WO2007010164A2 - Antenne a conformation du lobe de rayonnement reglable - Google Patents

Antenne a conformation du lobe de rayonnement reglable Download PDF

Info

Publication number
WO2007010164A2
WO2007010164A2 PCT/FR2006/050723 FR2006050723W WO2007010164A2 WO 2007010164 A2 WO2007010164 A2 WO 2007010164A2 FR 2006050723 W FR2006050723 W FR 2006050723W WO 2007010164 A2 WO2007010164 A2 WO 2007010164A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
radiating
antenna
conformation
radiation lobe
Prior art date
Application number
PCT/FR2006/050723
Other languages
English (en)
Other versions
WO2007010164A3 (fr
Inventor
Anthony Pallone
Eric Proteau
Thierry Gartner
Original Assignee
Jaybeam Wireless Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaybeam Wireless Sas filed Critical Jaybeam Wireless Sas
Publication of WO2007010164A2 publication Critical patent/WO2007010164A2/fr
Publication of WO2007010164A3 publication Critical patent/WO2007010164A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to an antenna for a mobile telephone system base station with adjustable radiation lobe conformation.
  • radiofrequency communication systems of the mobile telephony type, the propagation of the signal representative of the voice of a user is effected from the antenna of the mobile telephone to a base station.
  • This signal is then routed by a wired network, for example, to another base station, which transmits the signal to the correspondent.
  • Each base station also called relay antenna, covers a portion of territory called "cell”.
  • a coverage area is therefore composed of a set of cells forming a mesh network of base station.
  • These radiating elements are associated with phase shifters for adjusting their phase.
  • All these radiating elements causes the formation of a radiation lobe having a main axis that can be inclined at an angle ( ⁇ ) relative to a perpendicular to the straight line formed by a vertical alignment of radiating elements.
  • the values imposed on the amplitudes and phases of the radiating elements advantageously make it possible to impose the direction of the maximum radiation and to attenuate the secondary, undesirable, upper lobes.
  • the radiation lobe there are still areas difficult to cover by the radiation lobe. These are for example the areas located in near and below the antenna. The initial shape of the radiation lobe and the misalignment angle do not allow these areas to be covered. The radiation lobe then has radiation holes below the main lobe.
  • Antennas with adjustable inclination angle (WO05050129) are known in which all the phase-shifting elements are controlled simultaneously by means of a single command while respecting the law of relative phase variation between the elementary antennas. This unique control thus allows easy adjustment of the radiation misalignment angle. This adjustment can then be adjusted either manually at the level of the antenna itself, or motorized by incorporating a motor at the antenna and adjoining means for measuring the position.
  • the operator must therefore move successively to all sites with base stations to adjust the inclinations of the lobes of each antenna.
  • EP 1 146 592 relates to a phased array antenna comprising radiating elements aligned vertically and horizontally, forming a matrix of radiating elements. For an orientation of the desired radiation lobe, a control unit calculates the amount of phase shift to be imparted to each radiating element. The amount of phase shift to be imparted to each radiating element is then transmitted to a control unit for individually controlling the phase shifters.
  • phase shift can only be done with discrete phase shift values (22.5 °, 45 °, 90 ° or 180 °), which limits the adjustment of the shape and the inclination of the lobe of radiation.
  • realization of such an antenna is complex and expensive because of the number of phase shifters.
  • the object of the present invention is therefore to provide an antenna for adjusting the width of the radiation lobe in the horizontal plane and preferably also the angle of inclination of the radiation lobe in the vertical plane in a simpler embodiment and at a lower cost.
  • the invention relates to an antenna for a mobile phone system base station with adjustable radiation lobe conformation comprising at least one radiating device comprising:
  • phase shift means associated with the set of radiating elements
  • the set of radiating elements of the radiating device comprises only three horizontally aligned radiating elements, including a central radiating element,
  • the phase shifting means of the radiating device comprises a single phase shifter associated with the central radiating element.
  • the present invention also relates to the features that will emerge in the course of the description which follows and which will have to be considered in isolation or in all their technically possible combinations:
  • the means for controlling the phase-shift means comprises a control unit connected to the phase-shift means for controlling the phase shift imparted by the phase-shift means to the signals applied to all the associated radiating elements,
  • the antenna comprises a bus connected to a central unit and to the control unit for transmitting to the control unit control signals representative of a phase law governed by the central unit determining the conformation of the control lobe; radiation emitted,
  • the radiating device is the only radiating device of the antenna
  • the antenna comprises several radiating devices, as defined above, arranged vertically so that the radiating elements of each set of horizontally aligned radiating elements are aligned vertically,
  • the antenna comprises a power distributor supplying each radiating element with radiating devices, said power distributor comprising phase-shifting means, each phase-shift means being associated with a single radiating device,
  • the bus is a serial bus
  • bus is a parallel bus
  • the central unit comprises an algorithm calculating the phase shift required for each of the phase shifters of the radiating devices as a function of the selected phase law, the central unit comprises a residual memory comprising at least one preset standard phase law,
  • the central unit comprises a manual control for selecting at least one preset phase law
  • the central unit comprises an interface for addressing and controlling phase shifters
  • a phase shifter comprises a phase shifter element having an input transmission line, an output transmission line, a mobile radio coupling means of the input and output transmission lines and a motor enabling the displacement of the transmission means.
  • mobile radio coupling said motor being controlled by the control unit
  • phase shifter is a phase shifter of the coaxial type
  • phase shifter is a phase shifter of flat-line type
  • phase shifter is an electronic phase shifter.
  • FIG. 2 represents a particular embodiment of the invention with a combination of alignments of vertical and horizontal radiating elements;
  • FIG. 3 represents a phase shifter of the coaxial type;
  • FIG. 4 represents a radiation pattern of a lobe without a "null fill" in a vertical section obtained for an alignment of radiating elements in the vertical and horizontal planes;
  • FIG. 5 shows another radiation pattern of a lobe with "null fill" in a vertical section obtained for an alignment of radiating elements in the vertical and horizontal planes;
  • FIG. 6 represents a radiation pattern of a lobe having an aperture angle of 47 ° to -3 dB, in a horizontal section obtained for an alignment of 3 radiating elements in the horizontal plane;
  • FIG. 7 represents a radiation pattern of a lobe having an opening angle of 78 ° to -3 dB, in a horizontal section obtained for an alignment of 3 radiating elements in the horizontal plane;
  • FIG. 1 represents an antenna for a mobile telephone system base station with conformation of the adjustable radiation lobe according to one particular embodiment of the invention.
  • This antenna comprises a radiating device 40 comprising a set of radiating elements 30 aligned along a horizontal axis 7.
  • the radiating device 40 is the only radiating device of the antenna.
  • the set of radiating elements 30 of the radiating device 40 comprises only three radiating elements 21, 22, 23 aligned horizontally, including a central radiating element 23 and two radiating end elements 21 and 22.
  • the radiating elements 21, 22, 23 are generally plate-shaped with two flat surfaces or dipole type.
  • the radiating device 40 includes a phase shift means associated with the set of radiating elements 30.
  • the phase shifting means of the radiating device 40 comprises a single phase-shifter 2 associated with the central radiating element 23.
  • the radiating device 40 also comprises means for controlling the phase shift means.
  • the control means may comprise a control unit 8 connected to the phase shift means for controlling the phase shift imparted by the phase shift means to the signals applied to all the associated radiating elements.
  • a bus 9 connects a central unit 10 to the control unit 8 to transmit to the control unit 8 control signals representative of a phase law governed by the central unit 10 determining the conformation of the radiation lobe 3 issued.
  • the bus 9 may be a parallel or serial bus.
  • the horizontal alignment of the radiating elements 21, 22, 23 allows the adjustment of the width of the radiation lobe 3 in the horizontal plane, as shown in FIGS. 6 and 7.
  • the radiating end elements 21 and 22 disposed laterally in the set of radiating elements 30 are fed directly from the distributor 17 without interposition phase shifter, unlike the central radiating element 23, as shown in Figure 1.
  • phase shift imposed by the phase shifter 2 is relative to the signal supplied to the radiating end elements 21 and 22 not connected to a phase shifter.
  • the phase shifter 2 allows a relative phase shift of the signal supplied to the central radiating element 23 with respect to the identical signals supplied to the end radiating elements 21 and 22.
  • the control unit 8 (not shown in FIG. 1) is associated with the phase-shifter 2 for controlling the phase shift imparted by the phase-shifter 2 to the signal applied to the central radiating element 23 with respect to the end radiating elements 21 and 22.
  • the bus 9 transmits to the control unit 8 a control representative of the phase law governed by the central unit 10 determining the width of the radiation lobe 3 in the horizontal plane.
  • the radiating elements 21, 22 and 23 are 1 mm apart.
  • the frequency band used is between 1700 MHz and 2100 MHz in steps of 100 MHz (five frequencies).
  • Figure 1 allows to vary the opening of the radiation lobe in the horizontal plane in significant proportions with a single variable phase shifter 2. This brings great interest to the base station antennas.
  • the radiation patterns in the horizontal plane of Figures 6 and 7 are obtained by varying the phase (P1) of the phase shifter 2.
  • the phase remains identical for the two radiating end elements 21 and 22.
  • the radiation patterns of this horizontal alignment can give a half-power aperture (-3 dB) variable from 47 ° to 80 °. This result is obtained with a small variation of the aperture angle (approximately +/- 4 ° in the frequency band of 1700 to 2100 MHz, ie 21%).
  • the half-power aperture (-3 dB) is 47 °.
  • the “Max” indicates the radiated level, without this value being connected to a reference such as the gain of the antenna. It makes it possible to check the relative constancy of the radiated level in the frequency band, which is important for the intended application. It must remain almost constant in the frequency band used.
  • the horizontal misalignment represents the angle between the direction of the maximum of the radiation lobe and the central axis of the antenna represented by the perpendicular to the alignment of the radiating elements 21, 22 and 23.
