EP0406173B1 - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
EP0406173B1
EP0406173B1 EP90810472A EP90810472A EP0406173B1 EP 0406173 B1 EP0406173 B1 EP 0406173B1 EP 90810472 A EP90810472 A EP 90810472A EP 90810472 A EP90810472 A EP 90810472A EP 0406173 B1 EP0406173 B1 EP 0406173B1
Authority
EP
European Patent Office
Prior art keywords
heating boiler
boiler according
jacket
flue gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90810472A
Other languages
German (de)
French (fr)
Other versions
EP0406173A2 (en
EP0406173A3 (en
Inventor
Jörg Füllemann
Heinrich Boner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuellemann Patent AG
Original Assignee
Fuellemann Patent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuellemann Patent AG filed Critical Fuellemann Patent AG
Priority to AT90810472T priority Critical patent/ATE75024T1/en
Publication of EP0406173A2 publication Critical patent/EP0406173A2/en
Publication of EP0406173A3 publication Critical patent/EP0406173A3/en
Application granted granted Critical
Publication of EP0406173B1 publication Critical patent/EP0406173B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • F24H9/0031Guiding means in combustion gas channels with means for changing or adapting the path of the flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/282Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with flue gas passages built-up by coaxial water mantles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0036Dispositions against condensation of combustion products

Definitions

  • the invention relates to a boiler, in particular for use with a multi-stage or modulating burner, with a heat exchange space, a water jacket surrounding it, which has an outer wall on an inner wall, and a further water jacket arranged in the heat exchange space and extending over part of the length of the Extends heat exchange space and thus forms an intermediate space and encases an interior.
  • French Patent 2,154,347 describes a boiler in which two cylindrical water jackets are arranged concentrically to one another.
  • the inner space encased by the inner water jacket forms the burner chamber while the space between the water jackets serves as a flue gas duct.
  • This boiler is relatively complicated to set up. Manufacturing is therefore relatively expensive and service work is difficult to carry out and time consuming.
  • the risk of cold spots is particularly disadvantageous, in which condensation of pollutants from the flue gases can occur with reduced burner output, which then leads to corrosion problems.
  • This boiler is therefore unsuitable for operation with a multi-stage burner.
  • the previously known boiler also sees no means of hot water preparation, i.e. for so-called hot water preparation.
  • the boiler should also be suitable for use with a multi-stage or modulating burner without the risk of corrosion consists. Furthermore, the boiler should have low standstill losses and should also be suitable for treating hot water.
  • this object is achieved in a boiler of the type mentioned at the outset in that, in addition to the outlet leading from the intermediate space, an outlet leading from the interior for flue gases is provided and in that means for regulating a flue gas flow from the outlet of the intermediate space and / or for regulating a flue gas flow from the outlet of the interior are provided. If the means for regulating the flue gas flows permit a flue gas flow both from the intermediate space and from the interior, the boiler can be operated at full load. The flue gases can then flow through the space between the two water jackets as well as through the interior of the further water jacket and thereby transfer enough heat to these water jackets that they leave the boiler with a relatively low flue gas temperature.
  • the boiler is only operated at partial load, which can be, for example, thirty percent of the full load, the outlet from the intermediate space is closed, so that the flue gases can only flow through the interior. There is then no danger that they will cool down too much and that condensation problems occur in the rear part of the boiler.
  • the boiler is therefore well suited for use with a two-stage burner.
  • a modulating burner that can be controlled continuously from minimum to full load. In this case, it is advisable to choose a motor drive for the flue gas flap so that it can also be regulated continuously. It is therefore possible to regulate the size of the flue gas flow flowing through the intermediate space.
  • the present invention also has the advantage that the same boiler size can be used for a relatively large output range.
  • the same boiler size can be used for a relatively large output range. This means that significantly fewer boiler sizes have to be manufactured and kept in stock than was previously necessary. This enables a significant reduction in production and storage costs.
  • a flue gas flap is expediently provided as a means for regulating the flue gas flow. It can be provided that the outlets open into a common smoke pipe and that the flue gas flap is arranged such that when the outlet leading from the intermediate space is closed, it opens the outlet leading from the interior. For maximum burner output, the flue gas damper can thus be brought into a central position and the outlet from the intermediate space is closed for minimum burner output. In the middle position, the flue gas flap has practically no throttling effect for the two outlets. With a motor drive, however, it is also possible to bring the flue gas flap into a position in which it exerts a throttling effect on one of the outlets.
  • the water jacket surrounding the heat exchange space is advantageously a double jacket with an inner and an outer jacket space, which are separated from one another by a central wall.
  • the water in the inner jacket space is heated more quickly than the water in the outer jacket space.
  • the relatively cool return water flowing back during operation of the boiler cannot affect the inner wall.
  • the water contained in the inner jacket space acts as a buffer against excessive cooling of the inner wall. This is particularly advantageous in low-temperature heating systems, where the return temperature is relatively low. As a result, there is no risk of the formation of undesirable condensates, which can result in corrosion.
  • Another major advantage of the described Execution is that standstill losses are greatly reduced.
  • the water in the inner jacket area acts as insulation for the outer jacket room when the burner is at a standstill.
  • the distance between the inner wall and the middle wall of the double jacket relatively small, preferably 5 to 15 mm. This prevents temperature stratification of the water in the inner jacket space. So there is a good temperature distribution. Boiling noises are also avoided.
  • the water content of the inner jacket space is relatively small. This has the advantage that the water in the inner jacket space is heated up quickly during operation, which on the one hand prevents corrosion problems and on the other hand can be used to quickly charge a boiler if required. This boiler can therefore be dimensioned relatively small because, when there is a large demand for hot water, it can deliver hot water practically like a water heater.
  • the distance between the middle wall and the outer wall of the double jacket is expediently substantially greater than the distance between the inner wall and the middle wall. This results in a sufficient volume for the boiler water required, for example, for space heating.
  • the boiler is advantageously designed so that the further water jacket is about half as long as the first-mentioned water jacket. This creates a combustion chamber with a large diameter on the burner side, which is especially suitable for modern ones Gasification burner with a rapidly expanding flame is suitable. Strongly expanding flames have a favorable flame temperature at which the formation of nitrogen oxides is very low.
  • the further water jacket is advantageously attached to the rear wall of the heat exchange space. This results in a simple construction of the boiler, in which the interior is easily accessible for cleaning work.
  • a core body is advantageously arranged in the interior enclosed by the further water jacket, forming an intermediate space.
  • This intermediate space allows the smoke gases to be guided to promote heat transfer.
  • the various components of the boiler are advantageously cylindrical. This enables a rational and inexpensive manufacture of the boiler, especially if the various elements are arranged coaxially with one another.
  • the boiler can be implemented as a welded steel structure, for example.
  • the further water jacket and the core body can also be surrounded by an approximately helical flue gas duct.
  • flue gas ducts represent a relatively long way for the flue gases, so that an optimal heat exchange takes place. All heat exchange surfaces are coated evenly by the smoke gases. This also has the advantage that the risk of condensation from the flue gases is reduced even further.
  • the flue gas ducts are expediently dimensioned such that the boiler operates with an overpressure in the combustion chamber of approximately 0.5 to 6 mm of mercury, preferably 2 mm. This presupposes the use of means for generating the excess pressure, for example a fan burner. Such a combination works very quietly.
  • the flue gas ducts can be formed by an insert from a helically wound sheet metal strip. This enables the flue gas ducts to be designed extremely cheaply. Furthermore, this version has the advantage that the cleaning of the boiler from a helical winding sheet metal formed insert can be easily pulled out.
  • the cross section of the flue gas ducts advantageously decreases from front to back. Because the flue gases cool down on the way back, their volume decreases so that the cross-section at the back can be made smaller than at the front. This reduction in cross-section has the advantage that the length of the flue gas duct can be made longer. It is particularly advantageous that the smoke gas duct provides a high level of noise reduction.
  • the changing cross section prevents the formation of resonant vibrations.
  • the progressive reduction of the cross section can be achieved, for example, by the fact that the slope of the helically wound sheet metal strip decreases from the front to the rear. Since a helically wound sheet metal strip is relatively unstable, the turns of the sheet metal strip are expediently connected to one another with spacers. This allows the desired distance between two turns to be defined.
  • the core body is advantageously hollow. For example, openings can be provided in the jacket.
  • the cavity in the core body dampens vibrations.
  • the gas volume in the core body can absorb pressure differences which arise from the so-called start-up shock when the flame is ignited.
  • the core body thus acts as a silencer. Particularly good sound damping properties are achieved if the cavity is loosely filled with mineral fibers, e.g. Rock wool, is filled. This filling also largely prevents undesired heat transfer.
  • the further water jacket is advantageously connected in series with the inner jacket space of the double jacket. This causes hot water to flow from the inner jacket space into the further water jacket, so that it is quickly brought over the dew point area, where no more condensation can take place. It is expedient between the further Water jacket and the inner jacket space arranged a pump. This ensures good circulation, which in turn produces a good temperature distribution. Since the volume of water is relatively small and can therefore be circulated quickly, the heat is dissipated quickly and boiling noises are avoided.
  • a valve can also be provided in order to charge a boiler.
  • the flow and return of the heating circuit are expediently connected to the outer jacket space of the double jacket. It is advantageous if the flow is connected to one end of the double jacket and the return to the other end of the double jacket.
  • the heating system shows a boiler 10 which is fired by a multi-stage, for example two-stage, or a modulating burner 11.
  • the heat exchange space 13 is surrounded by a water jacket 15.
  • the water jacket 15 is designed as a double jacket with an inner jacket space 17 and an outer jacket space 19.
  • the inner casing space 17 is separated from the outer casing space 19 by a central wall 21.
  • the distance between the inner wall 23 and the middle wall 21 is relatively small, for example 10 to 15 mm. In a 25 KW boiler, the water volume in the inner jacket space is kept at around five liters.
  • the distance between the middle wall 21 and the outer wall 25 is, depending on requirements, considerably greater than the distance between the inner wall 23 and the middle wall 21.
  • the water volume of the outer jacket space must be dimensioned accordingly.
  • the relatively small water volume of the inner jacket space 17 can quickly be brought to operating temperature.
  • a further cylindrical water jacket 27 is arranged concentrically with the preferably cylindrical double jacket 15.
  • the inner jacket space 17 is connected in series with the water jacket 27 via a line 28 in order to avoid condensation and corrosion problems.
  • the water jacket 27 is fastened to the rear wall 29 of the heat exchange space 13 and extends only over part of the length, for example half, of the heat exchange space 13.
  • the front part 31 of the heat exchange space 13 therefore represents a combustion chamber with a relatively large diameter, which is special suitable for modern gasification burners with a strongly expanding flame.
  • the space between the double jacket 15 and the further water jacket 27 has a flue gas outlet 33 at the rear, which can be closed by a flue gas flap 39.
  • the interior 35 surrounded by the further water jacket 27 has a flue gas outlet 37.
  • the flue gas flap 39 is driven Solenoid or a motor 41.
  • a drive is unnecessary.
  • the flue gas damper is then manually brought into the position in which the exhaust gas temperature has the optimum value.
  • a hollow cylindrical core body 43 is arranged concentrically with the further water jacket 27. This is closed at the front by a plate 45 made of refractory material. In the case of an atomizing burner, the plate 45 serves as a combustion aid.
  • the rear part is also advantageously closed off by a disk 47.
  • In the cavity 50 there is a filling 52 made of rock wool or the like. Sound absorption is thereby achieved and undesired heat transfer to the outlet 33 is largely prevented.
  • a helical flue gas duct 54 or 56 is formed both in the intermediate space 53 and in the intermediate space 55. These flue gas channels 54, 56 consist of a helically wound sheet metal strip, which has the shape of an insert.
  • the slope of the helically wound sheet metal strip decreases from front to back, so that the cross section of the flue gas duct also decreases from front to back.
  • the windings of the sheet metal strip are connected to one another with spacers, for example rods (not shown).
  • the figure also shows the use of the boiler 10 in a heating system.
  • the flow 59 leads from the front end of the outer jacket space 19 to a mixing valve 61 and from there via the circulating pump 63 to the consumers 65.
  • the return line 67 is fed to the outer jacket space 19 at the rear end of the boiler.
  • a bypass 70 leads from the return 67 to the mixing valve 61.
  • a feed line 71 leads from the further water jacket 27 to the heat exchanger coil 73 of the boiler 75.
  • the return line 77 from the heat exchanger coil 73 leads via the valve 79 and the pump 81 to the inner jacket space 17.
  • a bypass 83 to the valve 79 is provided from the feed line 71.
  • Reference number 85 schematically shows a control device which controls the heating system.
  • the burner When charging the boiler, the burner runs at full load. Relatively cool water is pumped into the inner jacket space 17 by the pump 81 and distributed fairly quickly and uniformly over the entire jacket space. Rapid preheating takes place, whereupon the water flows into the inner water jacket 27, is further heated there and flows back to the heat exchanger coil 73 of the boiler 75. In the boiler 75 heat exchange the domestic water is heated.
  • the controller 85 requests heat generation for space heating, the pump runs 81 even if the boiler 75 does not need to be charged. However, since the water heated in the inner water jacket flows through the bypass 83, it reaches the inner jacket room 17 without any noticeable heat loss.

