EP0407243A1 - Mehrfachkeulen-Antennensystem mit aktiven Modulen und mit Keulenbildung durch numerische Berechnung - Google Patents

Mehrfachkeulen-Antennensystem mit aktiven Modulen und mit Keulenbildung durch numerische Berechnung Download PDF

Info

Publication number
EP0407243A1
EP0407243A1 EP90401676A EP90401676A EP0407243A1 EP 0407243 A1 EP0407243 A1 EP 0407243A1 EP 90401676 A EP90401676 A EP 90401676A EP 90401676 A EP90401676 A EP 90401676A EP 0407243 A1 EP0407243 A1 EP 0407243A1
Authority
EP
European Patent Office
Prior art keywords
ffc
modules
signals
network
diagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401676A
Other languages
English (en)
French (fr)
Other versions
EP0407243B1 (de
Inventor
Jean-Louis Pourailly
Joseph Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9383440&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0407243(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0407243A1 publication Critical patent/EP0407243A1/de
Application granted granted Critical
Publication of EP0407243B1 publication Critical patent/EP0407243B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to an antenna system with active modules and beam forming by digital calculation.
  • the digital FFC consists in digitally executing this weighted summation of the signals delivered by the elementary antennas.
  • an electronic scanning is carried out by applying a variable and controlled phase shift to the signals delivered by the elementary antennas (or, in transmission, applied to them), so that the cumulation of the different phase shifts, combined with the pitch of the network, producing a "main lobe" whose direction with the central axis of the network forms a variable angle, modified according to needs.
  • a beamforming antenna by digital calculation comprises: - a plurality of elementary antennas configured in a network, a plurality of active transmitting and / or receiving amplifier modules, in a number equal to that of the elementary antennas and each associated, respectively, with one of these (a set of elements will be called "active module”) assets - such as power amplifiers for transmission, low noise amplifiers for reception, phase shifters, etc.
  • FFC module the input of which receives the microwave signal after low noise amplification, the output of which is in the form of a complex number representative of the analog input signal - that is to say a number with two parameters, corresponding to two quadrature channels, called " sine channel "and” cosine channel ")
  • FFC processor means developing, from the complex digital data delivered by the various FFC modules of the system, weighted sums of these data, the weighting corresponding to a reception channel defining a narrow beam of the antenna radiation diagram.
  • an FFC module is placed at the output of each channel for receiving the active modules.
  • the second technique consists in grouping the elementary antennas of the network into adjacent sub-networks obtained by combining the signals from neighboring active modules, and not provide only one FFC module for each subnet.
  • One of the aims of the invention is to remedy these various drawbacks by proposing an FFC antenna architecture with active modules making it possible to manage several beams simultaneously, while however significantly limiting the amount of information to be processed by the processor and, in one embodiment, also significantly reducing the number of FFC modules required.
  • the system further comprises a plurality of spatial pre-filtering circuits, each of which receives as input a plurality of signals from the active modules arranged upstream and delivers a signal at the output, to an associated FFC module arranged downstream, which is an amplitude-weighted sum of some of the signals received at the input, each FFC module thus being associated with a sub-network of the network of elementary antennas, the various sub -networks thus formed being nested between them and the weighting of the signals of each subnetwork being chosen so that the diagram thereof is a sectoral diagram essentially letting pass only the signals coming from a restricted area of the space, the number of these space pre-filtering circuits as well as the FFC modules associated with them is less than the number of elementary antennas, and -
  • the FFC processor means simultaneously process the
  • spatial prefiltering essentially serves to reduce the amount of information to be processed by the FFC processor, without seeking to reduce the number of FFC modules.
  • FFC modules are placed immediately after each corresponding active module (the two modules can be, moreover, integrated), and the subnets are then formed by calculating sums weighted directly from the signals thus digitized.