  • the "3dB” indicates the angular aperture of the radiation lobe in the horizontal plane.
  • FIG. 7 shows radiation lobes corresponding to the five preceding frequencies in the horizontal plane and a configuration for which P1 is equal to 61 mm.
  • the half-power aperture (-3 dB) is 78 °.
  • the antenna comprises several radiating devices 40 as defined above, arranged vertically so that the radiating elements 21, 22, 23 of each set of horizontally aligned radiating elements 30 are vertically aligned according to a vertical axis 36, 37, 38.
  • Each of the horizontally aligned radiating elements 21, 22 and 23 may in fact itself constitute one of the radiating elements of a vertical alignment of radiating elements.
  • An adjustable but also adjustable angle of inclination antenna is formed which comprises a vertical alignment of radiating elements and a horizontal alignment of radiating elements forming a matrix of three-column and n-line radiating elements. "N" denotes the number of radiating devices 40 aligned vertically.
  • each radiating device 40 The central radiating elements 23 of each radiating device 40 are aligned along a vertical axis 36. Similarly, the radiating end elements 21 and 22 of each radiating device 40 are aligned along a vertical axis 37, 38, respectively.
  • Each radiating device 40 comprises a phase shift means associated with its set of radiating elements 30 aligned horizontally.
  • phase-shifting means of each radiating device 40 comprises a single phase-shifter 2 associated with the central radiating element 23.
  • a means for controlling the phase shift means comprising a control unit 8, as defined previously, is associated with each of the phase shifters 2 of each radiating device 40. This combination makes it possible to control, independently of one another, the phase shifts imparted, by each of the phase shifters 2, to the signals applied to the central radiating elements 23 of each set of associated radiating elements 30.
  • phase shifters 2 are independent of one another.
  • Each phase-shifter 2 of a radiating device 40 contributes to adjusting the width of the radiation lobe 3 in the horizontal plane.
  • the antenna comprises a power distributor 17 supplying each radiating element 21, 22, 23 radiating devices 40 (the supply of the radiating end elements 21, 22 is not shown in Figure 2 for simplification).
  • the power distributor 17 includes the amplitude distribution function for each of the radiating devices 40.
  • the amplitude distribution function is repeated n times.
  • the power distributor 17 includes phase shift means. Each phase-shifting means is associated with a single radiating device 40. A n radiating devices 40 is associated with n phase-shifting means.
  • the phase shift means of the power splitter 17 are necessary to ensure the inclination of the radiation lobe in the vertical plane.
  • Each phase-shifting means comprises a single phase shifter which is advantageously of the same type as the phase-shifters 2 of the set of radiating elements 30.
  • Each phase shifter of the power splitter 17 may be connected to one or more control means each comprising a control unit 8 connected to the phase shifter for controlling the phase shifted by the phase shifter to the signals applied to all associated radiating elements (30).
  • phase shifters of the power splitter 17 and the phase shifters 2 of each radiating device 40 are connected to a bus 9 (not shown in Figure 2 for the phase shifters of the power splitter 17 for simplification).
  • the bus 9 is connected to a central unit 10 and to each of the control units 8 for controlling the phase shifts imparted by each of the phase shifters 2 of the radiating devices 40 and each of the phase shifters of the power splitter 17 according to a phase law.
  • This phase law is governed by the central unit 10 respectively determining the conformation of the radiation lobe 3 in the horizontal plane and the angle of inclination ( ⁇ ) of the radiation lobe 3 in the vertical plane.
  • phase shifters used in the two preceding examples, can be phase shifters of the coaxial type, as represented in the example of FIG. 3.
  • phase shifters of coaxial type each comprise a phase shifter element 1 1 having an input transmission line 12 , an output transmission line 13 and a mobile radioelectric coupling means 14 of the input 12 and output 13 transmission lines.
  • a motor 15, controlled by the control unit 8, makes it possible to move the mobile radio coupling means 14.
  • This motor 15 can actuate the displacement of the mobile radioelectric coupling means 14 of a phase-shifter over a distance of + / - - 45 mm, without being limiting.
  • This displacement of +/- 45 mm corresponds to a variation of the angle of inclination of the lobe of 10 degrees.
  • the phase shifters may also be phase shifters of flat-type or electronic type, without being limiting.
  • the electronic phase shifters make it possible to generate a phase shift without means of mobile radio coupling 14.
  • a coaxial type phase-shifter comprises a coaxial cable as a phase-shifting element 14. This type of cable makes it possible to limit the overall losses of the lobe formation circuit because a cable coaxial has less losses per meter than a printed line, even if the printed circuit includes a dielectric of very good quality.
  • the length of the mobile radio coupling means 14 is varied mechanically or electromechanically.
  • the central unit 10 comprises an algorithm calculating the phase shift required for each of the phase shifters 2 of a radiating device 40 and each of the phase shifters of the power splitter 17 as a function of the selected phase law.
  • the central unit 10 also comprises a residual memory comprising at least one preset standard phase law.
  • a phase law defines an angle of inclination and a lobe shape.
  • This memory may include several predefined phase laws.
  • the shape of the lobe may therefore consist of a variety of any form depending on the geometric configuration of the area to be covered. New phase laws can be integrated into the residual memory.
  • a manual control connected to the central unit 10, makes it possible to select at least one preset phase law and stored in the residual memory.
  • the choice of the orientation and the shape of the lobe is effected in a simplified manner by means of the manual control which makes it possible to select a phase law.
  • the phase law is no longer fixed, offering great flexibility in the shape of the lobes.
  • the manual control can be replaced by a remote controlled device.
  • the areas of interest to be covered are preferably located near the antenna, under the main lobe. It is indeed advantageous to fill the radiation holes below the main lobe. It is also possible to remove unwanted side lobes above the main lobe.
  • the central unit 10 can be connected to several antennas at a distance, which makes it possible to simplify the coverage of an area comprising several antennas.
  • the CPU algorithm calculates a phase law from a selected lobe shape.
  • the algorithm calculates the phase shift required for each independent phase shifter. This phase shift corresponds to a displacement (shift) of the mobile radio coupling means 5 of the phase shifter.
  • the central unit 10 comprises an addressing and control interface 16 of the phase shifters (not shown in FIG. 2 for the phase shifters of the power splitter 17).
  • This interface 16 makes it possible to address to a well-defined phase-shifter the movement of the mobile radio-electric coupling means 5 to be performed.
  • the addressing and control interface 16 is connected to the control units 6 of the phase-shifters through the bus 9.
  • the radiation lobe 3, shown in FIGS. 4 and 5, emitted by the radiating element assemblies 30 of the vertically aligned radiating devices 40 has a main axis 4 which can be inclined at an angle ( ⁇ ) with respect to a perpendicular 6 to the alignment axis 36 of the central radiating elements 23.
  • the vertical alignment of radiating elements 21, 22, 23 of sets of radiating elements 30 allows the adjustment of the inclination angle ( ⁇ ) in the vertical plane.
  • phase shifter with a single radiating element 23 makes it easier to control the orientation of the radiation lobe and its main parameters (secondary lobe level, hole filling).
  • the following example illustrates the different possibilities of lobe shapes and angle inclinations that can be obtained in the vertical plane with the antenna described above.
  • This example relates to an antenna for a mobile phone system base station with adjustable angle of inclination and conformation of the radiation lobe comprising ten radiating devices 40 vertically aligned corresponding to the configuration of Figure 2.
  • the radiating elements 21, 22, 23 are spaced apart by 1 mm.
  • the mobile radio coupling means 14 of the input 12 and output 13 transmission lines have a linear displacement of +/- 45 mm.
  • the phases are expressed in path lengths.
  • the frequency band used is between 1700 MHz and 2100 MHz in steps of 100 MHz (five frequencies).
  • the different lobes show that the performance is not obtained only for a single frequency in the frequency range to be covered.
  • Figure 4 shows the radiation lobes in its original configuration, that is to say without modification of the phase law compared to the basic law above.
  • the main radiation lobes 3 slope down at an angle of 5 ° with secondary upper lobes 18 above.
  • FIG. 5 represents radiation lobes 3 with a modification of the phase law with respect to the basic law above. The ten phase shifters were out of phase.
  • phase shift values for each phase-shifter are not equal.
  • the radiation lobes 3 of FIG. 5 slope down by an angle of 5 ° with suppression of the upper side lobes 18 and with filling 19 of the first radiation hole below the main radiation lobe 3.
  • radiating elements comprising a double polarization, that is to say having polarization polarization access.
  • the base station antennas are frequently double cross polarizations.
  • Each polarization access of the radiating element is associated with a phase-shifter.
  • Each radiating element comprises two accesses, so two phase shifters per radiating element are required. In general, one seeks to obtain the same misalignment and the same lobe conformation for each polarization.
  • phase shifters can be connected to the same control unit. It is also possible to connect each of these two phase shifters to a respective control unit, a phase shifter per control unit.
  • control units are all connected to the same bus.
  • This configuration makes it possible to correct any radiation differences between each polarization.
  • an antenna is obtained for adjusting the angle of inclination and the shape of the radiation lobe to fill the radiation holes and eliminate the side lobes above the main lobe.
  • phase shifter by radiating device reduces the complexity and cost of the antenna.
  • the power distribution is simpler to perform and more economical in terms of power consumption.
  • the reduced number of phase shifters does not limit flexibility in tilt angle adjustment and radiation lobe conformation through the use of phase shifters with continuous phase shift values and the presence of phase shifters of the power splitter.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne une antenne pour station de base de système de téléphonie mobile à conformation du lobe de rayonnement réglable comportant au moins un dispositif rayonnant (40) comprenant un ensemble d'éléments rayonnants (30) alignés suivant un axe horizontal (7), un moyen de déphasage associé à l'ensemble d'éléments rayonnants (30), et un moyen de commande du moyen de déphasage. Selon l'invention, l'ensemble d'éléments rayonnants (30) du dispositif rayonnant (40) comporte uniquement trois éléments rayonnants (21, 22, 23) alignés horizontalement, dont un élément rayonnant central (23) et le moyen de déphasage du dispositif rayonnant (40) comporte un unique déphaseur (2) associé à l'élément rayonnant central (23).

