EP0399079B1 - Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier - Google Patents
Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier Download PDFInfo
- Publication number
- EP0399079B1 EP0399079B1 EP89109499A EP89109499A EP0399079B1 EP 0399079 B1 EP0399079 B1 EP 0399079B1 EP 89109499 A EP89109499 A EP 89109499A EP 89109499 A EP89109499 A EP 89109499A EP 0399079 B1 EP0399079 B1 EP 0399079B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- paper
- silicone
- copolymers
- methylhydrogensiloxane
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001296 polysiloxane Polymers 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000008569 process Effects 0.000 title abstract description 8
- 238000004132 cross linking Methods 0.000 claims abstract description 34
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 239000007787 solid Substances 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- 125000005375 organosiloxane group Chemical group 0.000 claims abstract 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 21
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 21
- 229920001577 copolymer Polymers 0.000 claims description 18
- -1 dimethylsiloxane Chemical class 0.000 claims description 16
- 229920001843 polymethylhydrosiloxane Polymers 0.000 claims description 15
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 7
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 7
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 6
- 150000003377 silicon compounds Chemical class 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 claims description 4
- 235000010443 alginic acid Nutrition 0.000 claims description 3
- 229920000615 alginic acid Polymers 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- NYMPGSQKHIOWIO-UHFFFAOYSA-N hydroxy(diphenyl)silicon Chemical class C=1C=CC=CC=1[Si](O)C1=CC=CC=C1 NYMPGSQKHIOWIO-UHFFFAOYSA-N 0.000 claims description 3
- PQPVPZTVJLXQAS-UHFFFAOYSA-N hydroxy-methyl-phenylsilicon Chemical class C[Si](O)C1=CC=CC=C1 PQPVPZTVJLXQAS-UHFFFAOYSA-N 0.000 claims description 3
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000004513 sizing Methods 0.000 claims description 3
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 3
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 claims description 2
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 claims description 2
- KSCAZPYHLGGNPZ-UHFFFAOYSA-N 3-chloropropyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CCCCl KSCAZPYHLGGNPZ-UHFFFAOYSA-N 0.000 claims description 2
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 claims description 2
- KNTKCYKJRSMRMZ-UHFFFAOYSA-N 3-chloropropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCCl KNTKCYKJRSMRMZ-UHFFFAOYSA-N 0.000 claims description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 claims description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229940072056 alginate Drugs 0.000 claims description 2
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- UJTGYJODGVUOGO-UHFFFAOYSA-N diethoxy-methyl-propylsilane Chemical compound CCC[Si](C)(OCC)OCC UJTGYJODGVUOGO-UHFFFAOYSA-N 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 2
- DRRZZMBHJXLZRS-UHFFFAOYSA-N n-[3-[dimethoxy(methyl)silyl]propyl]cyclohexanamine Chemical compound CO[Si](C)(OC)CCCNC1CCCCC1 DRRZZMBHJXLZRS-UHFFFAOYSA-N 0.000 claims description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 2
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 claims description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 2
- 230000000181 anti-adherent effect Effects 0.000 claims 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- UWVCSCFFSAPGAI-UHFFFAOYSA-N 3-[tris(2-methoxyethoxy)silyl]propan-1-amine Chemical compound COCCO[Si](CCCN)(OCCOC)OCCOC UWVCSCFFSAPGAI-UHFFFAOYSA-N 0.000 claims 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 claims 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 claims 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims 1
- 239000005995 Aluminium silicate Substances 0.000 claims 1
- 229920000881 Modified starch Polymers 0.000 claims 1
- 235000012211 aluminium silicate Nutrition 0.000 claims 1
- 229910000019 calcium carbonate Inorganic materials 0.000 claims 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 claims 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims 1
- 235000019426 modified starch Nutrition 0.000 claims 1
- 239000000454 talc Substances 0.000 claims 1
- 229910052623 talc Inorganic materials 0.000 claims 1
- 239000004408 titanium dioxide Substances 0.000 claims 1
- 239000012463 white pigment Substances 0.000 claims 1
- 239000002904 solvent Substances 0.000 abstract description 11
- 230000001133 acceleration Effects 0.000 abstract description 2
- 239000000123 paper Substances 0.000 description 101
- 239000000203 mixture Substances 0.000 description 24
- 238000001723 curing Methods 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000004447 silicone coating Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 229910000077 silane Inorganic materials 0.000 description 8
- 239000004971 Cross linker Substances 0.000 description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 150000001282 organosilanes Chemical class 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229920005573 silicon-containing polymer Polymers 0.000 description 5
- 229920006268 silicone film Polymers 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000012496 blank sample Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920004482 WACKER® Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 238000007774 anilox coating Methods 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- DNAJDTIOMGISDS-UHFFFAOYSA-N prop-2-enylsilane Chemical compound [SiH3]CC=C DNAJDTIOMGISDS-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000009681 x-ray fluorescence measurement Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/001—Release paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/24—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H19/32—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming a linkage containing silicon in the main chain of the macromolecule
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
- D21H19/62—Macromolecular organic compounds or oligomers thereof obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
Definitions
- the invention relates to release paper, a process for the production of release paper and a process for the production of silicone release paper.
- silicone polymers have excellent release properties against sticky substances, e.g. Have pressure sensitive adhesives. These silicone polymers are e.g. in amounts of 0.3 g / m to 3 g / m (calculated), usually only in amounts of 0.5 g / m to 1.0 g / m, applied to the coating base paper as a backing material in order to give the paper adhesive properties .
- the base papers to be coated are approximately 50% highly satinised kraft paper, but also a large number of other papers ("Das Textil" (1985), No. 10 A, p. V 92 - V 96).
- thermal crosslinking systems are used today.
- release papers are now coated with a special surface glue mainly with addition-crosslinking silicone systems, chain-like polymers with vinyl end groups being crosslinked by reaction with hydrogen siloxanes under the influence of temperature and in the presence of predominantly platinum catalysts (special print from the magazine "Adhesion” (1973), No. 7 ).
- Usual processing temperatures for convection drying are therefore approx. 180 ° C for silicone systems containing solvents, approx. 120 ° C to 150 ° C for aqueous silicone systems (emulsions) and approx. 150 ° C for solvent-free silicone systems.
- the curing speed is between 2 and 25 seconds.
- the polyaddition can also be disrupted by small amounts of inhibiting constituents in the paper. These so-called “catalyst poisons” can delay or, in extreme cases, prevent the crosslinking reaction (see “Allgemeine Textilrundschau” (1986), No. 14, pp. 367-368).
- This reference gives an overview of the release paper that has been customary up to now.
- the length of time the silicone systems are stored before using them increases the crosslinking time.
- unfavorable interfacial tensions between paper and silicone systems can also lead to flow disturbances and adhesion problems (see “Paper and plastics processor” (3-1982), No. 17, p. 30).
- the release paper is coated with the various silicone polymers on separate systems. This is mainly due to the high demands on the surface quality of the carrier material before the silicone coating, in particular low micro-roughness, high solvent tightness and uniform thickness in the longitudinal and transverse directions of the paper web. Therefore the Most of all raw papers smoothed in a separate supercalender. This is the only way to later apply a uniform silicone film with a high abhesive effect to the backing paper with relatively small amounts of coating. So far it has not been possible to siliconize abhesive papers for the technical sector with a defined and reproducible release force level within the paper machine. On-line siliconization is only carried out if the requirements for the abhesive effect are low, for example for baking release papers and sack papers with hydrophobic properties.
- the dried paper web is coated with silicone resins within the paper machine by means of conventional application devices, such as a size press or blade.
- aqueous silicone systems emulsions
- various film formers and thickeners e.g. starch, alginates, carboxymethyl cellulose (CMC) or polyvinyl alcohol (PVA) can be added in small proportions according to the technical information sheets of the silicone manufacturers, see for example "Paper”, vol. 193, N o 11 June 1980 36-37.
- the silicone resin used always forms the main component because it affects the Abphasesiv Bonus the coated paper primary.
- aqueous emulsions with addition of a catalyst are still crosslinkers, for example based on methyl hydrogen siloxanes and often also adhesives (eg water-soluble reactive silane esters) and "controlled release" additives.
- the pretreated base paper Before any further (separate) silicone coating, the pretreated base paper is partially still satined. More or less strong adhesive properties of the (on-line) coated base papers should always be achieved.
- the object of the present invention is to produce release papers, preferably within the paper machine, with surface properties which have better adhesion and faster crosslinking at a lower temperature subsequent separate coatings with customary different silicone systems allowed. As a result, faster crosslinking at a lower temperature than before and an increase in the coating speed previously used can also be achieved. Another advantage is the easier use of stored silicone systems, the reactivity of which is already more or less impaired.
- Another object of the invention is to provide an improved process for the production of silicone release papers.
- the release paper can be made machine-smooth or subjected to subsequent smoothing, for example in a super calender, before it is siliconized in a separate coating system.
- the ideal possibility should thus be opened to economically advantageously coat even surfaces of low micro-roughness with minimal silicone applications without flow problems and adhesion difficulties.