  • the system further comprises spatial pre-filtering means receiving as input the signals delivered by the FFC modules arranged upstream and delivering as output, to the FFC processor means disposed downstream, amplitude-weighted sums of some of the signals received at input, so as to constitute a sub-network of the network of elementary antennae, the different subnetworks thus formed being nested between them and the weighting of the signals of each subnetwork being chosen so that the diagram thereof is a sectoral diagram essentially letting pass only the signals coming from a restricted area of the space, and the FFC processor means process the signals at the output of the spatial pre-filtering means so as to obtain for the radiation pattern of the antenna an equivalent number of simultaneous, distinct beams of uniform quality.
  • the spatial pre-filtering means can in particular be implemented by a programmable controller.
  • the weighting carried out by the FFC processor means is an adaptive weighting ensuring the convergence of the pointing in the direction of the space sought.
  • Figure 1 schematically illustrates the first embodiment of the invention.
  • the reference 1 designates the elementary antennas of the array (for clarity of the drawing, only a limited number of these elementary antennas have been shown, which in reality are in much higher number, typically of the order of 4000 to 5000 ).
  • Each elementary antenna is associated with an active module 2, of a type known per se (and the structure of which will be described below with reference to FIG. 3), essentially consisting of the receiving and / or transmitting amplifier circuits.
  • a plurality of nested subnets (three in FIG. 1) is formed, by means of equi-amplitude and equi-phase 3 distributors which distribute the signals from the amplifiers to distribute them to a certain number (three, in the example illustrated) of spatial pre-filtering networks 4 whose role is to sum the signals they receive as input by applying to these signals amplitude weighting coefficients, characteristic of each of the sub - networks that we want to build.
  • the surface of the sub-networks can, thanks to the nesting, be chosen to obtain diagrams having a very specific secondary radiation, that is to say a diagram very close to an ideal sectoral diagram, because we can indeed assign to each sub-network a sufficient number of signals to establish the desired weighting.
  • the output signal from each of these spatial pre-filtering circuits 4 (that is to say the signal corresponding to each of the subnets that have been formed) is applied as input to an FFC module 5 of known type ( and the structure of which will be described below with reference to FIG. 4) which outputs a complex digital value, in the form of two signals I and Q (the "sine channel” and “cosine channel” mentioned above).
  • the I and Q components of the complex values delivered by the different FFC modules of the system are applied to an FFC 6 processor which will simultaneously process the digital values corresponding to each of the subnets, thus making it possible, as we are looking for, to obtain a plurality brushes of uniform quality.
  • the FCC computer can, advantageously, be a looped, “intelligent” device, delivering, by means of appropriate algorithms, an adaptive signal making it possible to point in the precise direction of the space where it is needed, avoiding jammers by creating “holes” in the diagram in the direction of these: we thus obtain the desired result of an antenna whose diagram is constituted by a “cluster” of narrow beams, precisely adjustable, anti-scrambled and of high quality homogeneous.
  • FIG. 5 shows an example of a diagram taken for one of the nested sub-networks (that is to say of a diagram obtained by an appropriate weighting in one of the spatial pre-filtering circuits 4), with, as we can see it, a central main lobe defining approximately the ideal sectoral diagram mentioned above.
  • FIG. 6 shows the network diagram obtained by the FFC modules alone, that is to say without the prefiltering of the subnets
  • FIG. 7 shows this same diagram after prefiltering, that is to say the diagram obtained by combining the separate diagrams in FIGS. 5 and 6: it can thus be seen that the large lobes of the diagram in FIG. 6 practically disappear completely after passing through the sub-network prefilter.
  • FIG. 8 illustrates the possibility that one has, with the same data set, of forming FFC lobes in the entire area defined by the prefilter; for this purpose, by an electronic scan resulting from an appropriate control of the FFC modules, the diagram of FIG. 6 is translated by a few degrees or fractions of a degree to the right or to the left, and therefore the central lobe thereof. , so as to scan by the latter the entire angular sector defined by the sub-network.
  • FIG. 8 thus corresponds to a series of homologous diagrams of the diagram of FIG. 7, obtained with the same spatial pre-filtering diagram (that of FIG. 5) but by shifting a few degrees or fractions of degrees to the left or to the right the diagram of FIG. 6 by an appropriate command of the FFC modules.
  • FIGS. 9 and 10 instead of a pointing in the axis, there has been a shift of + 30 °, the diagram in FIG. 5 becoming that of FIG. 9 and the diagram in FIG. 7, that in Figure 10.
  • each of the spatial pre-filtering circuits uses the signals delivered by the entire system