Description

ANTENNE A CONFORMATION DU LOBE DE RAYONNEMENT
REGLABLE
La présente invention concerne une antenne pour station de base de système de téléphonie mobile à conformation du lobe de rayonnement réglable.
Dans les systèmes de communication radiofréquence, du type téléphonie mobile, la propagation du signal représentatif de la voix d'un utilisateur s'effectue de l'antenne du téléphone mobile vers une station de base. Ce signal est ensuite acheminé par un réseau filaire, par exemple, vers une autre station de base, qui transmet le signal jusqu'au correspondant. Chaque station de base, encore appelée antenne relais, couvre une portion de territoire dénommée "cellule". Une zone de couverture est donc constituée d'un ensemble de cellules formant un réseau maillé de station de base.
Dans ces réseaux, on peut rechercher à limiter la portée radio d'une antenne en dépointant vers le bas son maximum de rayonnement pour ne pas interférer avec les cellules adjacentes. Ce dépointage du maximum de rayonnement est obtenu en ajustant de manière connue les phases relatives entre les signaux électriques alimentant chaque élément rayonnant d'une antenne.
Ces éléments rayonnants sont associés à des déphaseurs permettant d'ajuster leur phase.
L'ensemble de ces éléments rayonnants entraîne la formation d'un lobe de rayonnement ayant un axe principal pouvant être incliné d'un angle (α) par rapport à une perpendiculaire à la droite formée par un alignement vertical d'éléments rayonnants.
Les valeurs imposées aux amplitudes et phases des éléments rayonnants permettent avantageusement d'imposer la direction du maximum de rayonnement et d'atténuer les lobes supérieurs secondaires, indésirables.
Cependant, il subsiste des zones difficiles à recouvrir par le lobe de rayonnement. Ce sont par exemple les zones situées à proximité et en dessous de l'antenne. La forme initiale du lobe de rayonnement et l'angle de dépointage ne permettent pas de recouvrir ces zones. Le lobe de rayonnement présente alors des trous de rayonnement en dessous du lobe principal.
On connaît des antennes à angle d'inclinaison réglable (document WO 05050129) dans lequel tous les éléments déphaseurs sont commandés simultanément au moyen d'une commande unique tout en respectant la loi de variation relative de phase entre les antennes élémentaires. Cette commande unique permet ainsi un réglage aisé de l'angle de dépointage du rayonnement. Ce réglage peut alors être ajusté soit de façon manuelle au niveau de l'antenne elle-même, soit de façon motorisée par incorporation d'un moteur au niveau de l'antenne et en lui adjoignant des moyens de mesure de la position .
Néanmoins, dans l'antenne de l'art antérieur ci-dessus, le déplacement simultané de tous les éléments déphaseurs ne permet pas d'ajuster la forme du lobe. Certaines zones restent difficiles à recouvrir.
L'opération qui consiste à combler le premier trou de rayonnement en dessous du lobe principal est communément appelée « null fill » .
Actuellement, le réglage de l'angle d'inclinaison du lobe de rayonnement des antennes pour station de base de système de téléphonie mobile est contraignant.
En effet, ces réglages dans les plans vertical ou horizontal s'effectuent directement à partir de la base, à l'aide d'un système mécanique ou électromécanique.
L'opérateur doit donc se déplacer successivement sur tous les sites disposant de station de base afin de régler les inclinaisons des lobes de rayonnement de chaque antenne.
On connaît le document EP 1 146 592 qui concerne une antenne réseau à commande de phase comportant des éléments rayonnants alignés verticalement et horizontalement, formant une matrice d'éléments rayonnants. Pour une orientation du lobe de rayonnement souhaitée, une unité de contrôle calcule la quantité de déphasage à impartir à chaque élément rayonnant. La quantité de déphasage à impartir à chaque élément rayonnant est ensuite transmise à une unité de commande permettant de commander individuellement les déphaseurs.
Néanmoins, avec une telle antenne le déphasage ne peut se faire qu'avec des valeurs discrètes de déphasage (22,5°, 45°, 90° ou 180°), ce qui limite le réglage de la forme et de l'inclinaison du lobe de rayonnement. De plus, la réalisation d'une telle antenne est complexe et coûteuse de part le nombre de déphaseurs.
L'objectif de la présente invention est donc de proposer une antenne permettant de régler la largeur du lobe de rayonnement dans le plan horizontal et de préférence en outre l'angle d'inclinaison du lobe de rayonnement dans le plan vertical dans une réalisation plus simple et à un moindre coût.
A cet effet, l'invention concerne une antenne pour station de base de système de téléphonie mobile à conformation du lobe de rayonnement réglable comportant au moins un dispositif rayonnant comprenant :
- un ensemble d'éléments rayonnants alignés suivant un axe horizontal,
- un moyen de déphasage associé à l'ensemble d'éléments rayonnants, et
- un moyen de commande du moyen de déphasage. Selon l'invention :
- l'ensemble d'éléments rayonnants du dispositif rayonnant comporte uniquement trois éléments rayonnants alignés horizontalement, dont un élément rayonnant central,
- le moyen de déphasage du dispositif rayonnant comporte un unique déphaseur associé à l'élément rayonnant central.
Dans différents modes de réalisation possibles, la présente invention concerne également les caractéristiques qui ressortiront au cours de la description qui va suivre et qui devront être considérées isolément ou selon toutes leurs combinaisons techniquement possibles :
- le moyen de commande du moyen de déphasage comprend une unité de commande reliée au moyen de déphasage pour commander le déphasage imparti par le moyen de déphasage aux signaux appliqués à l'ensemble des éléments rayonnants associés,
- l'antenne comprend un bus relié à une unité centrale et à l'unité de commande pour transmettre à l'unité de commande des signaux de commande représentatifs d'une loi de phase régie par l'unité centrale déterminant la conformation du lobe de rayonnement émis,
- le dispositif rayonnant est le seul dispositif rayonnant de l'antenne,
- l'antenne comprend plusieurs dispositifs rayonnants, tels que définis précédemment, disposés verticalement de façon à ce que les éléments rayonnants de chaque ensemble d'éléments rayonnants alignés horizontalement soient alignés verticalement,
- l'antenne comprend un répartiteur de puissance alimentant chaque élément rayonnant des dispositifs rayonnants, ledit répartiteur de puissance comportant des moyens de déphasage, chaque moyen de déphasage étant associé à un unique dispositif rayonnant,
- le bus est un bus série,
- le bus est un bus parallèle,
- l'unité centrale comprend un algorithme calculant le déphasage nécessaire pour chacun des déphaseurs des dispositifs rayonnants en fonction de la loi de phase sélectionnée, l'unité centrale comprend une mémoire résiduelle comportant au moins une loi de phase standard préétablie,