- Silicon savings through thinner coatings while simultaneously securing the desired (usually low) release forces were previously only possible with the use of plastic films, but this in turn has the disadvantage of a lower one have thermal resilience.
- Another advantage of the desired surface of release paper should be the extensive suppression of the negative influence of inhibiting paper components (catalyst poisons) on silicone crosslinking.
- the invention also includes release papers which are obtainable by the process according to claim 1.
- the main group B organopolysiloxanes have at least 3 silicon-bonded hydrogen atoms per molecule and are preferably copolymers of: Dimethylhydrogensiloxane, methylhydrogensiloxane, dimethylsiloxane and trimethylsiloxane units, copolymers of trimethylsiloxane units, methylhydrogensiloxane units and hydrogensiloxan-, copolymers of trimethylsiloxane, dimethylsiloxane and Methyhydrogensiloxanäen, copolymers of Methyhydrogensiloxan- and trimethylsiloxane units, copolymers of methylhydrogensiloxane, diphenylsiloxane and trimethylsiloxane units, copolymers of methylhydrogensiloxane -, dimethylhydrogensiloxane and diphenylsiloxane units, copolymers of methylhydrogensiloxane, pheny
- organopolysiloxanes are preferably not saturated with hydrogen and siloxane oxygen atoms Silicon valences saturated by methyl residues. Methods for the production of organopolysiloxanes of this type are generally known.
- organopolysiloxanes used for the purposes of the invention are emulsified in water. All known procedures and dispersants for the emulsification of organopolysiloxanes in water can be used.
- organofunctional alkoxysilanes assigned to main group A also include alkylalkoxysilanes.
- organofunctional alkoxysilanes are: 3-glycidyloxypropyltrimethoxysilane, N-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropyl-triethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl-tris (2-methoxyethoxyethoxethoxysiloxysiloxysiloxysilane) 3 mercaptopropylmethyldimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, ⁇ -chloromethyldi
- the following compounds are designated as typical representatives of the alkylalkoxysilanes: Methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, propylmethyldimethoxysilane, propylmethyldiethoxysilane, isobutyltrimethoxysilane and butyltrimethoxysilane.
- organ silanes have the ability to react with both an inorganic substrate and with organic polymers to form solid bonds. This is due to the structure of the silane molecule, which has alkoxy groups that can react with the active sites of the inorganic material after hydrolysis.
- silanes have a functional group that is firmly attached to the silicon atom via a carbon chain. This group can undergo chemical reactions with suitable resins.
- organic silicon compounds mentioned are used alone or in combination with conventional impregnation or surface glue compositions for release base papers, which mostly consist of the film formers alginate, starch, CMC, PVA or other polymer solutions and polymer dispersions (latices) chemical structure exist, added proportionately.
- the organic silicon compounds are preferably added in proportions of 1 to 15% (calculated) of the usual surface preparation. Too large proportions lead to undesirable side effects such as the adhesive properties of the paper. In addition, these additions of organic silicon compounds represent an additional cost factor.
- the desired surface of release papers by means of silicone additives becomes a completely different chemical structure and properties than that of the aqueous silicone systems (emulsions) mentioned to the usual impregnation or surface solution, which in the paper machine on the almost dry paper web with a solid moisture content of 2 to 12% with usual Application devices are applied, achieved.
- Roller and doctor blade applicators or dip impregnation devices are known as customary application devices for surface finishing of release paper.
- a conventional solvent-free polysiloxane system with the following composition was used for the silicone coating.
- the coated paper was placed on a metal sieve in a circulating air oven operated at 150 ° C.
- the crosslinking time was set differently in order to follow the influence of the silanes on the crosslinking and anchoring process.
- Table 1 only the shortest crosslinking times are recorded, during which a complete hardening and anchoring of the silicone layer is still guaranteed.
- the paper samples hardened at different times were immediately subjected to a scratch test, with the finger being rubbed 8-10 times over the silicone film. The pressure is selected so that the fingertip heats up significantly when rubbed. A disruption in the silicone coating shows up in the form of rubbed off rubles and as a smeared area if you look at the paper sheet under the bevel.
- a paper As a reference paper (blank), i.e. a paper without silane additive, a paper was used which had also gone through the treatment stages described above, but contained no addition of the organosilanes mentioned in part a) in the PVA.
- Example 1 The procedure of Example 1 was repeated with one exception, only the pH of the PVA mixture was adjusted to 9.5 with ammonia. The minimum crosslinking time for this paper is shown in Table 1.
- Example 1 The procedure of Example 1 was repeated, but instead of 5 g of 3-aminopropyltriethoxysilane in the PVA solution, 5 g of N-aminoethyl-3-aminopropyltrimethoxysilane were added.
- the shortest crosslinking time for a paper coated in this way is shown in Table 1 below.
- Example 3 The procedure of Example 3 was repeated, only the pH of the PVA mixture was raised to 9.5 this time with ammonia.
- the result of the cross-linking test is shown in Table 1.
- Example 1 The procedure of Example 1 was repeated. Instead of 5 g of 3-aminopropyltriethoxysilane to the PVA solution, 5 g of a mixture of vinyltriacetoxysilane and triemethoxyepoxy-functional silane were added. The shortest crosslinking time for paper provided with such a line can be seen from Table 1.
- Example 5 The procedure of Example 5 was repeated, but the pH of the PVA mixture was raised to 9.5 with ammonia. The result of the cross-linking test is recorded in the table below.
- the crosslinking time for the subsequent silicone coating was reduced by 10 to 80% compared to the blank samples (without the addition of silicone).
- This paper finished in this way was additionally satinized in a 16-roll supercalender at a pressure of 330 kN / m and a speed of 300 m / min.
- the test was repeated according to the production process described in Example 7, but with a different surface formulation.
- organosilane was used.
- the line recipe used here had the following composition: 100 parts of PVA 10 parts CMC 11 parts of silane mixture according to Ex. 5 The pH of this mixture was adjusted to 4.0 with sulfuric acid.
- the papers produced according to Examples 7 and 8 were siliconized with a width of 1 m on a Revo 303 A coating system from the Kroenert / Hamburg machine factory. This pilot plant is designed for a maximum speed of 200 m / min.
- the two surface-refined test papers were made together with a paper product which also corresponds to that in Examples 7 and 8 described method had been prepared, but contained no organosilane in the line (zero sample), coated with a solvent-based silicone system of the following composition: 80 parts white spirit 15 parts Si-adhesive 930 0.5 part of crosslinker V 93 0.05 parts of catalyst OL
- the solids content of this coating composition was 5% and the viscosity according to Ford-Becher was 12 s.
- the silicone was applied to the paper web by means of an anilox roller (40 screen per cm). The air temperature in the floating dryer was set to 190 ° C.
- the degree of curing was determined immediately after the siliconization directly on the coated rolls using the finger abrasion test described in Example 1 and using Tesa 104 adhesive tape. In this series of tests, the web speed was varied, while the drying temperature remained constant at 190 ° C.
- Table 2 Paper type Silicone application g / m Max. Speed m / min Separation force, mN / cm after 20 h after 4 weeks K-7476 A-8475 K-7476 A-7475 Blank test 0.4 150 303 74 210 103 Paper from example 7 0.4 163 308 69 244 72 Paper from example 8 0.4 165 281 63 197 60
- the coating speed could be increased by about 10% compared to the blank sample with approximately the same level of release forces after siliconization.
- the separation forces were measured according to FINAT test method No.10 (FTM 10).
- FTM 10 FINAT test method No.10
- a rubber adhesive tape K-7476 and an acrylic adhesive tape A-7475 were used as adhesive tapes.
- the measurements were carried out in a tensile tester by peeling the adhesive tape off the silicone-coated test paper at an angle of 180 ° and a clamp speed of 300 mm / min.
- the amounts of silicone applied were determined by means of X-ray fluorescence measurements.
- test papers produced according to Examples 7 and 8 were also coated on the coating system mentioned above with silicone systems on a solvent-free basis. A four-roll application unit was used for this. Since the maximum speed of the system of 200 m / min was already reached with the reference paper (blank sample), the minimum temperature for complete hardening of the silicone coating at a constant maximum speed of 200 m / min was sought in this test series instead.
- the minimum temperature for curing the silicone coatings could be reduced by approx. 5 to 10%.
- Example 10 The procedure of Example 10 was repeated. Another system, also on a solvent-free basis, was used for the silicone coating.
- the coating composition had the following composition: 100 parts of Silcolease 8000 (ICI) base polymer silicone from ICI 2 parts Silicone Crosslinker 95 A 2 parts Silicone Crosslinker 96 A 4 parts Catalyst 95 B.
- Silcolease 8000 ICI
- the minimum temperature for curing the silicone coatings could again be reduced by approximately 5 to 10%.
- the following coating system was used for the solvent-free siliconization: 100 parts of Rhodorsil 11347 silicone polymer from Rhone-Poulanc 3 parts catalyst 11091 for the base polymer.
- test papers were coated at a speed of 200 m / min. The lowest curing temperatures were again determined, as can be seen from Table 5.