Abstract

A heating boiler comprises a heat-exchange chamber (13) surrounded by a heating jacket (15). Another water jacket (27) arranged concentrically with the latter extends, at the rear of the heating boiler, over approximately half the length of the heating jacket (15). A concentric core body (43) is located inside the water jacket (27). Helical flue gas channels (54, 56) each provided with an outlet (33, 37, respectively), are arranged in the spaces (53, 55, respectively. A flue gas flap (39) is located in the opening region of the outlets (33, 37). In the central position illustrated, the flue gases can escape virtually unhindered from both flue gas channels. This corresponds to full-load operation of the burner (11). At minimal load, the outlet (33) is closed by the flue gas flap. In both cases, however, the flue gas temperature is the same. This prevents the temperature in every part of the heating boiler from descending below the dew point.

Description

Die Erfindung bezieht sich auf einen Heizkessel, insbesondere zur Verwendung mit einem mehrstufigen oder modulierenden Brenner, mit einem Wärmetauschraum, einem diesen umgebenden Wassermantel, der eine Aussenwandung an eine Innenwandung aufweist, und einem im Wärmetauschraum angeordneten weiteren Wassermantel der sich über einen Teil der Länge des Warmetauschraums erstreckt und so einen Zwischenraum bildet und einen Innenraum ummantelt.The invention relates to a boiler, in particular for use with a multi-stage or modulating burner, with a heat exchange space, a water jacket surrounding it, which has an outer wall on an inner wall, and a further water jacket arranged in the heat exchange space and extending over part of the length of the Extends heat exchange space and thus forms an intermediate space and encases an interior.