- l'unité centrale comprend une commande manuelle pour la sélection d'au moins une loi de phase préétablie,
- l'unité centrale comprend une interface d'adressage et de commande des déphaseurs, - un déphaseur comporte un élément déphaseur ayant une ligne de transmission d'entrée, une ligne de transmission de sortie, un moyen de couplage radio-électrique mobile des lignes de transmission d'entrée et de sortie et un moteur permettant le déplacement des moyens de couplage radioélectrique mobiles, ledit moteur étant commandé par l'unité de commande,
- le déphaseur est un déphaseur de type coaxial,
- le déphaseur est un déphaseur de type à lignes plates,
- le déphaseur est un déphaseur de type électronique. L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels: la figure 1 représente un mode de réalisation particulier de l'invention avec trois éléments rayonnants alignés horizontalement ;
- la figure 2 représente un mode de réalisation particulier de l'invention avec une combinaison d'alignements d'éléments rayonnants verticaux et horizontaux ; la figure 3 représente un déphaseur de type coaxial ;
- la figure 4 représente un diagramme de rayonnement d'un lobe sans « null fill » suivant une coupe verticale obtenue pour un alignement d'éléments rayonnants dans les plans vertical et horizontal ;
- la figure 5 représente un autre diagramme de rayonnement d'un lobe avec « null fill » suivant une coupe verticale obtenue pour un alignement d'éléments rayonnants dans les plans vertical et horizontal ;
- la figure 6 représente un diagramme de rayonnement d'un lobe ayant un angle d'ouverture de 47° à -3db, suivant une coupe horizontale obtenue pour un alignement de 3 éléments rayonnants dans le plan horizontal ;
- la figure 7 représente un diagramme de rayonnement d'un lobe ayant un angle d'ouverture de 78° à -3db, suivant une coupe horizontale obtenue pour un alignement de 3 éléments rayonnants dans le plan horizontal ; La figure 1 représente une antenne pour station de base de système de téléphonie mobile à conformation du lobe de rayonnement réglable selon un mode de réalisation particulier de l'invention .
Cette antenne comprend un dispositif rayonnant 40 comportant un ensemble d'éléments rayonnants 30 alignés suivant un axe horizontal 7.
Dans cet exemple, le dispositif rayonnant 40 est le seul dispositif rayonnant de l'antenne.
L'ensemble d'éléments rayonnants 30 du dispositif rayonnant 40 comporte uniquement trois éléments rayonnants 21 , 22, 23 alignés horizontalement, dont un élément rayonnant central 23 et deux éléments rayonnants d'extrémité 21 et 22.
Les éléments rayonnants 21 , 22, 23 sont généralement en forme de plaque avec deux surfaces planes ou de type dipôle.
Le dispositif rayonnant 40 comporte un moyen de déphasage associé à l'ensemble d'éléments rayonnants 30.
Le moyen de déphasage du dispositif rayonnant 40 comporte un unique déphaseur 2 associé à l'élément rayonnant central 23.
Le dispositif rayonnant 40 comporte également un moyen de commande du moyen de déphasage.
Le moyen de commande peut comprendre une unité de commande 8 reliée au moyen de déphasage pour commander le déphasage imparti par le moyen de déphasage aux signaux appliqués à l'ensemble des éléments rayonnants 30 associés.
Un bus 9 relie une unité centrale 10 à l'unité de commande 8 pour transmettre à l'unité de commande 8 des signaux de commande représentatifs d'une loi de phase régie par l'unité centrale 10 déterminant la conformation du lobe de rayonnement 3 émis.
Le bus 9 peut être un bus parallèle ou série.
L'alignement horizontal des éléments rayonnants 21 , 22, 23 permet le réglage de la largeur du lobe de rayonnement 3 dans le plan horizontal, comme représenté sur les figures 6 et 7. Concernant l'alimentation des éléments rayonnants d'une antenne, la phase relative entre les signaux des différents éléments rayonnants est très importante.
Les éléments rayonnants d'extrémité 21 et 22 disposés latéralement dans l'ensemble d'éléments rayonnants 30 sont alimentés directement depuis le répartiteur 17 sans interposition de déphaseur, contrairement à l'élément rayonnant central 23, comme le montre la figure 1 .
Le déphasage imposé par le déphaseur 2 est relatif au signal fourni aux éléments rayonnants d'extrémité 21 et 22 non reliés à un déphaseur.
Le déphaseur 2 permet un déphasage relatif du signal fourni à l'élément rayonnant central 23 par rapport aux signaux identiques fournis aux éléments rayonnants d'extrémité 21 et 22.
L'unité de commande 8 (non représentée sur la figure 1 ) est associée au déphaseur 2 pour commander le déphasage imparti par le déphaseur 2 au signal appliqué à l'élément rayonnant central 23 par rapport aux éléments rayonnants d'extrémité 21 et 22.
Le bus 9 transmet à l'unité de commande 8 une commande représentative de la loi de phase régie par l'unité centrale 10 déterminant la largeur du lobe de rayonnement 3 dans le plan horizontal .
Avec trois éléments rayonnants alignés horizontalement, il est possible d'obtenir un lobe de 45° à plus de 80° en ne réglant que la phase.
Les éléments rayonnants 21 , 22 et 23 sont distants de 1 15 mm .
La bande de fréquences utilisée est comprise entre 1700 MHz et 2100 MHz par pas de 100 MHz (cinq fréquences).
Pour cet exemple, on a également considéré une loi d'amplitude et une loi de phase fixes pour un angle d'inclinaison de 0°.
Données pour la loi d'amplitudes fixe:
Figure imgf000010_0001
Ainsi, l'arrangement de la figure 1 permet de faire varier l'ouverture du lobe de rayonnement dans le plan horizontal dans des proportions significatives avec un seul déphaseur 2 variable. Cela apporte un grand intérêt pour les antennes de station de base.
Les diagrammes de rayonnement dans le plan horizontal des figures 6 et 7 sont obtenus en faisant varier la phase (P1 ) du déphaseur 2. La phase reste donc identique pour les deux éléments rayonnants d'extrémité 21 et 22.
Pour une loi d'amplitude et une phase donnée (P1 ), les diagrammes de rayonnement de cet alignement horizontal peuvent donner une ouverture à demi puissance (-3 dB) variable de 47° à 80°. Ce résultat est obtenu avec une faible variation de l'angle d'ouverture (environ +/- 4° dans la bande de fréquence de 1700 à 2100 MHz, soit 21 %).
La figure 6 représente des lobes de rayonnement correspondant aux cinq fréquences citées ci-dessus dans le plan horizontal et dans leur configuration d'origine (P1 =0).
L'ouverture à demi puissance (-3 dB) est de 47°.
Le tableau suivant donne quelques paramètres représentant les performances obtenues pour les 5 fréquences :
Figure imgf000010_0002
Figure imgf000011_0001
Le « Max » indique le niveau rayonné, sans que cette valeur soit reliée à une référence comme par exemple le gain de l'antenne. I l permet de vérifier la relative constance du niveau rayonné dans la bande de fréquence, ce qui est important pour l'application envisagée. Il doit rester quasiment constant dans la bande de fréquences utilisée.