- release force values and the silicone application quantities were determined in accordance with Example 9.
- Table 5 Paper type Silicone application g / m Minimum temp. ° C for curing Separation force, mN / cm after 20 h after 4 weeks K-7476 A-7475 K-7476 A-7475 Zero sample 2.0 150 152 225 140 246
- the application weight was around 1.5 g / m (calculated).
- the uncoated base paper had an air permeability according to Schopper of 62 cm / min and a degree of sizing according to Cobb-Unger of 50 g / m.
- the paper treated with it was satinized in a laboratory calender.
- the line pressure was 4000 dN.
- the surface temperature of the steel roller was 100 ° C.
- Example 6 The further processing of the test paper was carried out as described in part b) of Example 1. The results of the crosslinking test are summarized in Table 6.
- Example 13 The procedure of Example 13 was repeated. After adding the organopolysiloxane emulsion, the pH was 5.5. The results of the crosslinking test are shown in Table 6 below.
- Example 13 The procedure of Example 13 was repeated, but instead of coating the test paper with the solvent-free silicone system described in part b) of Example 1, a solvent-containing system with the following composition was chosen: 74 parts white spirit 20 parts Silcolease 7420 (ICI) base siloxane 0.2 parts Crosslinking Agent 91 A crosslinker 0.8 parts Catalist 90 B
- the siliconization was carried out analogously to Example 1, part b) a laboratory doctor device, the silicone application again being about 1 g / m (calculated). The shortest networking times determined are shown in Table 5.
- Example 14 The procedure of Example 14 was repeated. However, the laboratory siliconization was carried out using the solvent-containing silicone system described in Example 15. The minimum required networking times are shown in Table 6.
- Example 13 The procedure of Example 13 was repeated. However, instead of 3.5 this time, 7 g of the organopolysiloxane emulsion were added to the solution of 22 g of polyvinyl alcohol and 3 g of carboxymethyl cellulose in 475 g of water, with stirring. The pH of this mixture was again adjusted to 4.0 with sulfuric acid. The further processing corresponded to the procedure described in Example 13. The results of the crosslinking test are summarized in Table 6.
- Example 17 The procedure of Example 17 was repeated, the pH the stroke mix, however, is set to 5.5.
- the results of the crosslinking test are shown in Table 6.
- Example 17 The procedure of Example 17 was repeated. However, the test paper was coated with a solvent-containing silicone system from ICI. The composition of this coating composition has already been described in Example 15. The results of the crosslinking test are shown in Table 6.
- Example 18 The procedure of Example 18 was repeated. However, the laboratory siliconization was carried out using the solvent-containing silicone system described in Example 15. The required shortest networking times are shown in Table 6.
- Paper samples were used as a comparison (zero sample), which had been surface-finished with a mixture consisting of 22 g of polyvinyl alcohol and 3 g of carboxymethyl cellulose in 475 g of water, but without any addition of organopolysiloxane emulsion.
- the pH values of these surface preparations were adjusted to 4.0 as well as 5.5.
- the laboratory siliconization was carried out using the silicone systems described in part b) of Example 1 and in Example 15.
- the required minimum crosslinking time can be found in Table 6.
- Table 6 Test paper pH value of the surface preparation minimum required crosslinking time, s (150 ° C) 4.0 5.5 LF * LH * 1.Example 13 X 8th 2.
- Example 14 X 12th 3.Example 15 X 15 4.Example 16 X 18th 5.Example 17 X 5 6.Example 18 X 8th 7.Example 19 X 15 8.Example 20 X 18th 9.
- Sample 1 as a comparison (Ex. 21-22)
- X 10th 20th 10.Null sample 2 as a comparison (Ex. 23-24)
- X 15 20th * LF solvent-free silicone system) approx.
- LH solvent-containing silicone system) 1 g / m (solid) silicone application.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paper (AREA)
- Adhesive Tapes (AREA)
- Silicon Polymers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
- Die Erfindung betrifft Trennrohpapiere, ein Verfahren zur Herstellung von Trennrohpapieren und ein Verfahren zur Herstellung von Silicontrennpapier.
- Es ist bekannt, daß spezielle Siliconpolymere hervorragende Trenneigenschaften gegenüber klebrigen Stoffen, z.B. Haftklebstoffen besitzen. Diese Siliconpolymere werden z.B. in Mengen von 0,3 g/m bis 3 g/m (festgerechnet), meist nur in Mengen von 0,5 g/m bis 1,0 g/m auf das Beschichtungsrohpapier als Trägermaterial aufgebracht, um dem Papier abhäsive Eigenschaften zu verleihen. Als zu beschichtende Rohpapiere werden zu ca. 50% hochsatinierte Natronkraftpapiere, daneben aber auch noch eine Vielzahl anderer Papiere verwendet ("Das Papier"(1985), Nr. 10 A, S. V 92 - V 96).
- Die als dünner Film auf das Trägerpapier aufgebrachten Siliconpolymere können
- Lösungsmittelsilicone,
- Dispersionssilicone (wässrige Emulsione) oder
- lösungsmittelfreie Silicone
- Wärme,
- UV-Strahlung oder
- Elektronenstrahlung
- Bis auf wenige Ausnahmen werden aber heute thermisch vernetzende Systeme verwendet.
- Je nach Wahl des thermisch vernetzenden Systems läuft dabei eine
- Kondensationspolymerisation oder eine
- Additionspolymerisation
- Aufgrund kürzester Aushärtezeiten werden heute Trennrohpapiere mit einer speziellen Oberflächenverleimung vorwiegend mit additionsvernetzenden Siliconsystemen beschichtet, wobei kettenförmige Polymere mit Vinylendgruppen durch Reaktion mit Wasserstoffsiloxanen unter Temperatureinwirkung und in Gegenwart von vorwiegend Platinkatalysatoren vernetzt werden (Sonderdruck aus der Zeitschrift "Adhäsion" (1973), Nr. 7).
- Die Polyaddition benötigt jedoch relativ hohe Mindesttemperaturen als sogenannte Anspringtemperaturen. Aus wirtschaftlichen Erwägungen wird diese Mindesttemperatur oft weit überschritten, um zu kürzeren Vernetzungszeiten (entspricht höheren Beschichtungsgeschwindigkeiten) zu gelangen.
- Übliche Verarbeitungstemperaturen bei der Konvektionstrocknung sind deshalb
ca. 180°C bei lösungsmittelhaltigen Siliconsystemen,
ca. 120°C bis 150°C bei wässrigen Siliconsystemen (Emulsionen) und
ca. 150°C bei losungsmittelfreien Siliconsystemen. - Die Aushärtegeschwindigkeit beträgt dann je nach Art des verwendeten Siliconsystems (einschließlich Additive) und des einwirkenden Temperaturniveaus zwischen 2 und 25 Sekunden.
- Daraus ergeben sich industriell zu realisierende Beschichtungsgeschwindigkeiten zwischen 150m/min bis 300m/min.
- Die Polyaddition kann außerdem bereits durch geringe Anteile inhibierender Bestandteile im Papier gestört werden. Diese sogenannten "Katalysatorgifte" können zur Verzögerung oder im extremen Fall zur Verhinderung der Vernetzungsreaktion führen (s."Allgemeine Papierrundschau" (1986), Nr. 14, S. 367-368). Diese Literaturstelle gibt einen Überblick über die bisher üblichen Trennrohpapiere. Ebenso wird durch längere Lagerung der Siliconsysteme vor ihrer Verwendung die Vernetzungszeit erhöht. Bei extrem glatten Papieroberflächen können außerdem aufgrund ungünstiger Grenzflächenspannungen zwischen Papier und Siliconsystemen Verlaufsstörungen und Haftungsschwierigkeiten auftreten ( s. "Papier- und Kunststoffverarbeiter" (3-1982), Nr. 17, S. 30).
- Im allgemeinen wird die Beschichtung von Trennrohpapier mit den verschiedenen Siliconpolymeren auf separaten Anlagen durchgeführt. Das erklärt sich vor allem aus den hohen Anforderungen an die Oberflächengüte des Trägermaterials vor der Siliconbeschichtung, insbesondere geringe Mikrorauheit, hohe Lösungsmitteldichtigkeit und gleichmäßige Dicke in Längs- und Querrichtung der Papierbahn. Deshalb wird der größte Anteil aller Rohpapiere in einem separaten Superkalander nachgeglättet. Nur dadurch ist es möglich, später mit relativ geringen Beschichtungsmengen einen gleichmäßigen Siliconfilm hoher Abhäsivwirkung auf das Trägerpapier aufzubringen. Es ist bisher noch nicht gelungen, Abhäsivpapiere für den technischen Sektor mit definiertem und reproduzierbarem Trennkraftniveau innerhalb der Papiermaschine zu siliconisieren. Lediglich bei geringen Anforderungen an die Abhäsivwirkung, z.B. bei Backtrennpapieren und Sackpapieren mit hydrophoben Eigenschaften wird eine on-line-Siliconisierung vorgenommen. Dabei wird die getrocknete Papierbahn innerhalb der Papiermaschine mittels üblicher Auftragseinrichtungen, wie Leimpresse oder Blade mit Siliconharzen beschichtet.
