultra-haute, caractérisé en ce que l'on prépare, à partir d'un solvant et d'un polyéthylène dont la masse moléculaire moyenne en poids Mp est supérieure ou égale à 1.10⁶ , une solution à environ 1-6 % en poids, on extrude cette solution, à une température d'extrusion valant de 180 à 250°C et à une vitesse d'extrusion de 5 à 150 m/min, à travers une filière de filage présentant des ouvertures dont la section diminue en direction de la sortie de filière, dans une cuve de filage placée au-dessous de la sortie de la filière et chauffée à une température de 100 à 250°C, on souffle un gaz sur les fils au-dessous de la zone de chauffage, on tire les fils à une vitesse Vt supérieure ou égale à 500 m/min et on les débarrasse du solvant sans les étirer davantage.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on utilise un polyéthylène dont la masse moléculaire Mp est supérieure ou égale à 3,5.10⁶.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que l'on utilise un polyéthylène dont l'indice de polymolécularité I (I = Mp/Mn) est inférieur ou égal à 5.
  4. Procédé selon la revendication 3, caractérisé en ce que I est inférieur ou égal à 3.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on établit au-dessous de la sortie de filière, au moyen d'un dispositif de chauffage, une température de 150 à 190°C.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on tire les fils à une vitesse Vt supérieure à 1000 m/min.
  7. Procédé selon la revendication 6, caractérisé en ce que l'on tire les fils à une vitesse Vt valant de 1500 à 4000 m/min.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on utilise un solvant tel que la solution présente, à la température d'extrusion, une viscosité, mesurée pour un gradient de vitesse D égal à 1 s⁻¹, valant de 1 à 100 Pa.s.
  9. Procédé selon la revendication 8, caractérisé en ce que l'on utilise de l'huile de paraffine comme solvant.
EP90112905A 1989-07-13 1990-07-06 Procédé pour la fabrication de fibres de polyéthylène par filage à grande vitesse de polyéthylène à très haut poids moléculaire Expired - Lifetime EP0407901B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3923139A DE3923139A1 (de) 1989-07-13 1989-07-13 Verfahren zur herstellung von polyaethylenfaeden durch schnellspinnen von ultra-hochmolekularem polyaethylen
DE3923139 1989-07-13

Publications (3)

Publication Number Publication Date
EP0407901A2 EP0407901A2 (fr) 1991-01-16
EP0407901A3 EP0407901A3 (en) 1991-09-25
EP0407901B1 true EP0407901B1 (fr) 1993-01-13

Family

ID=6384931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90112905A Expired - Lifetime EP0407901B1 (fr) 1989-07-13 1990-07-06 Procédé pour la fabrication de fibres de polyéthylène par filage à grande vitesse de polyéthylène à très haut poids moléculaire

Country Status (4)

Country Link
US (1) US5068073A (fr)
EP (1) EP0407901B1 (fr)
JP (1) JPH03119105A (fr)
DE (2) DE3923139A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286435A (en) * 1986-02-06 1994-02-15 Bridgestone/Firestone, Inc. Process for forming high strength, high modulus polymer fibers
GB9027699D0 (en) * 1990-12-20 1991-02-13 Univ Toronto Process for the continuous production of high modulus articles from polyethylene
BE1006454A3 (nl) * 1992-12-21 1994-08-30 Dsm Nv Werkwijze voor het vervaardigen van polymere voorwerpen uitgaande van een oplossing.
EP1193335B1 (fr) * 1998-06-04 2003-10-15 DSM IP Assets B.V. Fibre de polyethylene haute resistance et son procede de production
US6153134A (en) * 1998-12-15 2000-11-28 E. I. Du Pont De Nemours And Company Flash spinning process
ES2220898T3 (es) 1999-08-11 2004-12-16 Toyo Boseki Kabushiki Kaisha Unmaterial balistico que comprende fibras de polietileno de alta resistencia.
CN100482869C (zh) 2004-01-01 2009-04-29 帝斯曼知识产权资产管理有限公司 用于制备高性能聚乙烯多丝纱线的方法
DK1699954T3 (da) 2004-01-01 2012-02-06 Dsm Ip Assets Bv Fremgangsmåde til fremstilling af multifilament polyethylengarn med høj ydeevne
US7476352B2 (en) * 2004-05-21 2009-01-13 3M Innovative Properties Company Lubricated flow fiber extrusion
US20080003430A1 (en) * 2006-06-28 2008-01-03 3M Innovative Properties Company Particulate-loaded polymer fibers and extrusion methods
US7736579B2 (en) * 2006-07-21 2010-06-15 Quadrant Epp Ag Production of UHMWPE sheet materials
US7758797B2 (en) * 2006-07-21 2010-07-20 Quadrant Epp Ag Production of UHMWPE sheet materials
US7803450B2 (en) * 2006-07-21 2010-09-28 Quadrant Epp Ag Production of UHMWPE sheet materials
US7758796B2 (en) * 2006-07-21 2010-07-20 Quadrant Epp Ag Production of UHMWPE sheet materials
US9365953B2 (en) 2007-06-08 2016-06-14 Honeywell International Inc. Ultra-high strength UHMWPE fibers and products
US8747715B2 (en) 2007-06-08 2014-06-10 Honeywell International Inc Ultra-high strength UHMW PE fibers and products
CN101122051B (zh) * 2007-09-24 2010-04-14 湖南中泰特种装备有限责任公司 低纤度、高强高模聚乙烯纤维的制备方法
JP5393774B2 (ja) * 2008-04-11 2014-01-22 ディーエスエム アイピー アセッツ ビー.ブイ. 超高分子量ポリエチレンマルチフィラメント糸、およびその生産方法。
KR20110038688A (ko) * 2008-07-10 2011-04-14 데이진 아라미드 비.브이. 고분자량 폴리에틸렌 섬유의 제조방법
CN102159397A (zh) * 2008-09-05 2011-08-17 加州大学评议会 凝胶处理的聚烯烃组合物
BR122020002319B1 (pt) * 2013-10-29 2021-06-15 Braskem S.A. Método e sistema contínuo para a produção de pelo menos um fio polimérico
CN112144131B (zh) * 2019-06-26 2021-08-13 中石化南京化工研究院有限公司 脱除高性能聚乙烯纤维残留溶剂的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB541238A (en) * 1940-04-17 1941-11-19 Henry Dreyfus Improvements in or relating to the manufacture of artificial textile materials and the like
US2588584A (en) * 1949-11-12 1952-03-11 Celanese Corp Spinning artificial filamentary materials
US3608041A (en) * 1964-01-09 1971-09-21 Celanese Corp Spinning process
US4015924A (en) * 1973-08-10 1977-04-05 Celanese Corporation Spinning apparatus providing for essentially constant extensional strain rate
NL177759B (nl) * 1979-06-27 1985-06-17 Stamicarbon Werkwijze ter vervaardiging van een polyetheendraad, en de aldus verkregen polyetheendraad.
NL8006994A (nl) * 1980-12-23 1982-07-16 Stamicarbon Filamenten met grote treksterkte en modulus en werkwijze ter vervaardiging daarvan.
AU549453B2 (en) * 1981-04-30 1986-01-30 Allied Corporation High tenacity, high modulus, cyrstalline thermoplastic fibres
NL8104728A (nl) * 1981-10-17 1983-05-16 Stamicarbon Werkwijze voor het vervaardigen van polyetheen filamenten met grote treksterkte.
US4551296A (en) * 1982-03-19 1985-11-05 Allied Corporation Producing high tenacity, high modulus crystalline article such as fiber or film
JPS59216912A (ja) * 1983-05-20 1984-12-07 Toyobo Co Ltd 高強度・高弾性率ポリエチレン繊維の製造方法