Le dépointage horizontal (ou « squint ») représente l'angle entre la direction du maximum du lobe de rayonnement et l'axe central de l'antenne représenté par la perpendiculaire à l'alignement des éléments rayonnants 21 , 22 et 23.
Le « 3dB » indique l'ouverture angulaire du lobe de rayonnement dans le plan horizontal.
La figure 7 représente des lobes de rayonnement correspondant aux cinq fréquences précédentes dans le plan horizontal et une configuration pour laquelle P1 est égal à 61 mm .
L'ouverture à demi puissance (-3 dB) est de 78°.
Le tableau suivant donne quelques paramètres représentant les performances obtenues pour les cinq fréquences :
Figure imgf000011_0002
Figure imgf000012_0001
Dans un autre mode de réalisation possible, l'antenne comprend plusieurs dispositifs rayonnants 40 tels que définis précédemment, disposés verticalement de façon à ce que les éléments rayonnants 21 , 22, 23 de chaque ensemble d'éléments rayonnants 30 alignés horizontalement soient alignés verticalement selon un axe vertical 36, 37, 38.
Chacun des éléments rayonnants 21 , 22 et 23 alignés horizontalement peut en fait lui-même constituer un des éléments rayonnants d'un alignement vertical d'éléments rayonnants.
Ce mode de réalisation est représenté sur la figure 2.
On obtient une antenne à conformation du lobe de rayonnement réglable mais également à angle d'inclinaison réglable comprenant un alignement vertical d'éléments rayonnants et un alignement horizontal d'éléments rayonnants formant une matrice d'éléments rayonnants à trois colonnes et n lignes. « n » désigne le nombre de dispositifs rayonnants 40 alignés verticalement.
Les éléments rayonnants centraux 23 de chaque dispositif rayonnant 40 sont alignés selon un axe vertical 36. De même, les éléments rayonnants d'extrémité 21 et 22 de chaque dispositif rayonnant 40 sont alignés selon un axe vertical 37, 38, respectivement.
Chaque dispositif rayonnant 40 comprend un moyen de déphasage associé à son ensemble d'éléments rayonnants 30 alignés horizontalement.
Le moyen de déphasage de chaque dispositif rayonnant 40 comporte un unique déphaseur 2 associé à l'élément rayonnant central 23.
Un moyen de commande du moyen de déphasage comprenant une unité de commande 8, telle que définie précédemment, est associé à chacun des déphaseurs 2 de chaque dispositif rayonnant 40. Cette association permet de commander indépendamment les uns des autres les déphasages impartis, par chacun des déphaseurs 2, aux signaux appliqués aux éléments rayonnants centraux 23 de chaque ensemble d'éléments rayonnants 30 associés.
Les déphaseurs 2 sont indépendants les un des autres.
Chaque déphaseur 2 d'un dispositif rayonnant 40 contribue à l'ajustement de la largeur du lobe de rayonnement 3 dans le plan horizontal .
L'antenne comprend un répartiteur de puissance 17 alimentant chaque élément rayonnant 21 , 22, 23 des dispositifs rayonnants 40 (l'alimentation des éléments rayonnants d'extrémité 21 , 22 n'est pas représentée sur la figure 2 par simplification).
Comme dans le mode de réalisation précédent et comme représenté sur la figure 1 , le répartiteur de puissance 17 inclut la fonction de répartition d'amplitude pour chacun des dispositifs rayonnants 40.
Dans le mode de réalisation, représenté sur la figure 2, et comprenant n dispositifs rayonnants 40 alignés verticalement, la fonction de répartition d'amplitude est répétée n fois.
Le répartiteur de puissance 17 comporte des moyens de déphasage. Chaque moyen de déphasage est associé à un unique dispositif rayonnant 40. A n dispositifs rayonnants 40 est associé n moyens de déphasage.
Les moyens de déphasage du répartiteur de puissance 17 sont nécessaires pour assurer l'inclinaison du lobe de rayonnement dans le plan vertical .
Chaque moyen de déphasage comprend un seul déphaseur qui est avantageusement du même type que les déphaseurs 2 de l'ensemble d'éléments rayonnants 30.
Chaque déphaseur du répartiteur de puissance 17 peut être relié à un ou plusieurs moyens de commande comprenant chacun une unité de commande 8 reliée au déphaseur pour commander le déphasage imparti par le déphaseur aux signaux appliqués à l'ensemble des éléments rayonnants (30) associés.
Les déphaseurs du répartiteur de puissance 17 et les déphaseurs 2 de chaque dispositif rayonnant 40 sont reliés à un bus 9 (non représenté sur la figure 2 pour les déphaseurs du répartiteur de puissance 17 par simplification).
Le bus 9 est relié à une unité centrale 10 et à chacune des unités de commande 8 permettant de commander les déphasages impartis par chacun des déphaseurs 2 des dispositifs rayonnants 40 et chacun des déphaseurs du répartiteur de puissance 17 suivant une loi de phase. Cette loi de phase est régie par l'unité centrale 10 déterminant respectivement la conformation du lobe de rayonnement 3 dans le plan horizontal et l'angle d'inclinaison (α) du lobe de rayonnement 3 dans le plan vertical .
Les déphaseurs, utilisé dans les deux exemples précédents, peuvent être des déphaseurs de type coaxial, comme représenté sur l'exemple de la figure 3. Ces déphaseurs de type coaxial comportent chacun un élément déphaseur 1 1 ayant une ligne de transmission d'entrée 12, une ligne de transmission de sortie 13 et un moyen de couplage radio-électrique mobile 14 des lignes de transmission d'entrée 12 et de sortie 13.
Un moteur 15, commandé par l'unité de commande 8, permet le déplacement des moyens de couplage radioélectrique mobiles 14. Ce moteur 15 peut actionner le déplacement du moyen de couplage radio-électrique mobile 14 d'un déphaseur sur une distance de +/- 45 mm, sans être limitatif. Ce déplacement de +/- 45 mm correspond à une variation de l'angle d'inclinaison du lobe de 10 degrés.
Les déphaseurs peuvent être également des déphaseurs de type à lignes plates ou de type électronique, sans être limitatif. Les déphaseurs de type électronique permettent de générer un déphasage sans moyen de couplage radio-électrique mobile 14.
Un déphaseur de type coaxial comprend un câble coaxial comme élément déphaseur 14. Ce type de câble permet de limiter les pertes globales du circuit de formation de lobe car un câble coaxial présente moins de pertes au mètre qu'une ligne imprimée, même si le circuit imprimé comprend un diélectrique de très bonne qualité.
Pour faire varier la phase, on fait varier de manière mécanique ou électromécanique la longueur du moyen de couplage radio- électrique mobile 14.
L'unité centrale 10 comprend un algorithme calculant le déphasage nécessaire pour chacun des déphaseurs 2 d'un dispositif rayonnant 40 et chacun des déphaseurs du répartiteur de puissance 17 en fonction de la loi de phase sélectionnée.