Die französische Patentschrift 2,154,347 beschreibt einen Heizkessel, bei welchem zwei zylindrische Wassermäntel konzentrisch zueinander angeordnet sind. Dabei bildet der vom inneren Wassermantel ummantelte Innenraum den Brennerraum währenddem der Zwischenraum zwischen den Wassermänteln als Rauchgaskanal dient. In diesem Rauchgaskanal befindet sich ein schraubenförmiger Einsatz. Dieser Heizkessel ist relativ kompliziert im Aufbau. Die Fertigung ist daher relativ teuer, und die Servicearbeiten sind schwierig auszuführen und zeitaufwendig. Besonders nachteilig ist die Gefahr von Kaltstellen, beim denen bei reduzierter Brennerleistung eine Kondensation von Schadstoffen aus den Rauchgasen erfolgen kann, was dann zu Korrosionsproblemen führt. Dieser Heizkessel eignet sich daher schlecht zum Betrieb mit einem mehrstufigen Brenner. Auch sieht der vorbekannte Heizkessel keine Mittel zur Warmwasserbereitung, d.h. zur sogenannten Brauchwasserbereitung vor.French Patent 2,154,347 describes a boiler in which two cylindrical water jackets are arranged concentrically to one another. The inner space encased by the inner water jacket forms the burner chamber while the space between the water jackets serves as a flue gas duct. There is a screw-shaped insert in this flue gas duct. This boiler is relatively complicated to set up. Manufacturing is therefore relatively expensive and service work is difficult to carry out and time consuming. The risk of cold spots is particularly disadvantageous, in which condensation of pollutants from the flue gases can occur with reduced burner output, which then leads to corrosion problems. This boiler is therefore unsuitable for operation with a multi-stage burner. The previously known boiler also sees no means of hot water preparation, i.e. for so-called hot water preparation.

Es ist wichtig, dass die Leistung von Heizkessel und Brenner aufeinander abgestimmt sind. Es waren somit bisher im unteren Leistungsbereich in Abstufungen von etwa 5 KW verschiedene Kesselgrössen notwendig.It is important that the boiler and burner output are coordinated. Until now, different boiler sizes were required in the lower power range in steps of around 5 KW.

Es ist daher Aufgabe der vorliegenden Erfindung einen konstruktiv einfachen und preiswerten Heizkessel mit hohem thermischen Wirkungsgrad zu schaffen. Der Heizkessel sollte sich auch zur Verwendung mit einem mehrstufigen oder modulierenden Brenner eignen, ohne dass die Gefahr von Korrosion besteht. Weiter sollte der Heizkessel geringe Stillstandsverluste aufweisen und sich möglichst auch zur Aufbereitung von Warmwasser eignen.It is therefore an object of the present invention to provide a structurally simple and inexpensive boiler with high thermal efficiency. The boiler should also be suitable for use with a multi-stage or modulating burner without the risk of corrosion consists. Furthermore, the boiler should have low standstill losses and should also be suitable for treating hot water.

Erfindungsgemäss wird diese Aufgabe bei einem Heizkessel der eingangs erwähnten Art dadurch gelöst, dass zusätzlich zu dem aus dem Zwischenraum führenden Auslass ein aus dem Innenraum führender Auslass für Rauchgase vorgesehen ist und dass Mittel zur Regelung eines Rauchgasstromes aus dem Auslass des Zwischenraums und/oder zur Regelung eines Rauchgasstromes aus dem Auslass des Innenraums vorgesehen sind. Wenn die Mittel zur Regelung der Rauchgasströme einen Rauchgasstrom sowohl aus dem Zwischenraum als auch aus dem Innenraum zulassen, kann der Heizkessel mit Vollast gefahren werden. Die Rauchgase können dann sowohl durch den Zwischenraum zwischen beiden Wassermänteln als auch durch den Innenraum des weiteren Wassermantels strömen und dabei soviel Wärme an diese Wassermäntel übertragen, dass sie den Heizkessel mit einer relativ niedrigen Abgastemperatur verlassen. Wird jedoch der Heizkessel nur mit Teillast gefahren, die beispielsweise dreissig Prozent der Vollast betragen kann, so wird der Auslass aus dem Zwischenraum verschlossen, so dass die Rauchgase nur noch durch den Innenraum strömen können. Es besteht dann keine Gefahr, dass sie sich zu stark abkühlen und im hinteren Teil des Kessels Kondensationsprobleme auftreten. Der Heizkessel eignet sich daher gut für die Verwendung mit einem zweistufigen Brenner. Es wäre aber auch möglich, einen modulierenden Brenner zu verwenden, der stufenlos von Minimallast zu Vollast geregelt werden kann. In diesem Falle ist es zweckmässig, einen Motorantrieb für die Rauchgasklappe zu wählen, damit auch diese stufenlos geregelt werden kann. Es ist also möglich, die Grösse des durch den Zwischenraum fliessenden Rauchgasstroms zu regeln. Die vorliegende Erfindung hat auch den Vorteil, dass die gleiche Kesselgrösse für einen relativ grossen Leistungsbereich anwendbar ist. Bei der Verwendung des Heizkessels mit einstufigem Brenner kann die gleiche Kesselgrösse für einen relativ grossen Leistungsbereich verwendet werden. Es müssen somit wesentlich weniger verschiedene Heizkesselgrössen gefertigt und an Lager gehalten werden als dies bisher notwendig war. Dies ermöglicht eine erhebliche Reduzierung der Produktions- und Lagerhaltungskosten. Bei der Installation eines Heizkessels mit einem einstufigen Brenner genügt es, die Mittel zur Regelung der Rauchgasströme entsprechend der Brennerleistung bzw. der optimalen Abgastemperatur von Hand einzustellen.According to the invention, this object is achieved in a boiler of the type mentioned at the outset in that, in addition to the outlet leading from the intermediate space, an outlet leading from the interior for flue gases is provided and in that means for regulating a flue gas flow from the outlet of the intermediate space and / or for regulating a flue gas flow from the outlet of the interior are provided. If the means for regulating the flue gas flows permit a flue gas flow both from the intermediate space and from the interior, the boiler can be operated at full load. The flue gases can then flow through the space between the two water jackets as well as through the interior of the further water jacket and thereby transfer enough heat to these water jackets that they leave the boiler with a relatively low flue gas temperature. However, if the boiler is only operated at partial load, which can be, for example, thirty percent of the full load, the outlet from the intermediate space is closed, so that the flue gases can only flow through the interior. There is then no danger that they will cool down too much and that condensation problems occur in the rear part of the boiler. The boiler is therefore well suited for use with a two-stage burner. However, it would also be possible to use a modulating burner that can be controlled continuously from minimum to full load. In this case, it is advisable to choose a motor drive for the flue gas flap so that it can also be regulated continuously. It is therefore possible to regulate the size of the flue gas flow flowing through the intermediate space. The present invention also has the advantage that the same boiler size can be used for a relatively large output range. When using the boiler with a single-stage burner, the same boiler size can be used for a relatively large output range. This means that significantly fewer boiler sizes have to be manufactured and kept in stock than was previously necessary. This enables a significant reduction in production and storage costs. When installing a boiler with a single-stage burner, it is sufficient to set the means for regulating the flue gas flows according to the burner output or the optimum flue gas temperature by hand.