  • this characteristic is not essential, and, in practice (in particular to limit the noise factor of the antenna when the latter comprises a high number of active modules), it could be necessary to limit the number of signals assigned to each sub-network.
  • the pre-filtering takes place downstream (in the direction of reception) of the modules active, you can use the signals from their amplifiers for several prefilters, so achieve a very high nesting without penalizing the signal / noise ratio.
  • linear network has been taken for example.
  • the invention is however not limited to such a type of network, and applies to networks of any shape, in particular surface or volume networks.
  • the FFC network need not be, as illustrated, a regular pitch network; the distribution can be arbitrary, provided that no network lobes are generated inside the prefiltered zone.
  • FIG. 2 illustrates a second embodiment of the invention, also using the same spatial prefiltering technique, but replacing the mesh between the distributors 3 and the spatial prefiltering circuit 4 by a distribution operated by calculation, directly on values digital.
  • each active module 2 is associated with an FFC module 5 (the two modules being able, moreover, to be physically integrated into a single circuit) delivering the complex digital values I and Q to a digital prefilter 4 such that '' a distributed computer (preferably a programmable controller) which will directly constitute the sub-networks by calculation by determining the appropriate weighted sums from the signals digitized upstream.
  • FFC module 5 the two modules being able, moreover, to be physically integrated into a single circuit
  • This architecture also provides, compared to that of the embodiment of FIG. 1, the advantages of simplification of the connections, of reduction in the number of coding bits of the digital converters (because, due to the spatial pre-filtering, the dynamics of the signals may be weaker) and of distribution of the computing power near the modules where the data are produced - that is to say that most of the digital mass processing will take place near the active and FFC modules, thereby relieving the task of the computer 6.
  • FIGS. 3 and 4 Illustrated in FIGS. 3 and 4, respectively, the general structure of the active modules 2 and of the FFC modules 5. These modules have only been shown schematically insofar as, essentially, they are structures in themselves known.
  • Each active module 2 is made up (FIG. 3) of a phase shifter 10 making it possible to orient the wave plane at will.
  • This phase shifter is connected on the one hand to the transmission and reception circuits and on the other hand to a switch 11.
  • this switch connects the phase shifter to a power amplifier consisting of stages 12, 13 supplying the antenna elementary 1 via a circulator 14 and a harmonic filter 15; on reception, the elementary antenna 1 supplies, via the filter 15 and the circulator 14, a low noise amplifier 16, generally via a limiting stage 17.
  • the amplifier 16 delivers the signal picked up and amplified to the phase shifter 10 (via the transmission switch / reception 11) by means of an attenuator 18 used for adjusting the level, in particular for the amplitude weighting of the elementary antenna in the network.
  • FIG. 4 illustrates the diagram of an FFC 5 module, of analog type.
  • the latter receives as input a microwave signal S, which is lowered to a first intermediate frequency, of the order of 1000 MHz, by a mixer 20 supplied by a local oscillator OL1, common to all the FFC modules.
  • the signal output from the melan geur is filtered at 21 and amplified at 22, then subjected to a second frequency change (to result in a second intermediate frequency of the order of 60 MHz), this second frequency change being carried out on two similar channels each comprising a mixer 23, 23 ′, a low-pass filter 24, 24 ′ and a video amplifier 25, 25 ′.
  • an amplitude / phase demodulation must be carried out using two local oscillator signals OL2 in quadrature, which are respectively applied to each of the two mixers 23 and 23 ′.
  • each of the two quadrature signals is digitized by a respective analog / digital converter 26, 26 ′ to give the signals I (reference signal) and Q (quadrature signal) delivered by each of the FFC modules.
  • this description corresponds to an analog FFC module, that is to say in which the analog / digital conversion is carried out after demodulation; it is also possible to provide a digital FFC module, that is to say in which, the digitization being performed upstream, the amplitude / phase demodulation is performed digitally, by calculation, and not by mixing and filtering of signals.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
EP90401676A 1989-07-04 1990-06-15 Mehrfachkeulen-Antennensystem mit aktiven Modulen und mit Keulenbildung durch numerische Berechnung Revoked EP0407243B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908960A FR2649544B1 (fr) 1989-07-04 1989-07-04 Systeme d'antenne a faisceaux multiples a modules actifs et formation de faisceaux par le calcul numerique
FR8908960 1989-07-04