L'unité centrale 10 comprend également une mémoire résiduelle comportant au moins une loi de phase standard préétablie. Une loi de phase définit un angle d'inclinaison et une forme de lobe. Cette mémoire peut comprendre plusieurs lois de phase prédéfinies. La forme du lobe peut donc consister en une variété de forme quelconque selon la configuration géométrique de la zone à recouvrir. De nouvelles lois de phase peuvent être intégrées dans la mémoire résiduelle.
Une commande manuelle, reliée à l'unité centrale 10, permet de sélectionner au moins une loi de phase préétablie et enregistrée dans la mémoire résiduelle. Le choix de l'orientation et de la forme du lobe s'opère de façon simplifiée à l'aide de la commande manuelle qui permet de sélectionner une loi de phase. La loi de phase n'est donc plus fixée offrant une grande flexibilité dans la forme des lobes.
La commande manuelle peut être remplacée par un dispositif commandé à distance.
Les zones intéressantes à recouvrir se situent préférentiellement à proximité de l'antenne, sous le lobe principal. I l est en effet avantageux de combler les trous de rayonnement en dessous du lobe principal . Il est aussi possible de supprimer les lobes secondaires indésirables au dessus du lobe principal.
L'unité centrale 10 peut être reliée à plusieurs antennes à distance ce qui permet de simplifier la couverture d'une zone comportant plusieurs antennes. L'algorithme de l'unité centrale 10 calcule une loi de phase à partir d'une forme de lobe sélectionnée. L'algorithme permet de calculer le déphasage nécessaire pour chaque déphaseur indépendant. Ce déphasage correspond à un déplacement (shift) du moyen de couplage radio-électrique mobile 5 du déphaseur. La loi de phase est calculée à partir d'une loi d'amplitude et d'une loi de phase prédéfinies au départ (shift=O).
L'unité centrale 10 comprend une interface d'adressage et de commande 16 des déphaseurs (non représentée sur la figure 2 pour les déphaseurs du répartiteur de puissance 17). Cette interface 16 permet d'adresser à un déphaseur bien identifié, le déplacement du moyen de couplage radio-électrique mobile 5 à effectuer.
L'interface d'adressage et de commande 16 est reliée aux unités de commande 6 des déphaseurs au travers du bus 9.
Le lobe de rayonnement 3, représenté sur les figures 4 et 5, émis par les ensembles d'éléments rayonnants 30 des dispositifs rayonnants 40 alignés verticalement présente un axe principal 4 pouvant être incliné d'un angle (α) par rapport à une perpendiculaire 6 à l'axe d'alignement 36 des éléments rayonnants centraux 23.
L'alignement vertical d'éléments rayonnants 21 , 22, 23 des ensembles d'éléments rayonnants 30 permet le réglage de l'angle d'inclinaison (α) dans le plan vertical .
L'association d'un déphaseur avec un seul élément rayonnant 23 rend le contrôle de l'orientation du lobe de rayonnement et de ses principaux paramètres (niveau de lobes secondaires, comblement de trous) plus aisé.
L'exemple qui suit illustre les différentes possibilités de formes de lobes et d'inclinaisons d'angle que l'on peut obtenir dans le plan vertical avec l'antenne décrite ci-dessus.
Cet exemple concerne une antenne pour station de base de système de téléphonie mobile à angle d'inclinaison et conformation du lobe de rayonnement réglables comprenant dix dispositifs rayonnants 40 alignés verticalement correspondant à la configuration de la figure 2.
Les éléments rayonnants 21 , 22, 23 sont distants de 1 15 mm .
Les moyens de couplage radio-électrique mobile 14 des lignes de transmission d'entrée 12 et de sortie 13 ont un déplacement linéaire de +/- 45 mm . Les phases sont exprimées en longueurs de trajet.
La bande de fréquences utilisée est comprise entre 1700 MHz et 2100 MHz par pas de 100 MHz (cinq fréquences).
Pour ces exemples, on a considéré une loi d'amplitude fixe et une loi de phase fixe pour un dépointage de 5°.
Les différentes possibilités (inclinaison de l'angle du lobe, suppression des lobes supérieurs, comblement des trous de rayonnement), dans le plan vertical, sont représentées sur des diagrammes de rayonnement (figures 4 et 5) pour les 5 fréquences (tracés superposés de 5 lobes).
De telles performances sont obtenues en faisant varier uniquement la phase des déphaseurs.
Les diagrammes de rayonnement des figures 4 et 5 sont représentés dans un plan vertical.
Les différents lobes montrent que la performance n'est pas obtenue que pour une seule fréquence dans la gamme de fréquences à couvrir.
La figure 4 représente les lobes de rayonnement dans sa configuration d'origine, c'est-à-dire sans modification de la loi de phase par rapport à la loi de base ci-dessus.
Les lobes de rayonnement principaux 3 présentent une inclinaison vers le bas d'un angle de 5° avec des lobes supérieurs secondaires 18 au dessus.
Les lobes supérieurs 18 sont indésirables. La suppression (ou forte réduction) des niveaux des lobes secondaires dans un secteur angulaire au dessus du lobe principal (en général 20°) est une performance demandée aux antennes de station de base. La figure 5 représente des lobes de rayonnement 3 avec une modification de la loi de phase par rapport à la loi de base ci- dessus. Les dix déphaseurs ont été déphasés.
Les valeurs de déphasages pour chaque déphaseur ne sont pas égales.
Les lobes de rayonnement 3 de la figure 5 présentent une inclinaison vers le bas d'un angle de 5° avec une suppression des lobes secondaires supérieurs 18 et avec un comblement 19 du premier trou de rayonnement en dessous du lobe de rayonnement principal 3.
I l est également possible d'utiliser des éléments rayonnants comprenant une double polarisation, c'est-à-dire disposant d'un accès de polarisation par polarisation . En effet, les antennes de station de base sont fréquemment à double polarisations croisées.
Chaque accès de polarisation de l'élément rayonnant est associé à un déphaseur. Chaque élément rayonnant comprend deux accès, il faut donc deux déphaseurs par élément rayonnant. En général, on cherche à obtenir le même dépointage et la même conformation de lobe pour chaque polarisation .
Ces deux déphaseurs peuvent être reliés à la même unité de commande. Il est également possible de relier chacun de ces deux déphaseurs à une unité de commande respective, soit un déphaseur par unité de commande.
Ces unités de commande sont toutes reliées au même bus.
Cette configuration permet de corriger d'éventuels écarts de rayonnement entre chaque polarisation .
Ainsi, on obtient une antenne permettant de régler l'angle d'inclinaison et la forme du lobe de rayonnement pour combler les trous de rayonnement et éliminer les lobes secondaires au dessus du lobe principal.
L'utilisation d'un déphaseur par dispositif rayonnant réduit la complexité et le coût de l'antenne. La répartition de puissance est plus simple à réaliser et plus économique en terme de consommation électrique. Le nombre réduit de déphaseurs ne limite pas la flexibilité dans le réglage des angles d'inclinaison et la conformation du lobe de rayonnement grâce à l'utilisation de déphaseurs présentant des valeurs de déphasage continue et à la présence des déphaseurs du répartiteur de puissance.