Zweckmässigerweise ist als Mittel zur Regelung des Rauchgasstroms eine Rauchgasklappe vorgesehen. Dabei kann vorgesehen werden, dass die Auslässe in ein gemeinsames Rauchrohr münden und dass die Rauchgasklappe so angeordnet ist, dass sie beim Schliessen des aus dem Zwischenraum führenden Auslasses den aus dem Innenraum führenden Auslass öffnet. Für maximale Brennerleistung kann die Rauchgasklappe somit in eine Mittelstellung gebracht werden und für minimale Brennerleistung wird der Auslass aus dem Zwischenraum verschlossen. In der Mittelstellung hat die Rauchgasklappe praktisch keine Drosselwirkung für die beiden Auslässe. Mit einem Motorantrieb ist es aber auch möglich, die Rauchgasklappe in eine Stellung zu bringen, in welcher sie auf einen der Auslässe eine Drosselwirkung ausübt.A flue gas flap is expediently provided as a means for regulating the flue gas flow. It can be provided that the outlets open into a common smoke pipe and that the flue gas flap is arranged such that when the outlet leading from the intermediate space is closed, it opens the outlet leading from the interior. For maximum burner output, the flue gas damper can thus be brought into a central position and the outlet from the intermediate space is closed for minimum burner output. In the middle position, the flue gas flap has practically no throttling effect for the two outlets. With a motor drive, however, it is also possible to bring the flue gas flap into a position in which it exerts a throttling effect on one of the outlets.

Vorteilhaft ist der den Wärmetauschraum umgebende Wassermantel ein Doppelmantel mit einem inneren und einem äusseren Mantelraum, die durch eine Mittelwandung voneinander getrennt sind. Bei dieser Ausgestaltung wird bei der Inbetriebnahme des Heizkessels das Wasser im inneren Mantelraum rascher erwärmt als das Wasser im äusseren Mantelraum. Infolgedessen besteht bei Kaltstart lediglich für eine sehr geringe Zeit eine Gefahr von Kondensatbildung. Ferner kann das im Betrieb des Heizkessels zurückströmende relativ kühle Rücklaufwasser die innere Wandung nicht beaufschlagen. Vielmehr wirkt das im inneren Mantelraum enthaltene Wasser als Puffer gegen eine übermässige Auskühlung der Innenwandung. Dies ist von besonderem Vorteil bei Niedertemperaturheizungen, wo die Rücklauftemperatur relativ tief ist. Infolgedessen besteht keine Gefahr der Bildung von unerwünschten Kondensaten, welche Korrosion zur Folge haben können. Ein weiterer gewichtiger Vorteil der beschriebenen Ausführung besteht darin, dass Stillstandverluste stark reduziert werden. Das Wasser im inneren Mantelraum wirkt bei Stillstand des Brenners als Isolation für den äusseren Mantelraum.The water jacket surrounding the heat exchange space is advantageously a double jacket with an inner and an outer jacket space, which are separated from one another by a central wall. In this embodiment, when the boiler is started up, the water in the inner jacket space is heated more quickly than the water in the outer jacket space. As a result, there is only a risk of condensate formation for a very short time when cold starting. Furthermore, the relatively cool return water flowing back during operation of the boiler cannot affect the inner wall. Rather, the water contained in the inner jacket space acts as a buffer against excessive cooling of the inner wall. This is particularly advantageous in low-temperature heating systems, where the return temperature is relatively low. As a result, there is no risk of the formation of undesirable condensates, which can result in corrosion. Another major advantage of the described Execution is that standstill losses are greatly reduced. The water in the inner jacket area acts as insulation for the outer jacket room when the burner is at a standstill.

Es hat sich als besonders vorteilhaft erwiesen, den Abstand zwischen der Innenwandung und der Mittelwandung des Doppelmantels relativ gering zu halten, vorzugsweise 5 bis 15 mm. Dadurch wird einmal Temperaturschichtung des Wasser im inneren Mantelraum vermieden. Es erfolgt also eine gute Temperaturverteilung. Ferner werden Siedegeräusche vermieden. Der Wasserinhalt des inneren Mantelraums ist relativ klein. Dies hat den Vorteil, dass im Betrieb eine rasche Aufheizung des Wassers im inneren Mantelraum erfolgt, wodurch einerseits Korrosionsprobleme vermieden werden und andererseits bei Bedarf dieses Wasser zur raschen Aufladung eines Boilers benutzt werden kann. Dieser Boiler kann daher relativ klein dimensioniert werden, weil er bei grossem Warmwasserbedarf praktisch wie ein Durchlauferhitzer Warmwasser abgeben kann.It has proven to be particularly advantageous to keep the distance between the inner wall and the middle wall of the double jacket relatively small, preferably 5 to 15 mm. This prevents temperature stratification of the water in the inner jacket space. So there is a good temperature distribution. Boiling noises are also avoided. The water content of the inner jacket space is relatively small. This has the advantage that the water in the inner jacket space is heated up quickly during operation, which on the one hand prevents corrosion problems and on the other hand can be used to quickly charge a boiler if required. This boiler can therefore be dimensioned relatively small because, when there is a large demand for hot water, it can deliver hot water practically like a water heater.

Da der Wasserinhalt des inneren Mantelraums klein ist, geht durch die Abkühlung dieses Wassers nach der Aufladung des Boilers relativ wenig Wärme durch Stillstandverlust verloren. Die Warmwasseraufbereitung erfolgt daher auch im Sommer mit einem sehr hohen Gesamtwirkungsgrad. Dies ist in markantem Gegensatz zu bekannten Heizkesseln, deren Gesamtwirkungsgrad im Sommer notorisch tief ist, so dass allgemein Elektroaufheizung für den Sommer vorgeschlagen wird.Since the water content of the inner jacket space is small, the cooling of this water after the boiler has been charged means that relatively little heat is lost due to loss of standstill. The hot water is therefore processed in summer with a very high overall efficiency. This is in marked contrast to known boilers, whose overall efficiency is notoriously low in summer, so that electric heating is generally suggested for summer.

Zweckmässigerweise ist der Abstand zwischen der Mittelwandung und der Aussenwandung des Doppelmantels wesentlich grösser als der Abstand zwischen der Innenwandung und der Mittelwandung. Dadurch ergibt sich ein ausreichendes Volumen für das beispielsweise für eine Raumheizung benötigte Kesselwasser.The distance between the middle wall and the outer wall of the double jacket is expediently substantially greater than the distance between the inner wall and the middle wall. This results in a sufficient volume for the boiler water required, for example, for space heating.

Die Ausführung des Heizkessels erfolgt vorteilhaft so, dass der weitere Wassermantel etwa halb so lang ist wie der erstgenannte Wassermantel. So entsteht brennerseitig ein Brennraum mit grossem Durchmesser, der sich speziell für moderne Vergasungsbrenner mit stark expandierender Flamme eignet. Stark expandierende Flammen haben eine günstige Flammentemperatur, bei welcher die Bildung von Stickoxiden sehr gering ist.The boiler is advantageously designed so that the further water jacket is about half as long as the first-mentioned water jacket. This creates a combustion chamber with a large diameter on the burner side, which is especially suitable for modern ones Gasification burner with a rapidly expanding flame is suitable. Strongly expanding flames have a favorable flame temperature at which the formation of nitrogen oxides is very low.

Der weitere Wassermantel ist vorteilhaft an der Rückwand des Wärmetauschraums befestigt. Dies ergibt eine einfache Konstruktion des Heizkessels, bei dem das Innere gut zugänglich ist, um Reinigungsarbeiten durchzuführen.The further water jacket is advantageously attached to the rear wall of the heat exchange space. This results in a simple construction of the boiler, in which the interior is easily accessible for cleaning work.