- Hierzu werden wässrige Siliconsysteme (Emulsionen) verwendet, denen lt. technischer Informationsblätter der Siliconhersteller verschiedene Filmbildner und Verdickungsmittel (z.B. Stärke, Alginate, Carboxymethylcellulose (CMC) oder Polyvinylalkohol (PVA) in geringen Anteilen zugesetzt werden können, siehe z.B. "Paper", Jg.193, No11, Juni 1980, S.36-37. Das verwendete Siliconharz bildet dabei immer die Hauptkomponente, da es die Abhäsivwirkung des beschichteten Papiers primär beeinflußt. Den meist 50%igen wässrigen Emulsionen mit Katalysatorzusatz, z.B. auf der Basis von Polydimethylsiloxanen, werden noch Vernetzer, z.B. auf der Basis von Methylwasserstoffsiloxanen und oft auch noch Haftmittel (z.B. wasserlösliche reaktive Silanester) sowie "Controlled Release"-Additive zugesetzt.
- Vor einer evtl. weiteren (separaten) Siliconbeschichtung wird das so vorbehandelte Rohpapier z.T. noch satiniert. Es sollen stets mehr oder weniger starke Abhäsiveigenschaften der somit (on-line) beschichteten Rohpapiere erzielt werden.
- Aufgabe der vorliegenden Erfindung ist es, Trennrohpapiere, vorzugsweise innerhalb der Papiermaschine, mit Oberflächeneigenschaften herzustellen, die eine bessere Haftung und schnellere Vernetzung bei niedrigerer Temperatur nachfolgender separater Beschichtungen mit üblichen unterschiedlichen Siliconsystemen gestattet.
Dadurch wird ebenfalls eine schnellere Vernetzung bei niedriger Temperatur als bisher und eine Erhöhung der bisher üblichen Beschichtungsgeschwindigkeit erreichbar. Ein weiterer Vorteil ist die problemlosere Verwendung von gelagerten Siliconsystemen, deren Reaktionsfähigkeit bereits mehr oder weniger beeinträchtigt ist. - Zusätzlich sollte damit eine evtl. Schädigung des Papiers durch zu hohe oder zu lange Temperatureinwirkung, die zu Festigkeitsverlusten des Papiers führt, verhindert oder reduziert werden.
- Eine weitere Aufgabe der Erfindung ist, ein verbessertes Verfahren zur Herstellung von Silicontrennpapieren bereitzustellen.
- Das Trennrohpapier kann dabei maschinenglatt hergestellt werden oder einer nachträglichen Glättung, z.B. in einem Superkalander unterworfen werden, bevor es in einer separaten Beschichtungsanlage siliconisiert wird. Vor allem bei letztgenannten hochsatinierten und damit besonders glatten Trennrohpapieren sollte damit die ideale Möglichkeit eröffnet werden, auch Oberflächen geringer Mikrorauheit mit minimalen Siliconaufträgen ohne Verlaufstörungen und Haftungsschwierigkeiten wirtschaftlich vorteilhaft zu beschichten. Siliconeinsparungen durch dünnere Beschichtungen bei gleichzeitiger Sicherung der gewünschten (meist niedrigen) Trennkräfte waren bisher nur bei Verwendung von Kunststoffolien möglich, die aber wiederum den Nachteil einer geringeren thermischen Beanspruchbarkeit aufweisen.
Ein weiterer Vorteil der angestrebten Oberfläche von Trennrohpapieren sollte die weitgehende Unterdrückung des negativen Einflusses von inhibierend wirkenden Papierbestandteilen (Katalysatorgifte) auf die Siliconvernetzung sein. - Gelöst werden diese Aufgaben durch den Einsatz einer Oberflächenpräparation gemäß dem Kennzeichen von Anspruch 1 bzw. durch das Verfahren gemäß Anspruch 9.
- Die Erfindung umfaßt auch Trennrohpapiere, welche durch das Verfahren gemäß Anspruch 1 erhältlich sind.
- Die Organopolysiloxane der Hauptgruppe B weisen mindestens 3 Silicium-gebundene Wasserstoffatome je Molekül auf und sind vorzugsweise Mischpolymerisate aus:
Dimethylhydrogensiloxan-, Methylhydrogensiloxan-, Dimethylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxaneinheiten, hydrogensiloxan- und Methylhydrogensiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxan-, Dimethylsiloxan- und Methyhydrogensiloxaneinheiten, Mischpolymerisate aus Methyhydrogensiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Diphenylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylhydrogensiloxan- und Diphenylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Phenylmethylsiloxan-, Trimethylsiloxan und/oder Dimethylhydrogensiloxaneinheiten, Mischpolymerisate aus Methylhydrogeneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylsiloxan-, Diphenylsiloxan- und Trimethylsiloxan und/oder Dimethylhydrogensilosaneinheiten und/oder Mischpolymerisate aus Dimethylhydrogensiloxan, Trimethylsiloxan, Phenylhydrogensiloxan-, Dimethylsiloxan- und/oder Phenylmethylsiloxaneinheiten. - Vorzugsweise sind jedoch in den Organopolysiloxanen alle nicht durch Wasserstoff und Siloxansauerstoffatome abgesättigten Siliciumvalenzen durch Methylreste abgesättigt. Verfahren zur Herstellung von Organopolysiloxanen dieser Art sind allgemein bekannt.
- Die für die Anwendungszwecke der Erfindung eingesetzten Organopolysiloxane sind in Wasser emulgiert. Dabei können alle für das Emulgieren von Organopolysiloxanen in Wasser bekannten Arbeitsweisen und Dispergiermittel angewandt werden.
- Die der Hauptgruppe A zugeordneten organofunktionelle Alkoxysilane, die erfindungsgemäß ebenfalls eingesetzt werden, umfassen auch Alkylalkoxysilane. Als Beispiele für organofunktionelle Alkoxysilane seien genannt:
3-Glycidyloxypropyltrimethoxysilan, N-Aminoethyl-3-aminopropyltrimethoxysilan, 3-Aminopropyl-triethoxysilan, 3-Aminopropylmethyldiethoxysilan, 3-Aminopropyltrimethoxysilan, 3-Aminopropyl-tris(2-methoxyethoxyethoxy) silan, 3-Methacryloxypropyltrimethoxysilan, 3-Mercaptopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3 Mercaptopropylmethyldimethoxysilan, 3-Chlorpropyltriethoxsilan, 3-Chlorpropyltrimethoxysilan, 3-Chlorpropylmethyldimethoxysilan, α-Chlormethyldimethylmethoxysilan, Vinyltriethoxysilan-Viniyltrimethoxysilan und Vinylmethyldimethoxysilan. - Als typische Vertreter für die Alkylalkoxysilane werden folgende Verbindungen bezeichnet:
Methyltrimethoxysilan, Methyltriethoxysilan, Propyltrimethoxysilan, Methyltriethoxysilan, Propyltrimethoxysilan, Propylmethyldimethoxysilan, Propylmethyldiethoxysilan, Isobutyltrimethoxysilan und Butyltrimethoxysilan. - Es ist bekannt, daß solche Organsilane die Fähigkeit besitzen, sowohl mit einem anorganischen Untergrund als auch mit organischen Polymeren unter Ausbildung fester Bindungen zu reagieren. Das ist bedingt durch den Aufbau des Silanmoleküls, das Alkoxygruppen besitzt, die nach erfolgter Hydrolyse mit den aktiven Stellen des anorganischen Materials reagieren können. Außerdem besitzen Silane eine funktionelle Gruppe, die über eine Kohlenstoffkette fest an das Siliciumatom gebunden ist. Diese Gruppe kann mit geeigneten Harzen chemische Reaktionen eingehen.
- Die genannten organischen Siliciumverbindungen werden allein oder in Kombination üblichen Imprägnier- oder Oberflächenleimzusammensetzungen für Trennrohpapiere, die meist aus den Filmbildnern Alginat, Stärke, CMC, PVA oder anderen Polymerlösungen sowie Polymerdispersionen (Latices) unterschiedlicher chemischer Struktur bestehen, anteilig zugesetzt.
- Die organischen Siliciumverbindungen werden vorzugsweise in Anteilen von 1 bis zu 15 % (fest gerechnet) der üblichen Oberflächenpräparation zugesetzt. Zu große Anteile führen zu unerwünschten Nebenwirkungen wie zu abhäsiven Eigenschaften des Papiers. Außerdem stellen diese Zusätze organischer Siliciumverbindungen einen zusätzlichen Kostenfaktor dar.
- Erfindungsgemäß wird die angestrebte Oberfläche von Trennrohpapieren durch Siliconzusätze völlig anderer chemischer Struktur und Eigenschaften als die der angeführten wässrigen Siliconsysteme (Emulsionen) zur üblichen Imprägnier- oder Oberflächenlösung, die in der Papiermaschine auf die nahezu trockene Papierbahn mit einem Festfeuchtgehalt von 2 bis 12 % mit üblichen Auftragsvorrichtungen aufgebracht werden, erreicht. Als übliche Auftragsvorrichtungen zur Flächenveredelung von Trennrohpapieren sind Walzen- und Rakelauftragswerke oder Tauchimprägniervorrichtungen bekannt.
