EP0400212A1 - Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren - Google Patents

Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren Download PDF

Info

Publication number
EP0400212A1
EP0400212A1 EP89118681A EP89118681A EP0400212A1 EP 0400212 A1 EP0400212 A1 EP 0400212A1 EP 89118681 A EP89118681 A EP 89118681A EP 89118681 A EP89118681 A EP 89118681A EP 0400212 A1 EP0400212 A1 EP 0400212A1
Authority
EP
European Patent Office
Prior art keywords
heating
fuel
nozzle
nozzle body
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89118681A
Other languages
English (en)
French (fr)
Inventor
Martin Prof. Dr. Feldinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann VDO AG
Original Assignee
Mannesmann VDO AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann VDO AG filed Critical Mannesmann VDO AG
Publication of EP0400212A1 publication Critical patent/EP0400212A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M15/00Carburettors with heating, cooling or thermal insulating means for combustion-air, fuel, or fuel-air mixture
    • F02M15/02Carburettors with heating, cooling or thermal insulating means for combustion-air, fuel, or fuel-air mixture with heating means, e.g. to combat ice-formation
    • F02M15/022Carburettors with heating, cooling or thermal insulating means for combustion-air, fuel, or fuel-air mixture with heating means, e.g. to combat ice-formation near to manually operated throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • F02M33/02Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel
    • F02M33/04Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel returning to the intake passage
    • F02M33/06Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel returning to the intake passage with simultaneous heat supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M9/00Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position
    • F02M9/12Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position having other specific means for controlling the passage, or for varying cross-sectional area, of fuel-air mixing chambers
    • F02M9/127Axially movable throttle valves concentric with the axis of the mixture passage
    • F02M9/133Axially movable throttle valves concentric with the axis of the mixture passage the throttle valves having mushroom-shaped bodies