Vorteilhaft wird in dem vom weiteren Wassermantel umschlossenen Innenraum ein Kernkörper unter Bildung eines Zwischenraums angeordnet. Dieser Zwischenraum erlaubt eine die Wärmeübertragung fördernde Führung der Rauchgase. Vorteilhaft werden die verschiedenen Komponenten des Heizkessels zylindrisch ausgeführt. Dies ermöglicht eine rationelle und preisgünstige Fertigung des Heizkessels, insbesondere wenn die verschiedenen Elemente koaxial zueinander angeordnet werden. Der Heizkessel kann beispielsweise als geschweisste Stahlkonstruktion realisiert werden. Auch kann der weitere Wassermantel und der Kernkörper von einem etwa schraubenförmigen Rauchgaskanal umgeben sein. Solche Rauchgaskanäle stellen einen relativ langen Weg für die Rauchgase dar, so dass ein optimaler Wärmeaustausch erfolgt. Alle Wärmtaustauschflächen werden gleichmässig von den Rauchgasen bestrichen. Dies hat auch den Vorteil, dass die Gefahr einer Kondenswasserbildung aus den Rauchgasen noch weiter reduziert wird. Die Dimensionierung der Rauchgaskanäle erfolgt zweckmässigerweise so, dass der Heizkessel mit einem Ueberdruck im Brennraum von etwa 0,5 bis 6 mm Quecksilbersäule arbeitet, vorzugsweise 2 mm. Dies setzt die Verwendung von Mitteln zur Erzeugung des Ueberdrucks voraus, z.B. eines Gebläsebrenners. Eine solche Kombination arbeitet sehr geräuscharm. Die Rauchgaskanäle können durch einen Einsatz aus einem schraubenförmig gewundenen Blechstreifen gebildet werden. Dies ermöglicht eine äusserst billige Ausführung der Rauchgaskanäle. Weiter hat diese Ausführung den Vorteil, dass zur Reinigung des Heizkessels der aus einem schraubenförmig gewundenen Blechstreifen gebildeter Einsatz einfach herausgezogen werden kann.A core body is advantageously arranged in the interior enclosed by the further water jacket, forming an intermediate space. This intermediate space allows the smoke gases to be guided to promote heat transfer. The various components of the boiler are advantageously cylindrical. This enables a rational and inexpensive manufacture of the boiler, especially if the various elements are arranged coaxially with one another. The boiler can be implemented as a welded steel structure, for example. The further water jacket and the core body can also be surrounded by an approximately helical flue gas duct. Such flue gas ducts represent a relatively long way for the flue gases, so that an optimal heat exchange takes place. All heat exchange surfaces are coated evenly by the smoke gases. This also has the advantage that the risk of condensation from the flue gases is reduced even further. The flue gas ducts are expediently dimensioned such that the boiler operates with an overpressure in the combustion chamber of approximately 0.5 to 6 mm of mercury, preferably 2 mm. This presupposes the use of means for generating the excess pressure, for example a fan burner. Such a combination works very quietly. The flue gas ducts can be formed by an insert from a helically wound sheet metal strip. This enables the flue gas ducts to be designed extremely cheaply. Furthermore, this version has the advantage that the cleaning of the boiler from a helical winding sheet metal formed insert can be easily pulled out.

Vorteilhaft nimmt der Querschnitt der Rauchgaskanäle von vorn nach hinten ab. Weil die Rauchgase sich auf dem Weg nach hinten abkühlen, nimmt ihr Volumen ab, so dass hinten der Querschnitt kleiner als vorn dimensioniert werden kann. Diese Verminderung des Querschnitts hat den Vorteil, dass die Länge des Rauchgaskanals grösser gemacht werden kann. Von besonderem Vorteil ist, dass durch den Rauchgaskanal eine starke Geräuschdämpfung erfolgt. Der sich ändernde Querschnitt verhindert nämlich die Bildung von resonanten Schwingungen. Die progressive Verminderung des Querschnitts kann beispielsweise dadurch erreicht werden, dass die Steigung des schraubenförmig gewundenen Blechstreifens von vorn nach hinten abnimmt. Da ein schraubenförmig gewundener Blechstreifen relativ wenig stabil ist, sind zweckmässigerweise die Windungen des Blechstreifens mit Distanzhaltern miteinander verbunden. Dadurch kann der gewünschte Abstand zwischen je zwei Windungen festgelegt werden.The cross section of the flue gas ducts advantageously decreases from front to back. Because the flue gases cool down on the way back, their volume decreases so that the cross-section at the back can be made smaller than at the front. This reduction in cross-section has the advantage that the length of the flue gas duct can be made longer. It is particularly advantageous that the smoke gas duct provides a high level of noise reduction. The changing cross section prevents the formation of resonant vibrations. The progressive reduction of the cross section can be achieved, for example, by the fact that the slope of the helically wound sheet metal strip decreases from the front to the rear. Since a helically wound sheet metal strip is relatively unstable, the turns of the sheet metal strip are expediently connected to one another with spacers. This allows the desired distance between two turns to be defined.

Vorteilhaft ist der Kernkörper hohl. Dabei können beispielsweise im Mantel Oeffnungen vorgesehen werden. Der Hohlraum im Kernkörper wirkt vibrationsdämpfend. Insbesondere kann das Gasvolumen im Kernkörper Druckunterschiede aufnehmen, welche durch den sogenannten Anfahrtsschock beim Zünden der Flamme entstehen. Der Kernkörper wirkt somit als Schalldämpfer. Besonders gute Schalldämpfeigenschaften werden erzielt, wenn der Hohlraum locker mit Mineralfasern, z.B. Steinwolle, gefüllt ist. Durch diese Füllung wird auch ein unerwünschter Wärmetransfer weitgehend verhindert.The core body is advantageously hollow. For example, openings can be provided in the jacket. The cavity in the core body dampens vibrations. In particular, the gas volume in the core body can absorb pressure differences which arise from the so-called start-up shock when the flame is ignited. The core body thus acts as a silencer. Particularly good sound damping properties are achieved if the cavity is loosely filled with mineral fibers, e.g. Rock wool, is filled. This filling also largely prevents undesired heat transfer.

Vorteilhaft ist der weitere Wassermantel mit dem inneren Mantelraum des Doppelmantels in Serie geschaltet. Dadurch wird bewirkt, dass heisses Wasser aus dem inneren Mantelraum in den weiteren Wassermantel strömt, so dass dieser rasch über den Taupunktbereich gebracht wird, wo keine Kondensation mehr erfolgen kann. Zweckmässigerweise ist zwischen dem weiteren Wassermantel und dem inneren Mantelraum eine Pumpe angeordnet. Dadurch wird eine gute Zirkulation erreicht, welche ihrerseits eine gute Temperaturverteilung bewirkt. Da das Wasservolumen relativ klein ist und daher rasch umgewälzt werden kann, wird die Wärme rasch abgeführt und Siedegeräusche werden vermieden. Es kann noch ein Ventil vorgesehen werden, um die Ladung eines Boilers zu bewirken.The further water jacket is advantageously connected in series with the inner jacket space of the double jacket. This causes hot water to flow from the inner jacket space into the further water jacket, so that it is quickly brought over the dew point area, where no more condensation can take place. It is expedient between the further Water jacket and the inner jacket space arranged a pump. This ensures good circulation, which in turn produces a good temperature distribution. Since the volume of water is relatively small and can therefore be circulated quickly, the heat is dissipated quickly and boiling noises are avoided. A valve can also be provided in order to charge a boiler.

Zweckmässigerweise sind der Vorlauf und der Rücklauf des Heizkreises an den äusseren Mantelraum des Doppelmantels angeschlossen. Dabei ist es vorteilhaft, wenn der Vorlauf an einem Ende des Doppelmantels und der Rücklauf am anderen Ende des Doppelmantel angeschlossen sind.The flow and return of the heating circuit are expediently connected to the outer jacket space of the double jacket. It is advantageous if the flow is connected to one end of the double jacket and the return to the other end of the double jacket.