Claims

REVEND ICATIONS
1 . Antenne pour station de base de système de téléphonie mobile à conformation du lobe de rayonnement réglable comportant au moins un dispositif rayonnant (40) comprenant :
- un ensemble d'éléments rayonnants (30) alignés suivant un axe horizontal (7),
- un moyen de déphasage associé à l'ensemble d'éléments rayonnants (30), et
- un moyen de commande du moyen de déphasage, antenne caractérisée en ce que :
- l'ensemble d'éléments rayonnants (30) du dispositif rayonnant (40) comporte uniquement trois éléments rayonnants (21 , 22, 23) alignés horizontalement, dont un élément rayonnant central (23),
- le moyen de déphasage du dispositif rayonnant (40) comporte un unique déphaseur (2) associé à l'élément rayonnant central (23).
2. Antenne à conformation du lobe de rayonnement réglable selon la revendication 1 , caractérisée en ce que :
- le moyen de commande du moyen de déphasage comprend une unité de commande (8) reliée au moyen de déphasage pour commander le déphasage imparti par le moyen de déphasage aux signaux appliqués à l'ensemble des éléments rayonnants (30) associés,
- l'antenne comprend un bus (9) relié à une unité centrale (10) et à l'unité de commande (8) pour transmettre à l'unité de commande (8) des signaux de commande représentatifs d'une loi de phase régie par l'unité centrale (10) déterminant la conformation du lobe de rayonnement (3) émis.
3. Antenne à conformation du lobe de rayonnement réglable selon la revendication 1 ou 2, caractérisée en ce que le dispositif rayonnant (40) est le seul dispositif rayonnant de l'antenne.
4. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglable caractérisée en ce qu'elle comprend plusieurs dispositifs rayonnants (40) tels que définis selon la revendication 1 ou 2, disposés verticalement de façon à ce que les éléments rayonnants (21 , 22, 23) de chaque ensemble d'éléments rayonnants (30) alignés horizontalement soient alignés verticalement.
5. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglable selon la revendication 4, caractérisée en ce qu'elle comprend un répartiteur de puissance (17) alimentant chaque élément rayonnant (21 , 22, 23) des dispositifs rayonnants (40), ledit répartiteur de puissance (17) comportant des moyens de déphasage, chaque moyen de déphasage étant associé à un unique dispositif rayonnant (40).
6. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 2 à 5, caractérisée en ce que le bus (9) est un bus série.
7. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 2 à 5, caractérisée en ce que le bus (9) est un bus parallèle.
8. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 2 à 7, caractérisée en ce que l'unité centrale (10) comprend un algorithme calculant le déphasage nécessaire pour chacun des déphaseurs (2) des dispositifs rayonnants (40) en fonction de la loi de phase sélectionnée.
9. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 2 à 8, caractérisée en ce que l'unité centrale (10) comprend une mémoire résiduelle comportant au moins une loi de phase standard préétablie.
10. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon la revendication 9, caractérisée en ce que l'unité centrale (10) comprend une commande manuelle pour la sélection d'au moins une loi de phase préétablie.
1 1 . Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 2 à 10, caractérisée en ce que l'unité centrale (10) comprend une interface d'adressage et de commande (16) des déphaseurs (2).
12. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon l'une quelconque des revendications 1 à 1 1 , caractérisée en ce qu'un déphaseur (2) comporte un élément déphaseur (1 1 ) ayant une ligne de transmission d'entrée (12), une ligne de transmission de sortie (13), un moyen de couplage radio-électrique mobile (14) des lignes de transmission d'entrée (12) et de sortie (13) et un moteur (15) permettant le déplacement des moyens de couplage radioélectrique mobiles (14), ledit moteur (15) étant commandé par l'unité de commande (8).
13. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon la revendication 12, caractérisée en ce que le déphaseur (2) est un déphaseur de type coaxial.
14. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon la revendication 12, caractérisée en ce que le déphaseur (2) est un déphaseur de type à lignes plates.
15. Antenne à angle d'inclinaison et conformation du lobe de rayonnement réglables selon la revendication 12, caractérisée en ce que le déphaseur (2) est un déphaseur de type électronique.
PCT/FR2006/050723 2005-07-18 2006-07-17 Antenne a conformation du lobe de rayonnement reglable WO2007010164A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552229A FR2888672B1 (fr) 2005-07-18 2005-07-18 Antenne a angle d'inclinaison et conformation du lobe de rayonnement reglables
FR0552229 2005-07-18