Definitions

  • the invention relates to a fuel-air mixture formation device for internal combustion engines with a rotationally symmetrical nozzle body which, together with a rotationally symmetrical throttle body which can be displaced therein, forms a convergent-divergent nozzle which opens into an intake manifold of the internal combustion engine, and also in the vicinity of the narrowest cross section of the nozzle is provided around this circumferential and into this gap into which at least one fuel supply line opens.
  • the fuel is fed across the entire circumference of the nozzle in a film-like manner transversely to the direction of flow of the air flowing through the nozzle.
  • the main mass of the supplied fuel is subsequently due to the cross to the force
  • the mass of air flowing is atomized, the resulting droplet size decreasing with increasing velocity of the air mass flow.
  • the fuel flowing in the radial gap adheres to its walls as a result of adhesion and, even after passing into the divergent nozzle area of the nozzle body, remains adhered to the walls of the nozzle body in a more or less strong film up to the end of the nozzle body.
  • the fuel film detaches in the form of larger droplets due to the low air velocity there, in contrast to the much smaller droplets in the core flow of the fuel-air mixture.
  • the result is a stronger fuel film in the intake manifold with the consequent disadvantage of an uneven mixture composition for the individual cylinders and for one and the same cylinder during successive work cycles, which leads to an unsteady load on the engine and causes changes in the average exhaust gas composition, so that even after Catalyst a deterioration in the exhaust gas quality is recorded.
  • the nozzle body is provided with a heating device in the divergent nozzle area.
  • the heating should begin as close as possible to the point at which the fuel is supplied, thus the gap that opens into the nozzle. It can be done, for example, electrically and / or preferably - by a medium heated by the engine, in particular cooling water, lubricating oil, exhaust gas.
  • the heating device should expediently be arranged in the immediate vicinity of the inner wall of the relevant section of the nozzle body, the one located on the inner wall evaporates The film of fuel is almost completely removed, the more the wall of the nozzle body is heated up.
  • the fuel-air mixture passing into the intake manifold thus contains only fuel droplets of very small diameter in addition to fuel vapor, which are subsequently hardly centrifuged due to changes in the intake manifold's curvature and thus reduce the intake manifold wetting to an insignificant size for practical engine operation.
  • the nozzle body is also prevented from icing up by heating the nozzle body in the divergent nozzle area.
  • the heating device extends over the entire length of the nozzle body arranged downstream of the gap and thus heating of the nozzle body takes place from the fuel inlet area to the intake manifold;
  • the suction pipe in particular the area of the suction pipe facing the nozzle end, is expediently heated by means of a heating device. This heating can also be done, for example, electrically and / or by a medium heated by the engine.
  • the heating device can be designed such that it has heating channels arranged in the nozzle body in the region of its inner wall with a heating medium inlet and a heating medium outlet.
  • the heating channels can pass through helically arranged heating fins, the heating medium expediently flowing through the nozzle through the nozzle against the direction of flow of the fuel-air mixture.
  • the heating element is to be heated.
  • the thermal resistance between the heating device and the fuel-carrying components should be kept as large as possible by means of suitable measures. This can be ensured, for example, by insulating materials and / or small heat conducting cross sections and / or long heat conducting paths between the heating device and the fuel-carrying components.
  • an imaginary longitudinal axis of the fuel-air mixture formation device around which parts of this mixture formation device are formed symmetrically, is designated by 1.
  • Formed essentially rotationally symmetrical is a nozzle body 2 with its inner wall 3.
  • the interior space delimited by the inner wall in the nozzle body tapers downward in its upper region 4 to a point at reference number 5 of the narrowest clear cross-section.
  • This is followed at the bottom by a straight diffuser 6, which opens into a suction pipe 7 of the internal combustion engine.
  • Air is applied to the fuel-air mixture formation device at the top via an air filter (not shown).
  • the main air mass flow therefore flows in the direction of arrow L from top to bottom.
  • a throttle body 8 which is likewise rotationally symmetrical about the longitudinal axis and is adjustable in the direction of the longitudinal axis according to double arrow A, is used in connection with the nozzle body.
  • An upper part of the throttle body expands continuously from above and opens into a substantial lower part of the throttle body, which tapers continuously from top to bottom. The passage for the air mass flow between the nozzle body and the throttle body is thus narrowed the more the throttle body is shifted downward.
  • the nozzle body forms a convergent-divergent nozzle together with the throttle body.
  • the wall of the nozzle body is provided with a fuel feed bore 9 which merges into a fuel gap 11 via a fuel ring channel 10.
  • the fuel gap lies in a cross-sectional plane in the area of the narrowest clear cross-section and has a gap opening 12 directed towards the interior of the nozzle body.
  • the gap opening like the circumferential fuel gap, thus extends over 360 °.
  • the fuel ring channel is designed with a relatively small flow resistance, while the fuel gap has a relatively high flow resistance.
  • the fuel gap is overridden Substance air introduced at higher pressure almost under ambient air pressure.
  • the fuel gap is connected via an air ring duct 13 and bores 14 to an interior section, not shown in more detail, in the nozzle body, in which practically the air pressure in the environment prevails, while in the gap opening 12 there is an air pressure of approximately half the ambient pressure, and the air at this point flows at the speed of sound.
  • the air supply prevents the formation of vapor bubbles, since the fuel is practically under atmospheric pressure.
  • the air supply and the fuel gap adjoining it are dimensioned such that some air is mixed with the fuel in them. This gives the fuel emerging from the gap opening 12 a higher speed than without such an admixture of air. As a result, the fuel is supplied to the combustion air or the air mass flow evenly over the circumference of the nozzle body and in film form.
  • the straight diffuser is provided with a heating device 15, which causes the fuel film located on the wall of the diffuser to evaporate almost completely.
  • FIG. 1 shows an embodiment of a heating device 15 with a heating channel 16 arranged in the nozzle body in the region of its inner wall.
  • the heating channel is designed in a ring shape and completely surrounds the inner wall of the diffuser. It has a downstream engine cooling water inlet 17 and an upstream engine cooling water outlet 18, based on the flow passing through the diffuser, so that the diffuser is heated in countercurrent by the hot engine cooling water. So that the fuel supplied radially to the diffuser is not heated by the engine cooling water - which could subsequently lead to the formation of vapor bubbles - the thermal resistance between the engine cooling water and the fuel-carrying ducts is kept as large as possible by constructive design of the fuel-air mixture formation device.
  • the heating channel is formed between a first, inner, the diffuser ring element 19 and a second, outer ring element 20, the inner ring element is provided at its upstream end with a radially outwardly extending ring plate 21, between this and that
  • the fuel gap is formed in a separate component forming the upper region of the nozzle body.
  • the outer ring element lying on the outside of the inner ring element is spaced apart from the ring plate 21 with an equally radially outwardly extending ring plate 22, which is supported in the region of its free outer end by an insulating ring 23 on the ring plate 21.
  • An annular air gap 24 is formed between the two ring plates, in the area of the air ring channel and the gap opening the ring plate 21 has a reduced plate thickness and the thickness of the inner ring element in the area of the gap opening is also reduced.
  • the reduced thickness of the inner ring element and the ring plate 21 causes a reduction in the heat conducting cross sections through these components and thus an increased thermal resistance, in the same direction the air gap located between the two ring plates and the insulating ring between the ring plates.
  • the wall of the intake manifold opposite the diffuser end is also provided with a heating device 26, which has a heating channel 27 symmetrical to the axis of rotation of the throttle body and an engine cooling water inlet 28 and an engine cooling water outlet 29 at the same distance from this axis having.
  • FIG. 1 shows a fuel-air mixture formation device designed in accordance with the left half of the figure, but in which the heating device 15 has a helically arranged heating rib 30 which is connected to the inner ring element and passes through the heating duct.
  • the heating rib is arranged in such a way that the engine cooling water flows through the diffuser through the heating duct against the direction of flow of the fuel-air mixture.
  • FIG. 2 shows in the left half of the figure a configuration of the fuel-air mixture formation device according to the invention which corresponds to the left half of FIG. 1, but in which a helical, electrically heatable heating coil 31 is inserted into the heating duct.
  • the electrical supply lines to the heating coil are not shown in this image area.
  • the engine cooling water can be electrically heated by means of the heating coil in the warm-up phase of the internal combustion engine. When the operating temperature of the engine is reached, the heating coil is switched off and the inner wall of the diffuser is only heated using the hot engine cooling water.
  • FIG. 2 illustrates a variant in which the heating of the inner wall of the diffuser does not take place via a heating medium flowing through a heating channel, but rather insulated, electrical heating coils 32 directly penetrate the ring element 19 forming the diffuser.
  • an exterior Ring element 20 are dispensed with, the ring plate 22 is received by the ring element 19.
  • the inner wall of the diffuser is only heated electrically.
  • FIG. 3 shows a further embodiment of the fuel-air mixture formation device according to the invention, in which the diffuser is designed as a radial diffuser. Parts which correspond in their function to the embodiments in FIGS. 1 and 2 are identified by the same reference numerals.
  • the device shown in FIG. 3 is provided with a heating channel 16 with an opposite engine cooling water inlet 17 and engine cooling water outlet 18.
  • the device according to FIG 3 the same measures - except for the insulating ring 23 - as described under Figures 1 and 2, provided.