Die Erfindung wird nun unter Bezugnahme auf die Zeichnung beschrieben. Sie zeigt
schematisch einen Heizkessel und seine Verwendung in einer Heizanlage mit einem zweistufigen oder einem modulierendem Brenner und
The invention will now be described with reference to the drawing. she shows
schematically a boiler and its use in a heating system with a two-stage or a modulating burner and

Die Heizanlage zeigt einen Heizkessel 10, der von einem mehrstufigen, z.B. zweistufigen, oder einem modulierenden Brenner 11 befeuert wird. Der Wärmetauschraum 13 ist von einem Wassermantel 15 umgeben. Der Wassermantel 15 ist als Doppelmantel mit einem inneren Mantelraum 17 und einem äusseren Mantelraum 19 ausgebildet. Der innere Mantelraum 17 ist vom äusseren Mantelraum 19 durch eine Mittelwandung 21 getrennt. Der Abstand zwischen der Innenwandung 23 und der Mittelwandung 21 ist relativ gering, z.B. 10 bis 15 mm. Bei einem Heizkessel mit 25 KW Leistung wird das Wasservolumen im inneren Mantelraum auf etwa fünf Liter gehalten. Der Abstand zwischen der Mittelwandung 21 und der Aussenwandung 25 ist je nach Bedarf wesentlich grösser als der Abstand zwischen der Innenwandung 23 und der Mittelwandung 21. Da die Schadstoffemissionen beim Start und beim Abstellen am grössten sind, müssen kurze Brennerlaufzeiten vermieden werden. Dementsprechend ist das Wasservolumen des äusseren Mantelraums zu bemessen. Das relativ kleine Wasservolumen des inneren Mantelraums 17 kann rasch auf Betriebstemperatur gebracht werden. Konzentrisch zum vorzugsweise zylindrischen Doppelmantel 15 ist ein weiterer zylindrischer Wassermantel 27 angeordnet. Der innere Mantelraum 17 ist mit dem Wassermantel 27 über eine Leitung 28 in Serie geschaltet, um Kondenswasserbildung und Korrosionsprobleme zu vermeiden. Der Wassermantel 27 ist an der Rückwand 29 des Wärmeaustauschraums 13 befestigt und erstreckt sich nur über einen Teil der Länge, z.B. der Hälfte, des Wärmeaustauschraums 13. Der vordere Teil 31 des Wärmeaustauschraums 13 stellt daher einen Brennraum mit relativ grossem Durchmesser dar, der sich speziell für moderne Vergasungsbrenner mit stark expandierender Flamme eignet. Der Zwischenraum zwischen dem Doppelmantel 15 und dem weiteren Wassermantel 27 besitzt hinten einen Rauchgasauslass 33, der durch eine Rauchgasklappe 39 verschliessbar ist. Der vom weiteren Wassermantel 27 umgebene Innenraum 35 besitzt einen Rauchgasauslass 37. Dem Antrieb der Rauchgasklappe 39 dient ein Solenoid oder ein Motor 41. Bei der Verwendung des Heizkessels mit einem einstufigen Brenner ist ein Antrieb überflüssig. Die Rauchgasklappe wird dann manuell in die Lage gebracht, in welcher die Abgastemperatur den optimalen Wert aufweist. Konzentrisch zum weiteren Wassermantel 27 ist ein hohlzylinderförmiger Kernkörper 43 angeordnet. Dieser ist vorn durch eine Platte 45 aus feuerfestem Material verschlossen. Bei einem Zerstäuberbrenner dient die Platte 45 als Verbrennungshilfe. An der heissen Oberfläche können etwaige auftreffende Oeltröpfchen verdampfen, worauf das entstehende Gas praktisch ohne Bildung von Schadstoffen verbrennt. Auch der hintere Teil ist vorteilhaft durch eine Scheibe 47 abgeschlossen. Im Mantel 49 befindet sich eine Vielzahl von Oeffnungen 51. Im Hohlraum 50 befindet sich eine Füllung 52 aus Steinwolle oder dergleichen. Dadurch wird eine Schalldämpfung erreicht und ein unerwünschter Wärmetransfer zum Auslass 33 weitgehend verhindert. Sowohl im Zwischenraum 53 als auch im Zwischenraum 55 ist ein schraubenförmiger Rauchgaskanal 54 bzw. 56 ausgebildet. Diese Rauchgaskanäle 54, 56 bestehen aus einem schraubenförmig gewundenen Blechstreifen, welcher die Form eines Einsatzes hat. Die Steigung des schraubenförmig gewundenen Blechstreifens nimmt von vorn nach hinten ab, so dass auch der Querschnitt des Rauchgaskanals von vorn nach hinten abnimmt. Die Windungen des Blechstreifens sind mit Distanzhaltern, z.B. Stäbe (nicht ein-gezeichnet), miteinander verbunden.The heating system shows a boiler 10 which is fired by a multi-stage, for example two-stage, or a modulating burner 11. The heat exchange space 13 is surrounded by a water jacket 15. The water jacket 15 is designed as a double jacket with an inner jacket space 17 and an outer jacket space 19. The inner casing space 17 is separated from the outer casing space 19 by a central wall 21. The distance between the inner wall 23 and the middle wall 21 is relatively small, for example 10 to 15 mm. In a 25 KW boiler, the water volume in the inner jacket space is kept at around five liters. The distance between the middle wall 21 and the outer wall 25 is, depending on requirements, considerably greater than the distance between the inner wall 23 and the middle wall 21. Since the pollutant emissions are greatest at the start and when switching off, short burner runtimes must be avoided. The water volume of the outer jacket space must be dimensioned accordingly. The relatively small water volume of the inner jacket space 17 can quickly be brought to operating temperature. A further cylindrical water jacket 27 is arranged concentrically with the preferably cylindrical double jacket 15. The inner jacket space 17 is connected in series with the water jacket 27 via a line 28 in order to avoid condensation and corrosion problems. The water jacket 27 is fastened to the rear wall 29 of the heat exchange space 13 and extends only over part of the length, for example half, of the heat exchange space 13. The front part 31 of the heat exchange space 13 therefore represents a combustion chamber with a relatively large diameter, which is special suitable for modern gasification burners with a strongly expanding flame. The space between the double jacket 15 and the further water jacket 27 has a flue gas outlet 33 at the rear, which can be closed by a flue gas flap 39. The interior 35 surrounded by the further water jacket 27 has a flue gas outlet 37. The flue gas flap 39 is driven Solenoid or a motor 41. When using the boiler with a single-stage burner, a drive is unnecessary. The flue gas damper is then manually brought into the position in which the exhaust gas temperature has the optimum value. A hollow cylindrical core body 43 is arranged concentrically with the further water jacket 27. This is closed at the front by a plate 45 made of refractory material. In the case of an atomizing burner, the plate 45 serves as a combustion aid. Any oil droplets that hit it can evaporate on the hot surface, whereupon the resulting gas burns practically without the formation of pollutants. The rear part is also advantageously closed off by a disk 47. There is a large number of openings 51 in the jacket 49. In the cavity 50 there is a filling 52 made of rock wool or the like. Sound absorption is thereby achieved and undesired heat transfer to the outlet 33 is largely prevented. A helical flue gas duct 54 or 56 is formed both in the intermediate space 53 and in the intermediate space 55. These flue gas channels 54, 56 consist of a helically wound sheet metal strip, which has the shape of an insert. The slope of the helically wound sheet metal strip decreases from front to back, so that the cross section of the flue gas duct also decreases from front to back. The windings of the sheet metal strip are connected to one another with spacers, for example rods (not shown).