- Nachfolgende Beispiele sollen die Erfindung erläutern. In den folgenden Beispielen beziehen sich alle Angaben von Prozentsätzen und Teilen jeweils auf das Gewicht (fest gerechnet).
-
- a. In einen Glasbehälter mit 500 g Wasser wurden 50 g eines vollverseiften Polyvinylalkoholproduktes gegeben. Die pH-Wert-Einstellung der Suspension erfolgte mit Schwefelsäure auf 4,0, wonach die Mischung in einem Wasserbad auf 90°C aufgewärmt wurde. Die Kochzeit der Polyvinylalkohol (PVA)-Suspension betrug 20 min, wobei sich das PVA-Granulat völlig im Wasser löste. Nach dem Kochvorgang wurden in die PVA-Lösung 5 g 3-Aminopropyltriethoxysilan mit Hilfe eines Rührwerkes eingerührt, wonach die Mischung eine Stunde bei 60°C stehen gelassen wurde. Bei Bedarf erfolgte eine Korrektur des pH-Wertes auf 4,0 mit Schwefelsäure nach der Silanzugabe. Die in diese Weise aufbereitete Mischung wurde später mit einr Laborleimpresse auf ein unsatiniertes Papier mit einem Flächengewicht von 66 g/m² aufgetragen. Das Auftragsgewicht lag bei etwa 1,5 g/m². Vor dem Auftragen wurde die Oberflächenpräparation mit Wasser auf einen Feststoffgehalt von 5% verdünnt. Das unbehandelte Rohpapier wies eine Luftdurchlässigkeit nach Schopper von 62 cm³/min und einen Leimungsgrad nach Cobb-Unger von 50 g/m² auf.
Nach erfolgter Trocknung und Wiederbefeuchtung wurde das damit oberflächenbeschichtete Papier in einem Zweiwalzen-Laborkalander satiniert. Der Liniendruck betrug dabei 4000 dN/cm. Die Stahlwalze wies eine Oberflächentemperatur von 100°C auf.
Das so erhaltene Papier wurde in einem Laborverfahren siliconisiert. Die Siliconisierung erfolgte mit einem Rakelauftragsgerät des Typs KCC 302, das mit Hilfe verschiedener drahtumwickelter Metallstäbe das jeweilige Silicon mit konstanter Geschwindigkeit auf die Papierbogen aufträgt. - Für die Siliconbeschichtung wurde ein herkömmliches lösungsmittelfreies Polysiloxansystem mit folgener Zusammensetzung eingesetzt.
100 Teile Si-Dehäsiv 920 der Fa. "Wacker Chemie GmbH" basispologener Silicone, lösungsmittelfrei
80 Teile Testbenzin (Siedebereich 60-80°C)
2,5 Teile Vernetzer für das Silicon
1,0 Teile Katalysator für Silicon
Die Siliconauftragsmenge betrug etwa 1 g/m² (fest gerechnet). - Zur Vernetzung der aufgetragenen Siliconschicht wurde das beschichtete Papier in einem bei 150°C betriebenen Umluftofen auf ein Metallsieb gelegt.
- Die Vernetzungszeit wurde unterschiedlich eingestellt, um den Einfluß der Silane auf den Vernetzungs- und Verankerungsvorgang zu verfolgen. In der nachstehenden Tabelle 1 sind nur die kürzesten Vernetzungszeiten aufgezeichnet, bei denen noch eine völlige Aushärtung und Verankerung der Siliconschicht gewährleistet ist. Die bei verschiedenen Zeiten gehärteten Papiermuster wurden sofort einem Rubbeltest unterworfen, wobei mit dem Finger 8-10 mal über den Siliconfilm gerieben wird. Der Druck wird so gewählt, daß sich die Fingerspitze beim Reiben deutlich erwärmt. Eine Störung in der Siliconbeschichtung zeigt sich in Form von abgeriebenen Wülsten ("rub off") und als matte Stelle ("smear"), wenn man den Papierbogen unter dem Schräglicht betrachtet.
- Als Vergleichspapier (Nullprobe), d.h. ein Papier ohne Silanzusatz, wurde ein Papier eingesetzt, das ebenfalls die oben beschriebenen Behandlungsstufen durchlaufen hatte, aber keinen Zusatz der im Teil a) erwähnten Organsilane in der PVA enthielt.
- Die Arbeitsweise des Beispiels 1 wurde mit einer Ausnahme wiederholt, lediglich der pH-Wert der PVA-Mischung wurde mit Ammoniak auf 9,5 eingestellt. Die Mindestvernetzungszeit dieses so hergestellten Papiers ist aus der Tabelle 1 zu entnehmen.
- Die Arbeitsweise des Beispiels 1 wurde wiederholt, aber statt 5 g 3-Aminopropyltriethoxysilan in die PVA-Lösung wurden 5 g N-Aminoethy-3-aminopropyltrimethoxysilan zugegeben. Die kürzeste Vernetzungszeit eines so beschichteten Papiers ist in der nachstehenden Tabelle 1 ausgewiesen.
- Die Arbeitsweise des Beispiels 3 wurde wiederholt, lediglich der pH-Wert der PVA-Mischung wurde diesmal mit Ammoniak auf 9,5 angehoben. Das Ergebnis des Vernetzungstests ist der Tabelle 1 zu entnehmen.
- Die Arbeitsweise des Beispiels 1 wurde wiederholt. Statt 5 g 3-Aminopropyltriethoxysilan zur PVA-Lösung wurden aber 5 g einer Mischung aus Vinyltriacetoxysilan und Triemethoxyepoxyfunktionellem Silan zugegeben. Die kürzeste Vernetzungszeit bei mit einem solchen Strich versehenen Papier ist aus der Tabelle 1 zu entnehmen.
- Die Arbeitsweise des Beispiels 5 wurde wiederholt, der pH-Wert der PVA-Mischung aber mit Ammoniak auf 9,5 angehoben. Das Ergebnis des Vernetzungstests ist in der nachstehenden Tabelle aufgezeichnet.
Tabelle 1 Beispiel Menge, bezoggen auf PVA pH-Wert kürzeste Vernetzungszeit in s,bei der eine völlige Aushärtung gegeben ist 1 10 % 4,0 13 2 10 % 9,5 5 3 10 % 4,0 4 4 10 % 9,5 4 5 10 % 4,0 5 6 10 % 9,5 18 Null-probe 1 4,0 20 Null-probe 2 9,5 20 - Durch den erfindungsgemäßen Zusatz der aufgeführten Organosilane zur Modifizierung der Papieroberfläche wurde gegenüber den Nullproben (ohne Siliconzusatz) die Vernetzungszeit für die nachfolgende Siliconbeschichtung um 10 bis 80% reduziert.
- Es wurde oberflächengeleimtes Rohpapier mit Silanzusätzen auf einer Papiermaschine hergestellt. Die Papiermaschine wies eine Breite von ca. 2,20 m auf und erreichte bei dem Versuch eine Geschwindigkeit von ca. 410 m/min. Der silanhaltige Oberflächenauftrag wurde in einer Leimpresse, einem Zweiwalzenauftragswerk, auf die Bahn aufgetragen. Das Papier bestand aus je 50% aus vollgebleichtem Langfaserzellstoff und Kurzfaserzellstoff. Es wurden keine Füllstoffe zudosiert. Das Flächengewicht des auf diese Weise produzierten Papiers lag bei 67 g/m . Als Organosilankomponente wurde 3-Aminopropyltriethoxysilan eingesetzt. Dieses hatte einen Wirkstoffgehalt von 40%. Die Oberflächenpräparation, die in der Leimpresse der Papiermaschine auf das Rohpapier aufgetragen wurde, hatte folgende Zusammensetzung:
100 Teile PVA
10 Teile CMC
28 Teile Aminosilan (HW), handelsüblich. - Der pH-Wert dieser Mischung wurde mit Ammoniak auf 9,7 gehoben. Dieses so oberflächenveredelte Papier wurde zusätzlich in einem 16-Walzen-Superkalander bei einem Druck von 330 kN/m und einer Geschwindigkeit von 300 m/min satiniert.