Abstract

Die Erfindung schlägt eine Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren vor, mit einem rotationssymmetrischen Düsenkörper (2), der zusammen mit einem in ihm verschiebbaren rotationssymmetrischen Drosselkörper (8) eine konvergent-divergente Düse bildet, die in ein Saugrohr (7) des Verbrennungsmotors mündet. In der Nähe des engsten Querschnittes (5) der Düse ist ein um diese umlaufender und in diese mündender Kraftstoffspalt (11) vorgesehen, in den mindestens eine Kraftstoffzuleitung (9, 10) mündet. Im divergenten Düsenbereich (6) des Düsenkörpers (2) ist eine Heizvorrichtung (15) angeordnet, die sicherstellt, daß ein beim Einspritzen des Kraftstoffes annähernd quer zur Richtung des Hauptluftmassenstromes L in den Innenraum des Düsenkörpers sich an der Wandung des divergenten Düsenbereiches des Düsenkörpers anlagernder Kraftstoffilm fast vollständig abgedampft wird und so die Gemischbildung verbessert wird.

Description

  • Die Erfindung betrifft eine Kraftstoff-Luft-Gemischbil­dungsvorrichtung für Verbrennungsmotoren mit einem rota­tionssymmetrischen Düsenkörper, der zusammen mit einem in ihm verschiebbaren rotationssymmetrischen Drosselkör­per eine konvergent-divergente Düse bildet, die in ein Saugrohr des Verbrennungsmotors mündet, sowie ein in der Nähe des engsten Querschnitts der Düse um diese umlaufen­der und in diese mündender Spalt vorgesehen ist, in den mindestens eine Kraftstoffzuleitung mündet.
  • Je homogener das Kraftstoff-Luft-Gemisch bereits vor dem Eintritt in die Brennkammern des Motors durch die Gemisch­bildungsvorrichtung aufbereitet wird und je kleiner die in diesem Gemisch vorhandenen Kraftstofftröpfchen sind, um so kleiner wird der effektive Kraftstoffverbrauch und um so gleichmäßiger ist die Verbrennung nicht nur bei auf­einanderfolgenden Arbeitsspielen in ein und demselben Zylinder, sondern auch in sämtlichen Zylindern des Motors, um so höher wird die erzielbare Motorleistung.
  • Bei einer aus der DE 36 43 882 A1 bekannten Gemischbildungsvorrichtung der genannten Art wird der Kraftstoff quer zur Strömungsrichtung der durch die Düse strömenden Luft filmartig über den gesamten Umfang der Düse zugeführt. Die Hauptmasse des zugeführten Kraftstof­fes wird in der weiteren Folge durch die quer zum Kraft­ stoffilm strömende Luftmasse zerstäubt, wobei die ent­stehende Tröpfchengröße mit steigender Geschwindigkeit des Luftmassenstromes abnimmt. Der im Radialspalt strö­mende Kraftstoff haftet infolge Adhäsion an seinen Wan­dungen und bleibt auch nach dem Übertritt in den divergen­ten Düsenbereich des Düsenkörpers in einem mehr oder weniger starken Film an den Wandungen desselben bis zum Ende des Düsenkörpers haften. Am Ende des Düsenkörpers löst der Kraftstoffilm wegen der dort nur geringen Luftge­schwindigkeit in Form größerer Tröpfchen ab, im Gegensatz zu den ungleich kleineren Tröpfchen in der Kernströmung des Kraftstoff-Luft-Gemisches. Die Folge ist ein stärkerer Kraftstoffilm im Saugrohr mit dem hierdurch bedingten Nach­teil einer ungleichmäßigen Gemischzusammensetzung für die einzelnen Zylinder und für ein und denselben Zylinder bei aufeinanderfolgenden Arbeitsspielen, was zu einer insta­tionären Belastung des Motors führt und Veränderungen der mittleren Abgaszusammensetzung bewirkt, so daß auch nach dem Katalysator eine Verschlechterung der Abgasqualität zu verzeichnen ist.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Vorrich­tung der genannten Art so weiter zu bilden, daß eine verbesserte Gemischbildung gewährleistet ist.
  • Gelöst wird die Aufgabe dadurch, daß der Düsenkörper im divergenten Düsenbereich mit einer Heizeinrichtung ver­sehen ist. Die Aufheizung sollte dabei möglichst nahe nach der Stelle der Kraftstoffzufuhr, somit dem in die Düse mündenden Spalt beginnen. Sie kann beispielsweise elek­trisch und/oder vorzugsweise - durch ein vom Motor auf­geheiztes Medium, insbesondere Kühlwasser, Schmieröl, Ab­gas erfolgen. Durch die Aufheizung des Düsenkörpers im divergenten Düsenbereich, wobei die Heizeinrichtung zweck­mäßig in unmittelbarer Nähe zur Innenwandung des betref­fenden Abschnittes des Düsenkörpers in diesem angeordnet sein sollte, dampft der an der Innenwandung befindliche Kraftstoffilm fast vollständig ab, um so mehr, je stärker die Wandung des Düsenkörpers aufgeheizt wird. Das in das Saugrohr übertretende Kraftstoff-Luft-Gemisch enthält da­durch neben Kraftstoffdampf nur noch Kraftstofftröpfchen sehr kleinen Durchmessers, die in der weiteren Folge durch Krümmungsänderungen des Saugrohres kaum mehr auszentrifu­giert werden und damit die Saugrohrbenetzung auf eine für den praktischen Motorbetrieb unwesentliche Größe vermindern. Neben der Verbesserung der Gemischbildung wird durch die Aufheizung des Düsenkörpers im divergenten Düsenbereich auch die Vereisung des Zerstäubers verhindert.