Aus der Figur ist auch die Verwendung des Heizkessels 10 in einer Heizanlage ersichtlich. Vom vorderen Ende des äusseren Mantelraums 19 führt der Vorlauf 59 zu einem Mischventil 61 und von dort über die Umwälzpumpe 63 zu den Verbrauchern 65. Der Rucklauf 67 wird am hinteren Ende des Heizkessels des äusseren Mantelraums 19 zugeführt. Ein Bypass 70 führt vom Rücklauf 67 zum Mischventil 61.The figure also shows the use of the boiler 10 in a heating system. The flow 59 leads from the front end of the outer jacket space 19 to a mixing valve 61 and from there via the circulating pump 63 to the consumers 65. The return line 67 is fed to the outer jacket space 19 at the rear end of the boiler. A bypass 70 leads from the return 67 to the mixing valve 61.

Vom weiteren Wassermantel 27 führt eine Vorlaufleitung 71 zur Wärmetauscherschlange 73 des Boilers 75. Die Rücklaufleitung 77 von der Wärmetauscherschlange 73 führt über das Ventil 79 und die Pumpe 81 zum inneren Mantelraum 17. Von der Vorlaufleitung 71 ist ein Bypass 83 zum Ventil 79 vorgesehen.A feed line 71 leads from the further water jacket 27 to the heat exchanger coil 73 of the boiler 75. The return line 77 from the heat exchanger coil 73 leads via the valve 79 and the pump 81 to the inner jacket space 17. A bypass 83 to the valve 79 is provided from the feed line 71.

Mit der Bezugsziffer 85 ist schematisch eine Steuereinrichtung dargestellt, welche die Heizungsanlage steuert.Reference number 85 schematically shows a control device which controls the heating system.

Es sind verschiedene Aenderungen möglich, ohne vom Erfindungsgedanken abzuweichen. So ist beispielsweise auch eine Kesselkonstruktion mit vertikaler Bauweise möglich.Various changes are possible without deviating from the inventive concept. For example, a boiler construction with a vertical construction is also possible.

Zur Wirkungsweise der Heizanlage wird noch folgendes bemerkt:The following should also be noted about how the heating system works:

Bei der Kesselaufladung läuft der Brenner mit Vollast. Relativ kühles Wasser wird von der Pumpe 81 in den inneren Mantelraum 17 gepumpt und über den ganzen Mantelraum ziemlich rasch und gleichmässig verteilt. Es findet eine rasche Vorerhitzung statt, worauf das Wasser in den inneren Wassermantel 27 strömt, dort weiter erhitzt wird und zurück zur Wärmetauschschlange 73 des Boilers 75 fliesst. Im Boiler 75 wird Wärmetausch das Brauchwasser erhitzt. Wenn die Steuerung 85 Wärmeerzeugung für die Raumheizung verlangt, läuft die Pumpe 81 auch, wenn der Boiler 75 nicht aufgeladen werden muss. Da aber das im inneren Wassermantel erhitzte Wasser über den Bypass 83 strömt, gelangt es ohne merklichen Wärmeverlust in den inneren Mantelraum 17. Von dort wird die Wärme, welche aus dem inneren Mantelraum 17 stammt oder aus dem Wärmetauschraum 13 direkt auf die Innenwandung 23 übertragen wird, über die Mittelwandung 21 auf den äusseren Mantelraum 19 übertragen, in welchem wegen des Betriebs der Umwälzpumpe 63 Zirkulation herrscht, welche den Wärmeaustausch begünstigt.When charging the boiler, the burner runs at full load. Relatively cool water is pumped into the inner jacket space 17 by the pump 81 and distributed fairly quickly and uniformly over the entire jacket space. Rapid preheating takes place, whereupon the water flows into the inner water jacket 27, is further heated there and flows back to the heat exchanger coil 73 of the boiler 75. In the boiler 75 heat exchange the domestic water is heated. When the controller 85 requests heat generation for space heating, the pump runs 81 even if the boiler 75 does not need to be charged. However, since the water heated in the inner water jacket flows through the bypass 83, it reaches the inner jacket room 17 without any noticeable heat loss. From there, the heat which originates from the inner jacket room 17 or is transferred from the heat exchange room 13 directly to the inner wall 23 , transferred via the middle wall 21 to the outer jacket space 19, in which there is circulation due to the operation of the circulation pump 63, which favors the heat exchange.

Claims (31)

1. A heating boiler, more particularly for use with a multi-stage or modulating burner, with a heat-exchange chamber (13), a water jacket (15) surrounding the same and comprising an outer wall (25) and an inner wall (23), and having another water jacket (27) disposed in the heat-exchange chamber (13) and extending over part of the length thereof so as to form an intermediate chamber (53) and enclose an inner chamber, and having an outlet (33) for flue gases, such outlet leading out of the intermediate chamber (53), characterised in that in addition to the outlet leading out of the intermediate chamber an outlet (37) for flue gases is provided which leads out of the inner chamber and in that means are provided to control a flow of flue gas from the intermediate chamber outlet and/or to control a flow of flue gas from the inner chamber outlet.
2. A heating boiler according to claim 1, characterised in that a flue gas valve is provided as means for controlling the flue gas flow.
3. A heating boiler according to claim 2, characterised in that the outlets lead into a common smoke tube and in that the flue gas valve is so disposed that it opens the outlet leading out of the inner chamber on closure of the outlet leading out of the intermediate chamber.
4. A heating boiler according to any one of claims 1 to 4, characterised in that a motor drive is provided for the flue gas valve.
5. A heating boiler according to any one of claims 1 to 4, characterised in that the water jacket (15) surrounding the heat-exchange chamber (13) is a double jacket having an inner and outer jacket space (17, 19) separated from one another by a middle wall (21).
6. A heating boiler according to claim 5, characterised in that the distance between the inner wall (23) and the middle wall (21) of the double jacket (15) is relatively small, preferably 5 to 15 mm.
7. A heating boiler according to claim 6, characterised in that the distance between the middle wall (21) and the outer wall (25) of the double jacket (15) is much larger than the distance between the inner wall (23) and the middle wall (21).
8. A heating boiler according to any one of claims 1 to 7, characterised in that the additional water jacket (27) is about half as long as the first water jacket (15).
9. A heating boiler according to any one of claims 1 to 8, characterised in that the additional water jacket (27) is fixed to the back wall of the heat-exchange chamber (13).
10. A heating boiler according to any one of claims 1 to 9, characterised in that a core member (43) is disposed in the inner chamber (50̸) enclosed by the additional water jacket (27) so as to form an intermediate chamber (53).
11. A heating boiler according to any one of claims 1 to 10̸, characterised in that the heat-exchange chamber (13) is cylindrical.
12. A heating boiler according to any one of claims 1 to 11, characterised in that the additional water jacket (27) is cylindrical.
13. A heating boiler according to any one of claims 1 to 12, characterised in that the core member (43) is cylindrical.
14. A heating bolier according to any one of claims 1 to 13, characterised in that the additional water jacket (27) is disposed coaxially in the heat-exchange chamber (13).
15. A heating boiler according to any one of claim 1 to 14, characterised in that the core member (43) is disposed coaxially in the additional water jacket (27).
16. A heating boiler according to any one of claims 1 to 15, characterised in that the additional water jacket (27) is surrounded by a substantially helical flue gas duct (54).
17. A heating boiler according to any one of claims 1 to 16, characterised in that the core member (43) is surrounded by a substantially helical flue gas duct (56).
18. A heating boiler according to claim 16 or 17, characterised in that the respective helical flue gas ducts (54, 56) are formed by an insert consisting of a helically wound sheet-metal strip.
19. A heating boiler according to any one of claims 16 to 18, characterised in that the cross-section of the respective flue gas ducts (54, 56) decreases from front to rear.
20̸. A heating boiler according to any one of claims 16 to 19, characterised in that the pitch of the helically wound sheet-metal strip decreases from front to rear.
21. A heating boiler according to any one of claims 18 to 20̸, characterised in that the turns of the sheet-metal strip are interconnected by spacers.
22. A heating boiler according to any one of claims 10̸ to 21, charactarised in that the core member (43) has a cavity (50̸).
23. A heating boiler according to claim 22, characterised in that the core member (43) has apertures (51).
24. A heating boiler according to claim 22 or 23, characterised in that the cavity (50̸) is filled with mineral fibres, e.g. rock wool (52).
25. A heating boiler according to any one of claims 5 to 24, characterised in that the additional water jacket (27) is connected in series to the inner jacket chamber (17) of the double jacket (15).
26. A heating boiler according to any one of claims 1 to 25, characterised in that a pump (81) is disposed between the additional water jacket (27) and the inner jacket chamber (17).
27. A heating boiler according to claim 26, with a water heater, characterised in that a valve (79) is provided to charge the water heater (75) by means of a pump (81).
28. A heating boiler according to any one of claim 25 to 27, characterised in that the flow (59) and the return (67) of a heating circuit (65) are connected to the outer chamber (19) of the double jacket (15).
29. A heating boiler according to claim 28, characterised in that the flow (59) is connected to one end of the double jacket (15) at the bottom and the return (67) is connected to the other end of the double jacket (15) at the top.
30̸. A heating boiler according to claim 27, characterised in that a portion of the inner jacket chamber (17) is connected to another portion of the inner jacket chamber (17) via the pump (81).
31. A heating boiler according to claim 30̸, characterised in that the bottom portion of the inner jacket chamber (17) is connected via the pump (81) to the top portion of the inner jacket chamber (17).
EP90810472A 1989-06-26 1990-06-22 Boiler Expired - Lifetime EP0406173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90810472T ATE75024T1 (en) 1989-06-26 1990-06-22 BOILER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH236489 1989-06-26
CH2364/89 1989-06-26