Publications (2)

Publication Number Publication Date
EP0407243A1 true EP0407243A1 (de) 1991-01-09
EP0407243B1 EP0407243B1 (de) 1994-09-07

Family

ID=9383440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401676A Revoked EP0407243B1 (de) 1989-07-04 1990-06-15 Mehrfachkeulen-Antennensystem mit aktiven Modulen und mit Keulenbildung durch numerische Berechnung

Country Status (5)

Country Link
US (1) US5034752A (de)
EP (1) EP0407243B1 (de)
JP (1) JPH03108902A (de)
DE (1) DE69012238T2 (de)
FR (1) FR2649544B1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588045A1 (de) * 1992-08-28 1994-03-23 Robert Bosch Gmbh Verfahren zur Datenübertragung zwischen einer Feststation und sich bewegenden Objekten
EP0624008A2 (de) * 1993-05-07 1994-11-09 Space Systems / Loral, Inc. Nutzlast eines Satelliten für mobiles Kommunikationssystem
EP0627717A1 (de) * 1993-06-01 1994-12-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Durchführung eines drahtlosen Datenaustauschs zwischen einer Feststation und sich bewegenden Objekten
WO1995028015A1 (en) * 1994-04-08 1995-10-19 Ericsson Inc. Multiple beamwidth phased array
EP0687921A1 (de) 1994-06-16 1995-12-20 Alcatel N.V. Verfahren und System zur Ortungsbestimmung von Bodenfunksendern mittels Satelliten
US5539415A (en) * 1994-09-15 1996-07-23 Space Systems/Loral, Inc. Antenna feed and beamforming network
FR2741478A1 (fr) * 1993-12-28 1997-05-23 Le Centre Thomson D Applic Rad Antenne a formation de faisceaux par calcul segmentee en sous-reseaux
EP0798806A1 (de) * 1996-03-25 1997-10-01 Trw Inc. Verfahren und Vorrichtung zur Vorspannungsfehlerreduzierung in einem N-Tor-Strahlformer des Butler-Matrix-Typs
WO2007053213A1 (en) * 2005-10-31 2007-05-10 The Boeing Company Phased array antenna systems and methods
FR2919731A1 (fr) * 2007-08-03 2009-02-06 Thales Sa Architecture radar modulaire
US7551136B1 (en) 2006-07-24 2009-06-23 The Boeing Company Multi-beam phased array antenna for limited scan applications
US8195188B2 (en) 1997-08-04 2012-06-05 Enovsys Llc Location reporting satellite paging system with optional blocking of location reporting
CN108987948A (zh) * 2017-06-05 2018-12-11 李学智 多端口次阵列及基频信号处理器所组成的天线架构