  • Gemäß einer besonderen Ausführungsform der Erfindung ist vorgesehen, daß sich die Heizeinrichtung über die gesamte Länge des dem Spalt nachgeordneten Düsenkörpers erstreckt und damit eine Beheizung des Düsenkörpers vom Kraftstoff­eintrittsbereich bis zum Saugrohr stattfindet; darüber hinaus wird zweckmäßig auch das Saugrohr, insbesondere der dem Düsenende zugewandte Bereich des Saugrohrs mittels einer Heizeinrichtung beheizt. Auch diese Beheizung kann beispielsweise elektrisch und/oder durch ein vom Motor aufgeheiztes Medium erfolgen.
  • Konstruktiv kann die Heizeinrichtung so ausgebildet sein, daß sie im Düsenkörper im Bereich dessen Innenwandung an­geordnete Heizkanäle mit einem Heizmediumeintritt und einem Heizmediumaustritt aufweist. Um die Heizleistung zu verbes­sern können die Heizkanäle schraubenförmig angeordnete Heizrippen durchsetzen, wobei das Heizmedium zweckmäßig entgegen der Strömungsrichtung des Kraftstoff-Luft-Gemisches durch die Düse durch die Heizkanäle strömt. Um auch bei noch kaltem Motor und damit noch kaltem, vom Motor aufzu­heizendem Heizmedium eine Aufheizung des Düsenkörpers sicherzustellen, sollte im Heizkanal ein elektrisches Heiz­element angeordnet sein, mit dem das Heizmedium während der Warmlaufphase des Motors erhitzt wird.
  • Damit der radial zur Düse zugeführte Kraftstoff durch das Heizmedium nicht aufgeheizt wird - was in der weiteren Fol­ge zur Dampfblasenbildung führen könnte - sollte durch ge­eignete Maßnahmen der Wärmewiderstand zwischen der Heiz­einrichtung und den kraftstofführenden Bauteilen möglichst groß gehalten werden. Dies kann beispielsweise durch Iso­lationsstoffe und/oder kleine Wärmeleitquerschnitte und/­oder lange Wärmeleitwege zwischen der Heizeinrichtung und den kraftstofführenden Bauteilen sichergestellt werden.
  • Weitere Merkmale der Erfindung sind in der Beschreibung der Figuren und in den Unteransprüchen dargestellt, wobei bemerkt wird, daß alle Einzelmerkmale und alle Kombina­tionen von Einzelmerkmalen erfindungswesentlich sind.
  • In den Figuren ist die Erfindung anhand mehrerer Ausführungs­formen verdeutlicht, ohne hierauf beschränkt zu sein. Es zeigt:
    • Figur 1 eine erste und zweite Ausführungsform der erfin­dungsgemäßen Kraftstoff-Luft-Gemischbildungsvor­richtung in einem Längsschnitt mit einem geraden Diffusor, jeweils mit unterschiedlichen Heizein­richtungen auf den beiden Bildseiten,
    • Figur 2 eine dritte und vierte Ausführungsform der erfin­dungsgemäßen Kraftstoff-Luft-Gemischbildungsvor­richtung in einem Längsschnitt mit einem geraden Diffusor, jeweils mit unterschiedlichen Heizein­richtungen auf den beiden Bildseiten und
    • Figur 3 eine fünfte Ausführungsform der erfindungsgemäßen Kraftstoff-Luft-Gemischbildungsvorrichtung in einem Längsschnitt mit einem Radialdiffusor.
  • In Figur 1 ist eine gedachte Längsachse der Kraftstoff-­Luft-Gemischbildungsvorrichtung, um die Teile dieser Ge­mischbildungsvorrichtung symmetrisch ausgebildet sind, mit 1 bezeichnet. Im wesentlichen rotationssymmetrisch geformt ist ein Düsenkörper 2 mit seiner inneren Wandung 3. Der von der inneren Wandung begrenzte Innenraum in dem Düsen­körper verjüngt sich in seinem oberen Bereich 4 nach unten stetig bis zu einer Stelle bei dem Bezugszeichen 5 des engsten lichten Querschnitts. An diesen schließt sich nach unten ein gerader Diffusor 6 an, der in ein Saugrohr 7 des Verbrennungsmotors mündet. Oben wird die Kraftstoff-Luft-­Gemischbildungsvorrichtung über ein nicht dargestelltes Luftfilter mit Luft beaufschlagt. Der Hauptluftmassenstrom strömt also in Pfeilrichtung L von oben nach unten.
  • Zur Regelung des Hauptluftmassenstroms dient in Verbindung mit dem Düsenkörper ein ebenfalls rotationssymmetrisch um die Längsachse geformter Drosselkörper 8, der dazu in Rich­tung der Längsachse gemäß Doppelpfeil A einstellbar ist. Ein oberer Teil des Drosselkörpers erweitert sich von oben stetig und mündet in einen wesentlichen unteren Teil des Drosselkörpers, der sich von oben nach unten stetig verjüngt. Der Durchlaß für den Luftmassenstrom zwischen dem Düsenkörper und dem Drosselkörper wird also um so mehr verengt, je weiter der Drosselkörper nach unten verschoben ist. Der Düsenkörper bildet zusammen mit dem Drosselkörper eine konvergent-divergente Düse.