- Nach dem im Beispiel 7 beschriebenen Herstellungsverfahren, jedoch mit einer anderen Oberflächenrezeptur, wurde der Versuch wiederholt. In diesem Fall wurde Organosilan eingesetzt. Die hierbei verwendete Strichrezeptur wies folgende Zusammensetzung auf:
100 Teile PVA
10 Teile CMC
11 Teile Silanmischung gemäß Beisp. 5
Der pH-Wert dieser Mischung wurde mit Schwefelsäure auf 4,0 eingestellt. - Die gemäß der Beispiele 7 und 8 hergestellten Papiere wurden mit einer Breite von 1 m auf einer Beschichtungsanlage des Typs Revo 303 A von der Maschinenfabrik Kroenert/Hamburg silikonisiert. Diese Technikumsanlage ist für eine Höchstgeschwindigkeit von 200 m/min ausgelegt. Die beiden oberflächenveredelten Versuchspapiere wurden zusammen mit einem Papierprodukt, das ebenfalls nach dem in den Beispielen 7 und 8 beschriebenen Verfahren hergestellt worden war, aber kein Organosilan im Strich enthielt (Null-Probe), mit einem Siliconsystem auf Lösungsmittelbasis folgender Zusammensetzung beschichtet:
80 Teile Testbenzin
15 Teile Si-Dehäsiv 930
0,5 Teile Vernetzer V 93
0,05 Teile Katalysator OL
Der Feststoffgehalt dieser Beschichtungsmasse betrug 5% und die Viskosität nach Ford-Becher lag bei 12 s.Das Silicon wurde auf die Papierbahn mittels einer Rasterwalze (40 Raster pro cm) aufgetragen. Die Lufttemperatur im Schwebetrockner war auf 190°C eingestellt. - Der Grad der Aushärtung wurde sofort nach der Siliconisierung direkt an den beschichteten Rollen mit dem in Beispiel 1 beschriebenen Fingerabriebtest und mit Hilfe von Klebeband Tesa 104 bestimmt. In dieser Versuchsreihe wurde die Bahngeschwindigkeit variiert, während die Trockungstemperatur bei 190°C konstand blieb.
- Die Ergebnisse dieser Versuche sind in der Tabelle 2 zusammengestellt:
Tabelle 2 Papiersorte Siliconauftrag g/m max. Geschwindigkeit m/min Trennkraft, mN/cm nach 20 h nach 4 Wochen K-7476 A-8475 K-7476 A-7475 Nullprobe 0,4 150 303 74 210 103 Papier aus dem Beispiel 7 0,4 163 308 69 244 72 Papier aus dem Beispiel 8 0,4 165 281 63 197 60 - Die Beschichtungsgeschwindigkeit konnte im Vergleich zur Nullprobe um etwa 10% bei etwa gleichem Niveau der Trennkräfte nach Siliconisierung erhöht werden.
- Die Trennkräfte wurden nach der FINAT-Testmethode Nr.10(FTM 10) gemessen. Als Klebebänder wurden ein Kautschukklebeband K-7476 und ein Acrylatklebeband A-7475 verwendet. Die Messungen erfolgten in einem Zugprüfgerät, indem das Klebeband von dem mit Silicon beschichteten Versuchspapier unter einem Winkel von 180° und einer Klemmengeschwindigkeit von 300 mm/min abgeschält wurde. Die Siliconauftragsmengen wurden mittels Röntgenfluoreszenz-Messungen ermittelt.
- Die gemäß der Beispiele 7 und 8 hergestellten Versuchspapiere wurden ebenfalls auf der oben genannten Beschichtungsanlage mit Siliconsystemen auf lösungsmittelfreier Basis beschichtet. Hierzu wurde ein Vier-Walzen-Auftragswerk benutzt. Da schon mit dem Vergleichspapier (Nullprobe) die maximale Geschwindigkeit der Anlage von 200 m/min erreicht wurde, wurde in dieser Versuchsreihe stattdessen nach der Mindesttemperatur für eine völlige Aushärtung der Siliconbeschichtung bei einer konstanten Höchstgeschwindigkeit von 200 m/min gesucht.
- Für die Papierbeschichtung wurde folgendes Siliconsystem eingesetzt:
100 Teile Wacker Si-Dehäsiv 920
2,5 Teile Vernetzer VP 1524
1,0 Teile Katalysator OL
Die Ergebnisse dieser Versuchsreihe sind aus Tabelle 3 zu entnehmen.Tabelle 3 Papiersorte Siliconauftrag g/m Mindesttemp.°C für Aushärtung Trennkraft, mN/cm nach 20 h nach 4 Wochen K-7476 A-7475 K-7476 A-7475 Nullprobe 1,4 150 196 38 164 35 Papier des Beispiels 7 1,5 145 205 35 187 36 Papier des Beispiels 8 1,5 138 193 32 174 33 - Bei vergleichbarem Trennkraftniveau konnte die Mindesttemperatur für die Aushärtung der Siliconbeschichtungen um ca. 5 bis 10% reduziert werden.
- Die Siliconauftragsmengen und Trennkraftwerte wurden wie im Beispiel 9 bestimmt.
- Die Arbeitsweise des Beispiels 10 wurde wiederholt. Für die Siliconbeschichtung wurde jedoch ein anderes System, ebenfalls auf lösungsmittelfreier Basis, eingesetzt. Die Beschichtungsmasse hatte folgende Zusammensetzung:
100 Teile Silcolease 8000 (ICI) Basispolymersilicon der Fa. ICI
2 Teile Silicone Crosslinker 95 A
2 Teile Silicone Crosslinker 96 A
4 Teile Catalyst 95 B. - Die Siliconisierung der drei Versuchspapiere erfolgte bei einer Geschwindigkeit von 200 m/min, wobei wiederum die Mindesttemperatur bei der Konvektionstrocknung für eine vollständige Aushärtung der Siliconfilme gesucht wurde. Die Ergebnisse sind der Tabelle 4 zu entnehmen.
Tabelle 4 Papiersorte Siliconauftrag g/m Mindesttemp.°C für Aushärtung Trennkraft,mN/cm nach 20 h nach 4 Wochen K-7476 A-7475 K-7476 A-7475 Nullprobe 1,4 150 192 34 174 43 Papier des Beispiels 7 1,5 135 189 37 170 39 Papier des Beispiels 8 1,6 140 192 47 168 45 - Bei etwa vergleichbarem Trennkraftniveau konnte wiederum die Mindesttemperatur für die Aushärtung der Siliconbeschichtungen um ca. 5 bis 10% gesenkt werden.
- Die Trennkraftwerte und die Siliconauftragsmengen wurden wie in Beispiel 9 bestimmt.
- Die Arbeitsweise der Beispiele 10 und 11 wurde wiederholt.
- Für die lösungsmittelfreie Siliconisierung wurde folgendes Beschichtungssystem verwendet:
100 Teile Basispolymer Silicon Rhodorsil 11347 der Fa.Rhone-Poulanc
3 Teile Katalysator 11091 für das Basispolymer. - Die Beschichtung der Versuchspapiere wurde bei einer Geschwindigkeit von 200 m/min durchgeführt. Es wurden wiederumg die niedrigsten Aushärtungstemperaturen ermittelt, wie aus der Tabelle 5 hervorgeht. Die Bestimmung der Trennkraftwerte und der Siliconauftragsmengen erfolgte gemäß Beispiel 9.
Tabelle 5 Papiersorte Siliconauftrag g/m Mindesttemp.°C für Aushärtung Trennkraft,mN/cm nach 20 h nach 4 Wochen K-7476 A-7475 K-7476 A-7475 Null-Probe 2,0 150 152 225 140 246 Papier des Beispiels 7 2,0 135 151 297 143 239 Papier des Beispiels 8 2,1 135 144 253 160 213 - Wie die Beispiele 1 bis 12 zeigten, wird durch den erfindungsgemäßen Zusatz verschiedener Organosilane in Anteilen von ca. 10 - 15% (fest gerechnet) zu üblichen Oberflächenpräparationen für Trennrohpapiere eine Verbesserung der Haftung und eine Beschleunigung der Vernetzungszeit für nachfolgende Beschichtungen von lösungsmittelhaltigen oder lösungsmittelfreien additionsvernetzenden Siliconsystemen erreicht. Bei ausreichender Verankerung des Siliconfilms auf der Papieroberfläche sind dadurch meßbare Steigerungen in der Beschichtungsgeschwindigkeit und/oder Reduzierungen in der Mindesttemperatur für die Siliconaushärtung zu verzeichnen. Inhibierende Effekte durch das Rohpapier tragen in keinem Fall auf. Das Trennkraftniveau der Siliconbeschichtungen wurde durch die Zusätze von Organosilanen zur Oberflächenpräparation der Trennrohpapiere nicht oder nur geringfügig verändert.
- Ähnliche Effekte wurden ebenfalls bei einer nachfolgenden Beschichtung derart oberflächenveredelter Trennrohpapiere mit wässrigen Siliconsystemen festgestellt.
- Bei Verwendung von kaltvernetzenden Siliconsystemen (UV- bzw. Elektronenstrahl-vernetzende Systeme) sind ähnliche Effekte ebenfalls nicht auszuschließen.
- Dagegen sind bei kondensationsvernetzenden Siliconsystemen (thermische Vernetzung) keine Verbesserung in Haftung und/oder Vernetzung von Siliconfilmen zu erwarten.