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251928A (ja) * 1992-03-05 1993-09-28 Honda Motor Co Ltd アンテナ装置
FR2693317B1 (fr) * 1992-07-03 1994-08-26 Thomson Csf Antenne de radar secondaire fonctionnant en mode S.
JP2604093B2 (ja) * 1992-10-06 1997-04-23 株式会社小電力高速通信研究所 アレイアンテナ指向性適応送受信装置
FR2697949B1 (fr) * 1992-11-06 1995-01-06 Thomson Csf Antenne pour radar notamment de désignation et de trajectographie.
FR2702090B1 (fr) * 1993-02-26 1995-05-19 Thomson Csf Antenne d'écartométrie pour radar monopulse.
US5818385A (en) * 1994-06-10 1998-10-06 Bartholomew; Darin E. Antenna system and method
DE4421571A1 (de) * 1994-06-21 1996-01-11 Ant Nachrichtentech Anordnung zur Ortsbestimmung von Signale abstrahlenden Objekten
FR2725075B1 (fr) * 1994-09-23 1996-11-15 Thomson Csf Procede et dispositif d'elargissement du diagramme de rayonnement d'une antenne active
FR2729505A1 (fr) * 1995-01-18 1996-07-19 Alcatel Espace Antenne multifaisceaux forte capacite a balayage electronique en emission
US5754138A (en) * 1996-10-30 1998-05-19 Motorola, Inc. Method and intelligent digital beam forming system for interference mitigation
US6061023A (en) * 1997-11-03 2000-05-09 Motorola, Inc. Method and apparatus for producing wide null antenna patterns
US6084541A (en) * 1998-07-13 2000-07-04 Comsat Corporation Self diagnosis and self healing scheme for digital beam-forming
US6583763B2 (en) 1999-04-26 2003-06-24 Andrew Corporation Antenna structure and installation
US6621469B2 (en) 1999-04-26 2003-09-16 Andrew Corporation Transmit/receive distributed antenna systems
US6362787B1 (en) 1999-04-26 2002-03-26 Andrew Corporation Lightning protection for an active antenna using patch/microstrip elements
US6701137B1 (en) 1999-04-26 2004-03-02 Andrew Corporation Antenna system architecture
US6812905B2 (en) 1999-04-26 2004-11-02 Andrew Corporation Integrated active antenna for multi-carrier applications
WO2001052447A2 (en) 2000-01-14 2001-07-19 Andrew Corporation Repeaters for wireless communication systems
US7027536B1 (en) * 1999-10-08 2006-04-11 At&T Corp. Method and apparatus for designing finite-length multi-input multi-output channel shortening pre-filters
US6448930B1 (en) 1999-10-15 2002-09-10 Andrew Corporation Indoor antenna
WO2001083771A2 (en) * 2000-04-29 2001-11-08 Merck Patent Gmbh Human phospholipase c delta 5
FR2838244B1 (fr) * 2002-04-05 2006-05-19 Thales Sa Antenne adaptative multifaisceaux a formation de faisceaux par le calcul et radar comportant une telle antenne
US7623868B2 (en) * 2002-09-16 2009-11-24 Andrew Llc Multi-band wireless access point comprising coextensive coverage regions
US6983174B2 (en) * 2002-09-18 2006-01-03 Andrew Corporation Distributed active transmit and/or receive antenna
US6844863B2 (en) 2002-09-27 2005-01-18 Andrew Corporation Active antenna with interleaved arrays of antenna elements
US6906681B2 (en) * 2002-09-27 2005-06-14 Andrew Corporation Multicarrier distributed active antenna
US7280848B2 (en) * 2002-09-30 2007-10-09 Andrew Corporation Active array antenna and system for beamforming
US20040203804A1 (en) * 2003-01-03 2004-10-14 Andrew Corporation Reduction of intermodualtion product interference in a network having sectorized access points
DE10319063B4 (de) * 2003-04-25 2009-09-03 Astrium Gmbh Verfahren zur Erzeugung von mehreren SAR-Sendestrahlen und SAR-Antennensystem
US6972622B2 (en) * 2003-05-12 2005-12-06 Andrew Corporation Optimization of error loops in distributed power amplifiers
KR20050048164A (ko) * 2003-11-19 2005-05-24 학교법인 성균관대학 압전소자를 이용한 마이크로스트립 안테나
CN100375560C (zh) * 2004-09-13 2008-03-12 大唐移动通信设备有限公司 多载波时分双工移动通信系统灵活支持非对称业务的方法
US9275690B2 (en) 2012-05-30 2016-03-01 Tahoe Rf Semiconductor, Inc. Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof
US9509351B2 (en) 2012-07-27 2016-11-29 Tahoe Rf Semiconductor, Inc. Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver
US9531070B2 (en) 2013-03-15 2016-12-27 Christopher T. Schiller Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof
US9780449B2 (en) 2013-03-15 2017-10-03 Integrated Device Technology, Inc. Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming
US9722310B2 (en) 2013-03-15 2017-08-01 Gigpeak, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication
US9184498B2 (en) 2013-03-15 2015-11-10 Gigoptix, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof
US9716315B2 (en) 2013-03-15 2017-07-25 Gigpeak, Inc. Automatic high-resolution adaptive beam-steering
US9837714B2 (en) 2013-03-15 2017-12-05 Integrated Device Technology, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof
US9666942B2 (en) 2013-03-15 2017-05-30 Gigpeak, Inc. Adaptive transmit array for beam-steering
US9190739B2 (en) 2013-06-24 2015-11-17 Delphi Technologies, Inc. Antenna with fifty percent overlapped subarrays
US10056698B2 (en) 2014-10-20 2018-08-21 Honeywell International Inc. Multiple beam antenna systems with embedded active transmit and receive RF modules
CN107911156A (zh) * 2017-12-29 2018-04-13 深圳市华瑞安科技有限公司 数字波束形成方法及装置
US10573965B2 (en) * 2018-05-14 2020-02-25 Viasat, Inc. Phased array antenna system