  • Zur Kraftstoffzufuhr in den Innenraum des Düsenkörpers ist dessen Wandung mit einer Kraftstoffzuleitungsbohrung 9 versehen, die über einen Kraftstoffringkanal 10 in einen Kraftstoffspalt 11 übergeht. Der Kraftstoffspalt liegt in einer Querschnittsebene im Bereich des engsten lichten Querschnittes und weist eine zu dem Innenraum des Düsenkörpers gerichtete Spaltöffnung 12 auf. Die Spaltöff­nung erstreckt sich also ebenso wie der umlaufende Kraft­stoffspalt über 360°. Zur gleichmäßigen Verteilung des in den Düsenkörper über dessen Umfang eintretenden Kraftstoff­stroms ist der Kraftstoffringkanal mit einem verhältnis­mäßig kleinen Strömungswiderstand ausgebildet, während der Kraftstoffspalt einen verhältnismäßig hohen Strömungswider­stand aufweist. In den Kraftstoffspalt wird außer Kraft­ stoff Luft unter höherem Druck annähernd unter Umgebungs­luftdruck eingeleitet. Hierzu steht der Kraftstoffspalt über einen Luft-Ringkanal 13 sowie Bohrungen 14 mit einem nicht näher gezeigten Innenraumabschnitt in dem Düsenkörper in Verbindung, in dem praktisch der Luftdruck der Umgebung herrscht, während in der Spaltöffnung 12 ein Luftdruck von etwa der Hälfte des Umgebungsdruckes herrscht, und die Luft an dieser Stelle mit Schallgeschwindigkeit strömt. Durch die Luftzuführung wird eine Dampfblasenbildung vermieden, da hier der Kraftstoff praktisch unter Atmosphärendruck steht. Die Luftzuführung und der sich an sie anschließende Kraftstoffspalt sind so bemessen, daß in ihnen etwas Luft mit dem Kraftstoff vermischt wird. Dadurch erhält der aus der Spaltöffnung 12 austretende Kraftstoff eine höhere Ge­schwindigkeit als ohne eine solche Luftbeimischung. Im Er­gebnis erfolgt damit die Kraftstoffzuführung zu der Ver­brennungsluft bzw. dem Luftmassenstrom gleichmäßig über den Umfang des Düsenkörpers und filmartig. Dennoch ist im Betrieb der beschriebenen Kraftstoff-Luft-Gemischbildungs­vorrichtung festzustellen, daß im Kraftstoffspalt 11 strö­mender Kraftstoff an dessen Wandungen infolge Adhäsion haftet und auch nach dem Übertritt in den Diffusor in einem mehr oder weniger starken Film an dessen innerer Wandung bis zum Ende des Diffusors haften bleibt, wo sich der Kraft­stoffilm wegen der dort nur noch geringen Luftgeschwindig­keit in Form größerer Tröpfchen ablöst.
  • Um diesen Nachteil zu beheben, ist, wie in den Figuren 1 und 2 dargestellt, der gerade Diffusor mit einer Heizein­richtung 15 versehen, die ein fast vollständiges Abdampfen der an der Wandung des Diffusors befindlichen Kraftstoff­filmes bewirkt.
  • Im Detail zeigt die linke Bildhälfte der Figur 1 eine Aus­führungsform einer Heizeinrichtung 15 mit einem im Düsen­körper im Bereich dessen innerer Wandung angeordneten Heizkanal 16. Der Heizkanal ist ringförmig ausgebildet und umgibt damit die innere Wandung des Diffusors vollstän­dig. Er weist einen, auf die durch den Diffusor tretende Strömung bezogen, stromabwärts gelegenen Motorkühlwasser­eintritt 17 und einen stromaufwärts gelegenen Motorkühl­wasseraustritt 18 auf, womit die Aufheizung des Diffusors im Gegenstrom durch das heiße Motorkühlwasser erfolgt. Da­mit der radial zum Diffusor zugeführte Kraftstoff durch das Motorkühlwasser nicht aufgeheizt wird - was in der wei­teren Folge zur Dampfblasenbildung führen könnte - ist durch konstruktive Ausbildung der Kraftstoff-Luft-Gemischbildungs­vorrichtung der Wärmewiderstand zwischen dem Motorkühlwas­ser und den kraftstofführenden Kanälen möglichst groß ge­halten. So ist der Heizkanal zwischen einem ersten, inneren, den Diffusor bildenden Ringelement 19 und einem zweiten, äußeren Ringelement 20 gebildet, das innere Ringelement ist an seinem stromaufwärts gelegenen Ende mit einer sich radial nach außen erstreckenden Ringplatte 21 versehen, zwischen dieser und dem, ein separates Bauteil bildenden oberen Bereich des Düsenkörpers ist der Kraftstoffspalt gebildet. Das außen am inneren Ringelement anliegende äus­sere Ringelement ist beabstandet von der Ringplatte 21 mit einer sich gleichfalls radial nach außen erstreckenden Ring­platte 22 versehen, die sich