- Zu einer Mischung aus 22 g Polyvinylalkohol und 3 Carboxymethylcellulose in 475 g Wasser, die nach den in Beispiel 1 beschriebenen Methoden für die Aufbereitung und das Kochen der oben genannten Polymere behandelt wurden, wurden unter Rühren 3,5 g von mindestens 3 Si-gebundenen Wasserstoffatomen je Molekül aufweisenden Organpolysiloxan in Form einer Emulsion (Feststoffgehalt: 35%), zugegeben. Der pH-Wert dieser Mischung wurde mit Schwefelsäure auf 4,0 eingestellt. Die in dieser Weise hergestellte Disperson wurde mit einer Laborleimpresse auf ein unsatiniertes Siliconrohpapier mit einem Flächengewicht von 66 g/m aufgetragen.
- Das Auftragsgewicht lag bei etwa 1,5 g/m (fest gerechnet). Das ungestrichene Rohpapier wies eine Luftdurchlässigkeit nach Schopper von 62 cm/min und einen Leimungsgrad nach Cobb-Unger von 50 g/m auf.
- Nach erfolgter Trocknung und Wiederbefeuchtung wurde das damit oberflächenbehandelte Papier in einem Laborkalander satiniert. Der Liniendruck betrug dabei 4000 dN. Die Oberflächentemperatur der Stahlwalze betrug 100°C.
- Die Weiterbehandlung des Versuchspapiers erfolgte so, wie im Teil b) des Beispiels 1 beschrieben. Die Ergebnisse des Vernetzungstests sind in Tabelle 6 zusammengestellt.
- Die Arbeitsweise des Beispieles 13 wurde wiederholt. Nach Zugabe der Organopolysiloxan -Emulsion stellte sich ein pH-ert von 5,5 ein. Die Ergebnisse des Vernetzungstests sind aus der nachfolgenden Tabelle 6 zu entnehmen.
- Die Arbeitsweise des Beispieles 13 wurde wiederholt, aber anstelle einer Beschichtung des Versuchspapiers mit dem in Teil b) des Beispiels 1 beschriebenen lösungsmittelfreien Siliconsystem wurde ein lösungsmittelhaltiges System mit folgender Zusammensetzung gewählt:
74 Teile Testbenzin
20 Teile Silcolease 7420 (ICI) Basissiloxan
0,2 Teile Crosslinking Agent 91 A Vernetzer
0,8 Teile Catalist 90 B
Die Siliconisierung erfolgte analog Beispiel 1, Teil b) mit einem Laborrakelgerät, wobei der Siliconauftrag wiederum etwa 1 g/m (fest gerechnet) betrug. Die ermittelten kürzesten Vernetzungszeiten sind der Tabelle 5 zu entnehmen. - Die Arbeitsweise des Beispiels 14 wurde wiederholt. Die Laborsiliconisierung erfolgte jedoch mit dem in Beispiel 15 beschriebenen lösungsmittelhaltigen Siliconsystem. Die minimal erforderlichen Vernetzungszeiten sind der Tabelle 6 zu entnehmen.
- Die Arbeitsweise des Beispiels 13 wurde wiederholt. Zu der Lösung aus 22 g Polyvinylalkohol und 3 g Carboxymethylcellulose in 475 g Wasser wurden jedoch unter Rühren statt 3,5 diesmal 7 g der Organopolysiloxan -Emulsion zugegeben. Der pH-Wert dieser Mischung wurde wiederum mit Schwefelsaure auf 4,0 eingestellt. Die weitere Verarbeitung entsprach der in Beispiel 13 beschriebenen Arbeitsweise. Die Ergebnisse des Vernetzungstests sind in der Tabelle 6 zusammengestellt.
- Die Arbeitsweise des Beispiels 17 wurde wiederholt, der pH-Wert der Strichmischung jedoch auf 5,5 eingestellt. Die Ergebnisse der Vernetzungsprüfung gehen aus der Tabelle 6 hervor.
- Die Arbeitsweise des Beispiels 17 wurde wiederholt. Das Versuchspapier wurde jedoch mit einem lösungsmittelhaltigen Siliconsystem der Firma ICI beschichtet. Die Zusammensetzung dieser Beschichtungsmasse ist bereits in Beispiel 15 beschrieben worden. Die Ergebnisse der Vernetzungsprüfung sind in der Tabelle 6 dargestellt.
- Die Arbeitsweise des Beispiels 18 wurde wiederholt. Die Laborsiliconisierung erfolgte jdoch mit dem in Beispiel 15 beschriebenen lösungsmittelhaltigen Siliconsystem. Die erforderlichen kürzesten Vernetzungszeiten sind der Tabelle 6 zu entnehmen.
- Als Vergleich (Nullprobe) wurden Papierproben herangezogen, die mit einer Mischung, bestehend aus 22 g Polyvinylalkohol und 3 g Carboxymethylcellulose in 475 g Wasser, aber ohne jegliche Zugabe von Organopolysiloxan -Emulsion, oberflächenveredelt worden waren. Die pH-Werte dieser Oberflächenpräparationen wurden sowohl auf 4,0 als auch auf 5,5 eingestellt. Die Laborsilikonisierung erfolgte mit den im Teil b) des Beispiels 1 und im Beispiel 15 beschriebenen Silikonsystemen. Die erforderliche minimale Vernetzungszeit ist aus der Tabelle 6 zu entnehmen.
Tabelle 6 Versuchspapier pH-Wert der Oberflächenpräparation minimal erforderliche Vernetzungszeit,s (150°C) 4,0 5,5 LF* LH* 1.Beispiel 13 X 8 2.Beispiel 14 X 12 3.Beispiel 15 X 15 4.Beispiel 16 X 18 5.Beispiel 17 X 5 6.Beispiel 18 X 8 7.Beispiel 19 X 15 8.Beispiel 20 X 18 9.Nullprobe 1 als Vergleich (Beisp.21-22) X 10 20 10.Nullprobe 2 als Vergleich (Beisp.23-24) X 15 20 * LF = lösungsmittelfreies Silikonsystem ) jeweils ca.
LH = lösungsmittelhaltiges Silikonsystem ) 1 g/m (fest) Silikonauftrag.
Claims (9)
- Verfahren zur Herstellung von Trennrohpapieren durch Auftragen einer flüssigen Oberflächenpräparation auf eine Rohpapierbahn, dadurch gekennzeichnet, daß die Oberflächenpräparation aus einer Imprägnier- oder Oberflächenleimungszusammensetzung für Trennrohpapiere besteht, welche zusätzlich 1 bis 25% (fest gerechnet) organische Siliciumverbindungen enthält, wobei diese organischen Siliziumverbindungen aus den beiden HauptgruppenA) organofunktionelle Alkoxysilane und/oderB) Organopolysiloxane, die mindestens drei Silicium gebundene Wasserstoffatome aufweisen, ausgewählt sind.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als organofunktionelle Alkoxysilane vorzugsweise
3-Glycidyloxypropyltrimethoxysilan, N-Aminoethyl-3-aminopropyl-trimethoxysilan, 3-Aminopropyl-triethoxysilan, 3-Aminopropyl-methyl-di-ethoxysilan, 3-Aminopropyl-trimethoxysilan,
3-Amino-propyl-tris (2-methoxy-ethoxy)silan, 3-Methacryloxypropyl-trimethoxysilan, 3-Mercaptopropyl-triethoyxsilan, 3-Mercaptopropyl-trimethoxysilan, 3-Mercaptopropyl-methyl-dimethoxysilan, 3-Chlorpropyl-triethoxysilan, 3-Chlorpropyltrimethoxysilan, 3-Chlorpropyl-methyldimethoxysilan, α-Chlormethyl-dimethyl-methoxysilan, Vinyltriethoxysilan, Vinyltrlmethoxysilan und/oder Vinylmethyldimethoxysilan und/oder Alkylalkoxysilane, insbesondere Methyltrimethoxysilan, Methyltriethoxysilan, Propyltrimethoxysilan, Propyltrimethoxysilan, Propylmethyldimethoxysilan, Propylmethyldiethoxysilan, Isobutyltrimethoxysilan und/oder Butyltrimethoxysilan, verwendet werden. - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Organosiloxane vorzugsweise Mischpolymerisate aus Dimethylhydrogensiloxan-, Methylhydrogensiloxan-, Dimethylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxan-, Dimethylhydrogensiloxan- und Methylhydrogensiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxan-, Dimethylsiloxan- und Methylhydrogensiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Diphenylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylhydrogensiloxan- und Diphenylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Phenylmethylsiloxan-, Trimethylsiloxan- und/oder Dimethylhydrogensiloxan-einheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylsiloxan-, Diphenylsiloxan- und Trimethylsiloxan und/oder Dimethylhydrogensiloxaneinheiten und/oder Mischpolymerisate aus Dimethylhydrogensiloxan, Trimethylsiloxan, Phenylhydrogensiloxan-, Dimethylsiloxan- und/oder Phenylmethylsiloxaneinheiten verwendet werden , wobei vorzugsweise alle nicht durch Wasserstoff und Siloxansauerstoffatome abgesättigten Siliciumvalenzen durch Methylreste abgesättigt sind.
- Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die organischen Siliciumverbindungen in Anteilen von 3 bis 15 % (fest gerechnet) den Oberflächenpräparationen aus filmbildenden Substanzen für Trennrohpapiere, inbesondere Polyvinylalkohol, Carboxymethylcellulose, Stärkederivate, Alginat oder Polymerdispersionen (Latices) allein oder in Kombination, bei einem pH-Bereich von 2 bis 11, vorzugsweise 4 bis 9,5 zugesetzt werden.
- Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das Auftragen der Beschichtungsmasse in der Papiermaschine erfolgt.
- Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß der Oberflächenauftrag mittels Auftragsaggregaten nach dem Walzen- oder Rakelprinzip auf eine bereits gebildete Papierbahn mit einem Restfeuchtegehalt zwischen 1 und 14 %, vorzugsweise 2 bis 8 % erfolgt.
- Verfahren nach Anspruch 1 - 6, dadurch gekennzeichnet, daß der Oberflächenstrich zusätzlich ein Weißpigment enthält, insbesondere Calciumcarbonat, Kaolin, Talcum und Titandioxid.
- Trennrohpapier, erhältlich durch ein Verfahren nach den Ansprüchen 1 bis 7.
- Verfahren zur Herstellung von Silicontrennpapier, dadurch gekennzeichnet, daß man ein Trennrohpapier nach Anspruch 8 mit einem thermisch additionsvernetzenden Siliconsystem beschichtet.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE58908216T DE58908216D1 (de) | 1989-05-26 | 1989-05-26 | Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier. |
AT89109499T ATE110131T1 (de) | 1989-05-26 | 1989-05-26 | Trennrohpapier, verfahren zu dessen herstellung und zur herstellung von silikontrennpapier. |
EP89109499A EP0399079B1 (de) | 1989-05-26 | 1989-05-26 | Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier |
ES89109499T ES2057019T3 (es) | 1989-05-26 | 1989-05-26 | Papel soporte de separacion, procedimiento para su fabricacion y para la fabricacion de papel de separacion de silicona. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP89109499A EP0399079B1 (de) | 1989-05-26 | 1989-05-26 | Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0399079A1 EP0399079A1 (de) | 1990-11-28 |
EP0399079B1 true EP0399079B1 (de) | 1994-08-17 |
Family
ID=8201409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89109499A Expired - Lifetime EP0399079B1 (de) | 1989-05-26 | 1989-05-26 | Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0399079B1 (de) |
AT (1) | ATE110131T1 (de) |
DE (1) | DE58908216D1 (de) |
ES (1) | ES2057019T3 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807781A (en) * | 1994-07-21 | 1998-09-15 | Kammerer Gmbh | Release base paper having silicate-containing primer coats |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10323204A1 (de) * | 2003-05-22 | 2004-12-16 | Wacker Polymer Systems Gmbh & Co. Kg | Grundierungsmittel für Trennpapiere und -folien |
DE10323203A1 (de) * | 2003-05-22 | 2004-12-23 | Wacker Polymer Systems Gmbh & Co. Kg | Verwendung von silanfunktionellen Polyvinylalkoholen in Grundierungsmitteln für Trennpapiere und -folien |
FI123351B2 (fi) | 2008-06-03 | 2024-10-11 | Upm Specialty Papers Oy | Irrokemateriaalikoostumus, pohjamateriaali ja menetelmä pohjamateriaalin valmistamiseksi, pintakäsittelyaine pohjamateriaalia varten sekä pintakäsittelyaineen käyttö |
CN113529465A (zh) * | 2021-08-20 | 2021-10-22 | 江苏硕茂苏彩新材料有限公司 | 一种可降解离型纸及其制备工艺 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1186571A (en) * | 1967-02-24 | 1970-04-02 | Imp Chemical Idustries Ltd | Organosilicon Compositions |
FR2565593B1 (fr) * | 1984-06-12 | 1986-12-12 | Rhone Poulenc Spec Chim | Compositions d'emulsions aqueuses pour le traitement antiadherent et hydrofuge de materiaux cellulosiques |
-
1989
- 1989-05-26 EP EP89109499A patent/EP0399079B1/de not_active Expired - Lifetime
- 1989-05-26 AT AT89109499T patent/ATE110131T1/de not_active IP Right Cessation
- 1989-05-26 ES ES89109499T patent/ES2057019T3/es not_active Expired - Lifetime
- 1989-05-26 DE DE58908216T patent/DE58908216D1/de not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
"Some release and water repellent agents"; Paper, 193, No. 11, June 1980, S. 36-37 * |
B. Reinhardt et al.:"Herstellung von Trennrohpapieren unter chemischen Aspekten"; Allgemeine Papierrundschau 14/1986, S. 367-368 * |
F. Hockemeyer, " Die Anwendung von Silikonen in der papierveredelnden Industrie" Sonderdruck aus der Zeitschrift "Adhäsion", Heft 7, 1973 * |
R. Thomas, "Silikonpapiere, Herstellung und Eigenschaften"; Das Papier 39. Jg., Sondernummer 10A, Oktober 1985, S. V92-V96 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807781A (en) * | 1994-07-21 | 1998-09-15 | Kammerer Gmbh | Release base paper having silicate-containing primer coats |
Also Published As
Publication number | Publication date |
---|---|
ES2057019T3 (es) | 1994-10-16 |
DE58908216D1 (de) | 1994-09-22 |
EP0399079A1 (de) | 1990-11-28 |
ATE110131T1 (de) | 1994-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69311358T2 (de) | Kationisch co-härtbare polysiloxan ablöse-beschichtungen | |
EP1897917B1 (de) | Verwendung von partikulären Emulgatoren in abhäsiven siloxanhaltigen Beschichtungsmassen | |
DE69414606T2 (de) | Niedrige reibungskoeffizienten und gute ablösbarkeit aufweisende silikonmassen, enthaltend mit höheren alkenylgruppen funktionalisierten silikongummi | |
DE68909968T2 (de) | Zusammensetzung für Trennbeschichtungen auf der Basis von Polysiloxanen. | |
US4447498A (en) | Use of organopolysiloxanes in the manufacture of paper-coated plaster boards | |
DE202011003029U1 (de) | Träger auf Cellulosefaser-Basis, der eine modifizierte PVA-Schicht enthält | |
EP3885096A1 (de) | Stoffliche wiederverwertung silikonisierter flächengebilde | |
DE69421779T2 (de) | Siloxanzusammenzetzungen zur Herstellung von adhäsiven Beschichtungen | |
DE2631955A1 (de) | Trennmittel und verfahren zu seiner herstellung | |
DE69308433T2 (de) | Silikon-Emulsion-Zusammensetzung für Trennbeschichtung | |
DE2916410A1 (de) | Verfahren zur herstellung von zelluloseerzeugnissen mit verbesserten eigenschaften | |
DE202009018764U1 (de) | Trennfolien-Basismaterialzusammensetzung | |
DE2622126B2 (de) | Verwendung einer durch Bestrahlung härtbaren Beschichtungsmasse auf PoIydiorganosiloxanbasis zur Herstellung von Trennüberzügen auf Trägermaterialien | |
DE2744494C2 (de) | Geleimte Pappen für Gipsbauplatten sowie Verfahren zu deren Herstellung | |
HUE030687T2 (en) | Method for treating substrate surface | |
DE2313767C3 (de) | Beschichtungsmasse auf Basis von Silikonpolymeren | |
DE4425737C2 (de) | Trennrohpapier mit silikathaltigen Primerstrichen und damit hergestelltes Trennpapier | |
EP0399079B1 (de) | Trennrohpapier, Verfahren zu dessen Herstellung und zur Herstellung von Silikontrennpapier | |
DE69210542T2 (de) | Beschichtungsmittel | |
DE941090C (de) | Klebemittel, auch in Form von Klebestreifen | |
DE69119939T2 (de) | Mehrschichtfolie aus Polyester | |
DE1696267A1 (de) | Verwendung von Epoxysilikonen zum Leimen von Papier | |
US5817717A (en) | Abherent and printable, crosslinkable or crosslinked silicone composition | |
DE2035976A1 (de) | Zum Aufbringen auf ein Substrat be stimmte Organosiloxanmassen | |
EP0396789B1 (de) | Verfahren zur Herstellung von Trennrohpapieren mit speziellen Oberflächenstrichen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901228 |
|
17Q | First examination report despatched |
Effective date: 19921223 |
|
ITF | It: translation for a ep patent filed | ||
EL | Fr: translation of claims filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19940817 Ref country code: BE Effective date: 19940817 |
|
REF | Corresponds to: |
Ref document number: 110131 Country of ref document: AT Date of ref document: 19940915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 58908216 Country of ref document: DE Date of ref document: 19940922 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2057019 Country of ref document: ES Kind code of ref document: T3 |
|
EN | Fr: translation not filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89109499.7 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19940817 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 777B |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RN Ref country code: FR Ref legal event code: FC |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 710B |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970425 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970429 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19970505 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19970508 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970509 Year of fee payment: 9 Ref country code: LU Payment date: 19970509 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970513 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970531 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970630 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980526 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980526 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980527 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980526 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89109499.7 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050526 |