Also Published As

Publication number Publication date
JPH03119105A (ja) 1991-05-21
US5068073A (en) 1991-11-26
EP0407901A3 (en) 1991-09-25
DE3923139A1 (de) 1991-01-17
EP0407901A2 (fr) 1991-01-16
DE59000751D1 (de) 1993-02-25

Similar Documents

Publication Publication Date Title
EP0407901B1 (fr) Procédé pour la fabrication de fibres de polyéthylène par filage à grande vitesse de polyéthylène à très haut poids moléculaire
EP0494852B1 (fr) Procédé pour la fabrication d'objets cellulosiques
EP0574870B1 (fr) Procédé de fabrication d'articles moulés en cellulose
DE69030338T3 (de) Verfahren zur Herstelung von Fasern, Rovings und Matten aus flüssigkristallinen lyotropen Polymeren
CH650807A5 (de) Verfahren zur herstellung von filamenten.
EP0494851B1 (fr) Procédé pour la fabrication d'objets cellulosiques
EP1463851A1 (fr) Dispositif et procede de filage avec soufflerie de refroidissement
DE1940621A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen von Fasern
EP1463850A1 (fr) Dispositif et procede de filage avec soufflerie de refroidissement
DE19517350C2 (de) Verfahren zur Herstellung von Polyester-Bikomponenten-Fasern und -Filamenten und dadurch herstellbare Fasern und Filamente
DE4219658C2 (de) Verfahren zur Herstellung von Cellulosefasern -filamenten und -folien nach dem Trocken-Naßextrusionsverfahren
EP1208255B1 (fr) Fils en polyester a resistance elevee et procede de fabrication desdites fibres
EP0530652B1 (fr) Dispositif de filage à grande vitesse de fils multifilaments et son utilisation
DE10139228A1 (de) Verstreckvorrichtung und Verfahren zur Herstellung verstreckter Kunststoffilamente
WO1998036110A1 (fr) Dispositif d'etirage et procede pour la fabrication de filaments synthetiques etires
EP1208254B1 (fr) Fibres discontinues en polyester et procede de fabrication desdites fibres
EP1334223B1 (fr) Procede de production de fils synthetiques a base de melanges polymeres
DE1270216B (de) Verfahren zur herstellung von faeden aus linearen polyestern
DE2736302C3 (de) Verfahren zur Herstellung von Polypyrrolidonfäden
EP1521869A1 (fr) Procede de filature
DE10338821B4 (de) Verfahren zur Herstellung von feinen Fasern
DE10201834B4 (de) Herstellung dimensionsstabiler Polyesterfäden
EP0645479A1 (fr) Fibres de polyacrylonitrile ayant une haute tenacité et un haut module, procédé de leur préparation et leur utilisation
DE3323202A1 (de) Schmelzspinn- und streckverfahren zur herstellung von polypropylenfaeden
DE2141285A1 (de) Verfahren zur herstellung hochmolekularer endlosfaeden aus polyestern und spinnduesenplatte zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911012

17Q First examination report despatched

Effective date: 19920514

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 59000751

Country of ref document: DE

Date of ref document: 19930225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930129

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990601

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990608

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990730

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000706

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501