im Bereich ihres freien äus­seren Endes über einen Isolierring 23 an der Ringplatte 21 abstützt. Zwischen den beiden Ringplatten ist ein ring­förmiger Luftspalt 24 gebildet, im Bereich des Luft-Ring­kanales und der Spaltöffnung weist die Ringplatte 21 eine reduzierte Plattenstärke auf und es ist auch das innere Ringelement im Bereich der Spaltöffnung in seiner Dicke reduziert. Die reduzierte Dicke des inneren Ringelementes und der Ringplatte 21 bedingt eine Verkleinerung der Wärme­leitquerschnitte durch diese Bauteile und damit einen er­höhten Wärmewiderstand, in gleicher Richtung wirkt der zwi­schen den beiden Ringplatten befindliche Luftspalt und der Isolierring zwischen den Ringplatten.
  • Zur weiteren Verminderung des Kraftstoffilmes auch an den Wandungen 25 des Saugrohres ist die dem Diffusorende gegen­überliegende Wandung des Saugrohres gleichfalls mit einer Heizeinrichtung 26 versehen, die symmetrisch zur Rotations­achse des Drosselkörpers einen Heizkanal 27 und in gleichem Abstand von dieser Achse einen Motorkühlwassereintritt 28 sowie einen Motorkühlwasseraustritt 29 aufweist.
  • Die rechte Bildhälfte der Figur 1 zeigt eine entsprechend der linken Bildhälfte ausgestaltete Kraftstoff-Luft-Gemisch­bildungsvorrichtung, bei der jedoch die Heizeinrichtung 15 eine mit dem inneren Ringelement verbundene schraubenförmig angeordnete Heizrippe 30 aufweist, die den Heizkanal durchsetzt. Die Heizrippe ist so angeordnet, daß das Motorkühlwasser entgegen der Strömungsrichtung des Kraft­stoff-Luft-Gemisches durch den Diffusor durch den Heizkanal strömt.
  • Figur 2 zeigt in der linken Bildhälfte eine mit der linken Bildhälfte der Figur 1 übereinstimmende Ausgestaltung der erfindungsgemäßen Kraftstoff-Luft-Gemischbildungsvorrich­tung, bei der jedoch in den Heizkanal eine schraubenförmige, elektrisch beheizbare Heizschlange 31 eingesetzt ist. Nicht näher dargestellt sind in diesem Bildbereich die elektri­schen Zuleitungen zur Heizschlange. Mittels der Heizschlange kann in der Warmfahrphase des Verbrennungsmotors das Motor­kühlwasser elektrisch aufgeheizt werden. Bei Erreichen der Betriebstemperatur des Motores wird die Heizschlange abge­schaltet und es erfolgt das Aufheizen der Innenwandung des Diffusors ausschließlich über das heiße Motorkühlwasser.
  • Die rechte Bildhälfte der Figur 2 verdeutlicht eine Variante, bei der das Aufheizen der Innenwandung des Dif­fusors nicht über ein einen Heizkanal durchströmendes Heiz­medium erfolgt, sondern isolierte, elektrische Heizschlangen 32 unmittelbar das den Diffusor bildende Ringelement 19 durchsetzen. Bei dieser Ausführungsform kann auf ein äußeres Ringelement 20 verzichtet werden, die Ringplatte 22 wird vom Ringelement 19 aufgenommen. Die Aufheizung der Innen­wand des Diffusors erfolgt ausschließlich elektrisch.
  • Figur 3 zeigt eine weitere Ausführungsform der erfindungs­gemäßen Kraftstoff-Luft-Gemischbildungsvorrichtung, bei der der Diffusor als Radialdiffusor ausgebildet ist. Mit den Ausführungsformen in den Figuren 1 und 2 in ihrer Funk­tion übereinstimmende Teile sind mit gleichen Bezugsziffern bezeichnet. Entsprechend der Ausbildung der Vorrichtung gemäß der linken Bildhälfte der Figur 1 ist die in Figur 3 gezeigte Vorrichtung mit einem Heizkanal 16 versehen,mit gegenüberliegendem Motorkühlwassereintritt 17 und Motor­kühlwasseraustritt 18. Zur Vergrößerung des Wärmeleitwider­standes zwischen dem Motorkühlwasser und den kraftstoff­führenden Kanälen sind bei der Vorrichtung gemäß Figur 3 die gleichen Maßnahmen - bis auf den Isolierring 23 - wie unter den Figuren 1 und 2 beschrieben, vorgesehen.
  • Bezugszeichenliste
    • 1 Lagerachse
    • 2 Düsenkörper
    • 3 innere Wandung
    • 4 oberer Bereich
    • 5 engster Querschnitt
    • 6 Diffusor
    • 7 Saugrohr
    • 8 Drosselkörper
    • 9 Kraftstoffzuleitungsbohrung
    • 10 Kraftstoff-Ringkanal
    • 11 Kraftstoffspalt
    • 12 Spaltöffnung
    • 13 Luft-Ringkanal
    • 14 Bohrung
    • 15 Heizeinrichtung
    • 16 Heizeinrichtung
    • 17 Motorkühlwassereintritt
    • 18 Motorkühlwasseraustritt
    • 19 inneres Ringelement
    • 20 äußeres Ringelement
    • 21 Ringplatte
    • 22 Ringplatte
    • 23 Isolierring
    • 24 Luftspalt
    • 25 Wandung
    • 26 Heizeinrichtung
    • 27 Heizkanal
    • 28 Motorkühlwassereintritt
    • 29 Motorkühlwasseraustritt
    • 30 Heizrippe
    • 31 Heizschlange
    • 32 Heizschlange