CN115642929A (zh) * 2021-07-19 2023-01-24 创未来科技股份有限公司 射频接收器以及用于接收射频输入信号的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216475A (en) * 1978-06-22 1980-08-05 The United States Of America As Represented By The Secretary Of The Army Digital beam former
US4277787A (en) * 1979-12-20 1981-07-07 General Electric Company Charge transfer device phased array beamsteering and multibeam beamformer
EP0257964A2 (de) * 1986-08-22 1988-03-02 International Standard Electric Corporation Elektro-optisch gesteuerte, breitbandige, phasengesteuerte Mehrfachstrahlantenne
WO1988008623A1 (en) * 1987-04-28 1988-11-03 Hughes Aircraft Company Multifunction active array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338605A (en) * 1980-02-28 1982-07-06 Westinghouse Electric Corp. Antenna array with adaptive sidelobe cancellation
US4922257A (en) * 1987-01-27 1990-05-01 Mitsubishi Denki Kabushiki Kaisha Conformal array antenna
US4907004A (en) * 1988-05-23 1990-03-06 Spar Aerospace Limited Power versatile satellite transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216475A (en) * 1978-06-22 1980-08-05 The United States Of America As Represented By The Secretary Of The Army Digital beam former
US4277787A (en) * 1979-12-20 1981-07-07 General Electric Company Charge transfer device phased array beamsteering and multibeam beamformer
EP0257964A2 (de) * 1986-08-22 1988-03-02 International Standard Electric Corporation Elektro-optisch gesteuerte, breitbandige, phasengesteuerte Mehrfachstrahlantenne
WO1988008623A1 (en) * 1987-04-28 1988-11-03 Hughes Aircraft Company Multifunction active array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICROWAVE JOURNAL, vol. 30, no. 1, janvier 1987, pages 107-108,110,112,114,116,118,120,122,124; STEYSKAL: "Digital beamforming antennas" *
WISSENSCHAFTLICHE BERICHTE AEG-TELELFUNKEN, vol. 54, nos. 1,2, 1981, pages 25-43; D. BORGMANN: "Steuerung und Formung von Strahlungscharakteristiken mit Gruppenantennen" *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588045A1 (de) * 1992-08-28 1994-03-23 Robert Bosch Gmbh Verfahren zur Datenübertragung zwischen einer Feststation und sich bewegenden Objekten
US5422647A (en) * 1993-05-07 1995-06-06 Space Systems/Loral, Inc. Mobile communication satellite payload
US5623269A (en) * 1993-05-07 1997-04-22 Space Systems/Loral, Inc. Mobile communication satellite payload
EP0624008A3 (de) * 1993-05-07 1995-01-18 Loral Space Systems Inc Nutzlast eines Satelliten für mobiles Kommunikationssystem.
EP1133076A1 (de) * 1993-05-07 2001-09-12 Space Systems / Loral, Inc. Nutzlast eines Satelliten für mobiles Kommunikationssystem
EP1133002A1 (de) * 1993-05-07 2001-09-12 Space Systems / Loral, Inc. Nutzlast eines Satellites für mobiles Kommunikationssystem
US5548292A (en) * 1993-05-07 1996-08-20 Space Systems/Loral Mobile communication satellite payload
EP0624008A2 (de) * 1993-05-07 1994-11-09 Space Systems / Loral, Inc. Nutzlast eines Satelliten für mobiles Kommunikationssystem
US5757285A (en) * 1993-06-01 1998-05-26 Robert Bosch Gmbh Method and apparatus for effecting a wireless exchange of data between a stationary station and moving objects
EP0627717A1 (de) * 1993-06-01 1994-12-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Durchführung eines drahtlosen Datenaustauschs zwischen einer Feststation und sich bewegenden Objekten
FR2741478A1 (fr) * 1993-12-28 1997-05-23 Le Centre Thomson D Applic Rad Antenne a formation de faisceaux par calcul segmentee en sous-reseaux
WO1995028015A1 (en) * 1994-04-08 1995-10-19 Ericsson Inc. Multiple beamwidth phased array
FR2721410A1 (fr) * 1994-06-16 1995-12-22 Alcatel Espace Méthode et système de localisation d'équipements sol émetteurs à l'aide de satellites.
EP0687921A1 (de) 1994-06-16 1995-12-20 Alcatel N.V. Verfahren und System zur Ortungsbestimmung von Bodenfunksendern mittels Satelliten
US5859610A (en) * 1994-06-16 1999-01-12 Alcatel N.V. Method and a system for locating ground equipment transmitting via satellites
US5539415A (en) * 1994-09-15 1996-07-23 Space Systems/Loral, Inc. Antenna feed and beamforming network
EP0798806A1 (de) * 1996-03-25 1997-10-01 Trw Inc. Verfahren und Vorrichtung zur Vorspannungsfehlerreduzierung in einem N-Tor-Strahlformer des Butler-Matrix-Typs
US8195188B2 (en) 1997-08-04 2012-06-05 Enovsys Llc Location reporting satellite paging system with optional blocking of location reporting
WO2007053213A1 (en) * 2005-10-31 2007-05-10 The Boeing Company Phased array antenna systems and methods
US7545323B2 (en) 2005-10-31 2009-06-09 The Boeing Company Phased array antenna systems and methods
US7545324B2 (en) 2005-10-31 2009-06-09 The Boeing Company Phased array antenna systems and methods
US7551136B1 (en) 2006-07-24 2009-06-23 The Boeing Company Multi-beam phased array antenna for limited scan applications
FR2919731A1 (fr) * 2007-08-03 2009-02-06 Thales Sa Architecture radar modulaire
WO2009019191A1 (fr) * 2007-08-03 2009-02-12 Thales Architecture radar modulaire
CN108987948A (zh) * 2017-06-05 2018-12-11 李学智 多端口次阵列及基频信号处理器所组成的天线架构
CN108987948B (zh) * 2017-06-05 2020-10-13 李学智 多端口次阵列及基频信号处理器所组成的天线架构