Publications (2)

Publication Number Publication Date
WO2007010164A2 true WO2007010164A2 (fr) 2007-01-25
WO2007010164A3 WO2007010164A3 (fr) 2007-04-12

Family

ID=36297242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050723 WO2007010164A2 (fr) 2005-07-18 2006-07-17 Antenne a conformation du lobe de rayonnement reglable

Country Status (2)

Country Link
FR (1) FR2888672B1 (fr)
WO (1) WO2007010164A2 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
US9872949B2 (en) 2013-02-01 2018-01-23 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US10561776B2 (en) 2013-02-01 2020-02-18 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US10695481B2 (en) 2011-08-02 2020-06-30 Medtronic, Inc. Hemodialysis system having a flow path with a controlled compliant volume
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US10857277B2 (en) 2011-08-16 2020-12-08 Medtronic, Inc. Modular hemodialysis system
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
CN113708091A (zh) * 2021-08-30 2021-11-26 中信科移动通信技术股份有限公司 波束宽度可调天线
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
EP4002580A1 (fr) * 2020-11-17 2022-05-25 CommScope Technologies LLC Antenne et procédés de fabrication et de fonctionnement associés

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912575B1 (fr) * 2007-02-09 2009-04-10 Jaybeam Wireless Sas Soc Par A Boitier de systeme d'amplification pour antenne, systeme d'amplification pour antenne et antenne de mat integrant un tel systeme.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160581A1 (fr) * 1984-02-24 1985-11-06 Thomson-Csf Antenne réseau et radar de sensibilité réduite au brouillage
US5107273A (en) * 1981-05-11 1992-04-21 The United States Of America As Represented By The Secretary Of The Army Adaptive steerable null antenna processor with null indicator
GB2325785A (en) * 1996-08-28 1998-12-02 Matsushita Electric Ind Co Ltd Directivity control antenna apparatus
EP1146592A1 (fr) * 1998-12-24 2001-10-17 NEC Corporation Antenne en reseau a elements en phase et procede de fabrication
US6421025B1 (en) * 1998-10-19 2002-07-16 Nauchno-Issledovatelsky Electromekhanichesky Institut Antenna for small-dimension stations for detecting and tracking targets and rockets
WO2003036290A1 (fr) * 2001-09-06 2003-05-01 Genomic Profiling Systems, Inc. Methode de detection de molecules rapide et precise
US20040038714A1 (en) * 2000-07-10 2004-02-26 Daniel Rhodes Cellular Antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107273A (en) * 1981-05-11 1992-04-21 The United States Of America As Represented By The Secretary Of The Army Adaptive steerable null antenna processor with null indicator
EP0160581A1 (fr) * 1984-02-24 1985-11-06 Thomson-Csf Antenne réseau et radar de sensibilité réduite au brouillage
GB2325785A (en) * 1996-08-28 1998-12-02 Matsushita Electric Ind Co Ltd Directivity control antenna apparatus
US6421025B1 (en) * 1998-10-19 2002-07-16 Nauchno-Issledovatelsky Electromekhanichesky Institut Antenna for small-dimension stations for detecting and tracking targets and rockets
EP1146592A1 (fr) * 1998-12-24 2001-10-17 NEC Corporation Antenne en reseau a elements en phase et procede de fabrication
US20040038714A1 (en) * 2000-07-10 2004-02-26 Daniel Rhodes Cellular Antenna
WO2003036290A1 (fr) * 2001-09-06 2003-05-01 Genomic Profiling Systems, Inc. Methode de detection de molecules rapide et precise

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722636B2 (en) 2011-08-02 2020-07-28 Medtronic, Inc. Hemodialysis system having a flow path with a controlled compliant volume
US10695481B2 (en) 2011-08-02 2020-06-30 Medtronic, Inc. Hemodialysis system having a flow path with a controlled compliant volume
US10857277B2 (en) 2011-08-16 2020-12-08 Medtronic, Inc. Modular hemodialysis system
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US9872949B2 (en) 2013-02-01 2018-01-23 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US11786645B2 (en) 2013-02-01 2023-10-17 Mozarc Medical Us Llc Fluid circuit for delivery of renal replacement therapies
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US10532141B2 (en) 2013-02-01 2020-01-14 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US10561776B2 (en) 2013-02-01 2020-02-18 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
US10420872B2 (en) 2014-12-10 2019-09-24 Medtronic, Inc. Degassing system for dialysis
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US10195327B2 (en) 2014-12-10 2019-02-05 Medtronic, Inc. Sensing and storage system for fluid balance
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
EP4002580A1 (fr) * 2020-11-17 2022-05-25 CommScope Technologies LLC Antenne et procédés de fabrication et de fonctionnement associés
US11949166B2 (en) 2020-11-17 2024-04-02 Commscope Technologies Llc Antenna and methods for manufacturing and operating the same
CN113708091A (zh) * 2021-08-30 2021-11-26 中信科移动通信技术股份有限公司 波束宽度可调天线
CN113708091B (zh) * 2021-08-30 2023-10-31 中信科移动通信技术股份有限公司 波束宽度可调天线

Also Published As

Publication number Publication date
FR2888672A1 (fr) 2007-01-19
WO2007010164A3 (fr) 2007-04-12
FR2888672B1 (fr) 2011-05-27

Similar Documents

Publication Publication Date Title
WO2007010164A2 (fr) Antenne a conformation du lobe de rayonnement reglable
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP1723693B1 (fr) Antenne a depointage variable comprenant au moins un element dephaseur
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP2194602B1 (fr) Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP0520851A1 (fr) Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
FR2790142A1 (fr) Antenne a tilt reglable
FR2719948A1 (fr) Antenne multi-faisceaux pour la réception de micro-ondes émanant de plusieurs satellites.
FR2993716A1 (fr) Antenne d'emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d'antennes et systeme de telecommunication par satellite comportant une telle antenne
CA2290676A1 (fr) Antenne pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP1026775B1 (fr) Système d'antenne de téléphone mobile pour satellite et téléphone mobile muni de ce système d'antenne
EP1010214B1 (fr) Antenne pour satellite a defilement
EP2009735A1 (fr) Antenne a diversité de polarisation pour la transmission et/ou la reception de signaux audio et/ou video
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
WO2021074505A1 (fr) Antenne-reseau
WO2004017453A1 (fr) Dephaseur capable de variation de phase continue
FR2958086A1 (fr) Element rayonnant de type pave double mode a couverture angulaire etendue, utilisable en reseau
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
WO2023078736A1 (fr) Plateforme satellite et procédé de reconfiguration du faisceau électromagnétique d'une telle plateforme satellite
FR3111480A1 (fr) Antenne multimode, multiport et multistandard pour système de communication adaptable
FR3117686A1 (fr) Réseau antennaire à rayonnement directif

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06794478

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06794478

Country of ref document: EP

Kind code of ref document: A2