Claims (11)

1. Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbren­nungsmotoren, mit einem rotationssymmetrischen Düsen­körper, der zusammen mit einem in ihm verscheibbaren rotationssymmetrischen Drosselkörper eine konvergent­divergente Düse bildet, die in ein Saugrohr des Verbren­nungsmotors mündet, sowie ein in der Nähe des engsten Querschnittes der Düse um diese umlaufender und in diese mündender Spalt vorgesehen ist, in dem mindestens eine Kraftstoffzuleitung mündet,
dadurch gekennzeichnet, daß der Düsenkörper (2) im divergenten Düsenbereich (6) mit einer Heizeinrichtung (15) versehen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Heizeinrichtung (15) im Bereich des in die Düse mündenden Spaltes (11) angeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeich­net, daß sich die Heizeinrichtung (15) über die gesamte Länge des dem Spalt (11) nachgeordneten Düsenkörpers (6) erstreckt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Saugrohr (7), insbesondere der dem Düsenende zugewandte Bereich (25) des Saugrohres (7), mit einer Heizeinrichtung (26) versehen ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Aufheizung des Düsenkörpers (2) im divergenten Düsenbereich (6) elektrisch und/oder durch ein vom Verbrennungsmotor aufgeheiztes Medium, insbesondere Kühlwasser, Schmieröl, Abgase erfolgt.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Heizeinrichtung (15) ein oder mehrere, im Düsen­körper (6) im Bereich dessen innerer Wandung (19) ange­ordnete Heizkanäle (16) mit einem Heizmediumeintritt (17) und einem Heizmediumaustritt (18) aufweist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Heizkanäle (16) schraubenförmig angeordnete Heizrippen (30) durchsetzen und das Heizmedium entgegen der Strömungsrichtung (L) des Kraftstoff-Luft-Gemisches durch die Düse durch die Heizkanäle (16) strömt.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Düsenkörper (2) zwischen der Kraftstoffzuleitung (9, 10) und der Heizeinrichtung (15) sowie dem Spalt (11) und der Heizeinrichtung (15) einen hohen Wärmewiderstand aufweist.
9. Vorrichtung nach Anspruch 8, gekennzeichnet durch Iso­lationsstoffe (23) und/oder kleine Wärmeleitquerschnitte und/oder lange Wärmeleitwege zwischen der Heizeinrich­tung (16) und den kraftstofführenden Bauteilen.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Düsenkörper (2) im divergenten Düsenbereich als gerader Diffusor (6 - Figuren 1 und 2) ausgebildet ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Düsenkörper (2) im divergenten Düsenbereich als Radialdiffusor (6 - Figur 3) ausgebil­det ist.
EP89118681A 1989-05-31 1989-10-07 Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren Withdrawn EP0400212A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19893917680 DE3917680A1 (de) 1989-05-31 1989-05-31 Kraftstoff-luft-gemischbildungsvorrichtung fuer verbrennungsmotoren
DE3917680 1989-05-31

Publications (1)

Publication Number Publication Date
EP0400212A1 true EP0400212A1 (de) 1990-12-05

Family

ID=6381746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118681A Withdrawn EP0400212A1 (de) 1989-05-31 1989-10-07 Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren

Country Status (3)

Country Link
EP (1) EP0400212A1 (de)
JP (1) JPH0396646A (de)
DE (1) DE3917680A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243774A3 (de) * 2001-03-23 2004-01-28 Robert Bosch Gmbh Beheizbare Drosselvorrichtung für Brennkraftmaschinen
DE102007037359A1 (de) 2007-08-08 2009-02-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Drosselvorrichtung für ein strömendes Medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9318951U1 (de) * 1993-11-30 1994-02-17 Kabisch Herbert Vorrichtung zur Herstellung von Gemischen aus Gasen und Flüssigkeiten, insbesondere von Luft und Brenn- und Kraftstoffen
GB0622565D0 (en) * 2006-11-13 2006-12-20 Airbus Uk Ltd Water scavenging system
DE102020118118A1 (de) 2020-07-09 2022-01-13 Audi Aktiengesellschaft Strahlpumpe sowie Antriebseinrichtung für ein Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008699A (en) * 1976-04-05 1977-02-22 Ford Motor Company Extended throttle bore multi-stage carburetor
FR2492001A2 (fr) * 1979-12-06 1982-04-16 Bosch Pierburg System Ohg Dispositif de formation du melange pour moteurs a combustion interne
EP0084639A2 (de) * 1982-01-27 1983-08-03 Keiun Kodo Vergaser mit veränderbarem Venturiabschnitt
DE3643882A1 (de) * 1986-12-22 1988-06-30 Vdo Schindling Kraftstoff-luft-gemischaufbereitungsvorrichtung fuer verbrennungsmotoren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008699A (en) * 1976-04-05 1977-02-22 Ford Motor Company Extended throttle bore multi-stage carburetor
FR2492001A2 (fr) * 1979-12-06 1982-04-16 Bosch Pierburg System Ohg Dispositif de formation du melange pour moteurs a combustion interne
EP0084639A2 (de) * 1982-01-27 1983-08-03 Keiun Kodo Vergaser mit veränderbarem Venturiabschnitt
DE3643882A1 (de) * 1986-12-22 1988-06-30 Vdo Schindling Kraftstoff-luft-gemischaufbereitungsvorrichtung fuer verbrennungsmotoren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243774A3 (de) * 2001-03-23 2004-01-28 Robert Bosch Gmbh Beheizbare Drosselvorrichtung für Brennkraftmaschinen
DE102007037359A1 (de) 2007-08-08 2009-02-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Drosselvorrichtung für ein strömendes Medium

Also Published As

Publication number Publication date
JPH0396646A (ja) 1991-04-22
DE3917680A1 (de) 1991-01-17

Similar Documents

Publication Publication Date Title
EP1363013B1 (de) Wärmeübertrager
DE10115282B4 (de) Einlaßluftsteuervorrichtung und Brennkraftmaschine, in der sie montiert ist
DE3032067C2 (de)
EP2370687B1 (de) Brennkraftmaschine
DE3426469C2 (de) Ansaugsystem für eine gemischverdichtende Brennkraftmaschine
EP0928885B1 (de) Abgasvorrichtung für einen Verbrennungsmotor
DE4420247B4 (de) Abgasrückführungseinrichtung für Verbrennungsmotoren, insbesondere mit Plastesaugrohren
DE2949096C2 (de) Gemischbildner für Brennkraftmaschinen
EP0400212A1 (de) Kraftstoff-Luft-Gemischbildungsvorrichtung für Verbrennungsmotoren
DE2332716C3 (de) Ansaugsystem für eine Brennkraftmaschine
DE19757986A1 (de) Ansaugeinrichtung für einen Verbrennungsmotor
DE2200818A1 (de) Einlass- und Auslassleitungen fuer einen Verbrennungsmotor sowie deren Stroemungskanaele
DE2314079A1 (de) Vorrichtung zum steuerbaren verdampfen leicht verdampfbarer fluessiger brennstoffe
DE2722168C3 (de) Vergaser für Brennkraftmaschinen
DE2712729A1 (de) Vorrichtung zur umlenkung eines abgasstromes
DE2743124A1 (de) Kraftstoffoerdervorrichtung fuer ueberschallstroemung im ansaugrohr eines verbrennungsmotors
DE3917681A1 (de) Kraftstoff-luft-gemischbildungsvorrichtung fuer verbrennungsmotoren
DE2743062A1 (de) Drosselventil fuer einen verbrennungsmotor
DE112018007200T5 (de) System und verfahren zur luft/kraftstoff-homogenisierung
DE19910781A1 (de) Kolbenbrennkraftmaschine für ein Kraftfahrzeug
DE19631473C2 (de) Brennkraftmaschine
DE4122124C2 (de)
DE2631409C3 (de) Ansaugluft-Vorwärmeinrichtung
DE2614835A1 (de) Ansauganlage fuer einen verbrennungsmotor
EP1455079A2 (de) Vorrichtung zur Wärmeübertragung zwischen dem Abgas eines Verbrennungsmotors und einem Kühlmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19910504

R18W Application withdrawn (corrected)

Effective date: 19910504