Publications (3)

Publication Number Publication Date
EP0406173A2 EP0406173A2 (en) 1991-01-02
EP0406173A3 EP0406173A3 (en) 1991-02-06
EP0406173B1 true EP0406173B1 (en) 1992-04-15

Family

ID=4232065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810472A Expired - Lifetime EP0406173B1 (en) 1989-06-26 1990-06-22 Boiler

Country Status (10)

Country Link
EP (1) EP0406173B1 (en)
AT (1) ATE75024T1 (en)
AU (1) AU5832890A (en)
CA (1) CA2033988A1 (en)
CZ (1) CZ281126B6 (en)
DD (1) DD295904A5 (en)
DE (1) DE59000086D1 (en)
HU (1) HU209911B (en)
PL (1) PL164910B1 (en)
WO (1) WO1991000481A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398579A1 (en) * 2002-09-05 2004-03-17 Thermital Spa Condensation boiler with a high modulation ratio
CZ308311B6 (en) * 2012-08-09 2020-05-06 KRAJČOVÁ, Renata Circulating boiler for combined heat and steam production
CZ307508B6 (en) * 2012-08-09 2018-10-31 Krajčová Renata A boiler wall formed by a system of shells
WO2015024538A1 (en) 2013-08-19 2015-02-26 KRAJČOVÁ, Renata Circulatory heating boiler for combined production of heat, steam and electric energy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR542897A (en) * 1921-10-29 1922-08-23 Independent boiler for central heating
DE384415C (en) * 1922-12-14 1923-11-17 Jakob Zirn Heating boiler
GB414480A (en) * 1933-05-06 1934-08-09 Radiation Ltd Improvements relating to water heaters
FR1546461A (en) * 1965-12-06 1968-11-22 heat exchanger with independent water circuits
DE1604087A1 (en) * 1966-06-24 1970-08-13 Weleker Friedrich Process for the automatic control of the heat transfer rate of gas-heated devices
DE1601224A1 (en) * 1967-10-14 1969-10-02 Meese Fa Fr Heat exchanger
DK18074A (en) * 1974-01-15 1975-09-29 Passat As
DE3604842A1 (en) * 1986-02-15 1987-08-20 Kloeckner & Co Kgaa Zweigniede Heating boiler

Also Published As

Publication number Publication date
HU209911B (en) 1994-11-28
DE59000086D1 (en) 1992-05-21
ATE75024T1 (en) 1992-05-15
PL164910B1 (en) 1994-10-31
CZ281126B6 (en) 1996-06-12
AU5832890A (en) 1991-01-17
EP0406173A2 (en) 1991-01-02
HUT58410A (en) 1992-02-28
DD295904A5 (en) 1991-11-14
EP0406173A3 (en) 1991-02-06
CA2033988A1 (en) 1990-12-27
HU904743D0 (en) 1992-01-28
CS306290A3 (en) 1992-01-15
WO1991000481A1 (en) 1991-01-10
PL285725A1 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
EP0406173B1 (en) Boiler
DE4201972A1 (en) WATER-TANK
DE2054607A1 (en) Automatic control device for soaking furnaces
DE2104541A1 (en) Heating for swimming pools
DE2257982A1 (en) WARM-AIR OVEN AND FAN FOR USE IN CONJUNCTION WITH A WARM-AIR OVEN
DE2929810A1 (en) DEVICE FOR HEAT RECOVERY FROM EXHAUST GAS AND HEAT EXCHANGE ELEMENT HERE
EP0663563B1 (en) Method of combustion in combustion apparatuses and combustion apparatus
DE2054608C3 (en) Burner arrangement in heating furnaces, especially soaking ovens
EP0699878B1 (en) High efficiency boiler for heating and storing domestic water and heating water
DE3701439C3 (en) Method of operating a boiler and boiler operated according to this method
DE2504257C2 (en) Central heating boiler
DE3422298C2 (en) Heating unit for warm air heating
EP0082306B1 (en) Local heating installation
DE2943276A1 (en) Gas or oil fired water heater - has burner and flow safety flue gas flap divided into independent halves
AT340097B (en) DEVICE FOR INCREASING THE EFFICIENCY OF A CENTRAL HEATING SYSTEM
EP0249087B1 (en) Infrared radiant heater for large spaces
DE2624617C3 (en) Burner with heat exchanger
DE3004601A1 (en) Solid fuel continuous combustion stove - has vertical shaft containing heat exchanger supplying central-heating and hot water systems
DE10055053C1 (en) Wood pellet-fired heater for domestic use has heat-exchanger downstream of combustion chamber, with coiled tube on vertical axis
DE3110740C2 (en)
AT156315B (en) Device for regulating the tube wall temperature of tube heaters for gases.
DE2514888A1 (en) Boiler with twin combustion chambers - has additional lateral gas flow circulation connector tubes and fan driven heater gas circulation
EP0099505B1 (en) Central heating
AT377353B (en) AIR RADIATOR
DE2155583C3 (en) Water heating boiler with a turn burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901229

17Q First examination report despatched

Effective date: 19910425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920415

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920415

Ref country code: DK

Effective date: 19920415

REF Corresponds to:

Ref document number: 75024

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59000086

Country of ref document: DE

Date of ref document: 19920521

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960601

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960711

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970622

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970622

Ref country code: AT

Effective date: 19970622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: FULLEMANN PATENT A.G.

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050622