Also Published As

Publication number Publication date
EP0407243B1 (de) 1994-09-07
JPH03108902A (ja) 1991-05-09
DE69012238D1 (de) 1994-10-13
US5034752A (en) 1991-07-23
FR2649544B1 (fr) 1991-11-29
DE69012238T2 (de) 1995-04-13
FR2649544A1 (fr) 1991-01-11

Similar Documents

Publication Publication Date Title
EP0407243B1 (de) Mehrfachkeulen-Antennensystem mit aktiven Modulen und mit Keulenbildung durch numerische Berechnung
EP0415818B1 (de) Steuerung der Ausrichtung für Antennensystem mit elektronisch gesteuerter Auslenkung und Strahlformung durch Berechnung
EP1374340B1 (de) Umschaltbare antenne
FR2672436A1 (fr) Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
FR3076138B1 (fr) Procede de couverture multifaisceaux par regroupement de faisceaux elementaires de meme couleur, et charge utile de telecommunications pour mettre en oeuvre un tel procede
CA2134055A1 (fr) Antenne a reseau d'elements rayonnants
FR2710471A1 (fr) Diviseur de puissance micro-onde réglable.
WO2007010164A2 (fr) Antenne a conformation du lobe de rayonnement reglable
FR2748162A1 (fr) Antenne imprimee compacte pour rayonnement a faible elevation
FR2698212A1 (fr) Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.
FR3076137B1 (fr) Procede de couverture multifaisceaux par regroupement de faisceaux elementaires de couleurs differentes, et charge utile de telecommunications pour mettre en oeuvre un tel procede
EP0108670B1 (de) Speisevorrichtung für abtastende Gruppenantenne
EP3176875B1 (de) Aufbau einer aktiven hybriden rekonfigurierbaren strahlbildungsantenne
EP0285524B1 (de) Radiale Kombiniereinrichtung für elektromagnetische Wellen
FR2786962A1 (fr) Antenne active a reseau de dephasage
EP1351333A2 (de) Adaptive Gruppenantenne und Radar mit einer solchen Antenne
FR3098364A1 (fr) Constellation vectorielle multi-echelle
EP2656437A1 (de) Strahlformungsschaltung und antennensystem mit derartiger schaltung
FR2862440A1 (fr) Architecture d'antenne adaptative multifaisceaux a formation de faisceaux par le calcul
FR3113201A1 (fr) Procede de modification d'un diagramme de rayonnement d'un reseau antennaire, et radar mettant en oeuvre un tel procede
EP4184801A1 (de) Aktive mehrstrahl-gruppenantenne mit einer hybridvorrichtung zur bildung von richtstrahlen
FR3113216A1 (fr) Nœud de contrôle à constellation vectorielle octogonale pour antenne réseau
EP1233282B1 (de) Vorrichtung mit verteilten Sende- und Empfangsantennen, insbesondere für Radar mit synthetischer Emission und Strahlbildung
FR3126264A1 (fr) Antenne comprenant un réseau d’éléments rayonnants couplés à des récepteurs hétérodynes
FR2645280A1 (fr) Recepteur radar, notamment pour radar ayant une antenne a formation de faisceau par le calcul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19910617

17Q First examination report despatched

Effective date: 19930624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69012238

Country of ref document: DE

Date of ref document: 19941013

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941027

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19950607

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970522

Year of fee payment: 8

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980615

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980615

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19981122