EP0388283B1 - Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier - Google Patents

Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier Download PDF

Info

Publication number
EP0388283B1
EP0388283B1 EP90400666A EP90400666A EP0388283B1 EP 0388283 B1 EP0388283 B1 EP 0388283B1 EP 90400666 A EP90400666 A EP 90400666A EP 90400666 A EP90400666 A EP 90400666A EP 0388283 B1 EP0388283 B1 EP 0388283B1
Authority
EP
European Patent Office
Prior art keywords
less
steel
titanium
niobium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90400666A
Other languages
German (de)
English (en)
Other versions
EP0388283A1 (fr
Inventor
Pierre Bourgain
Jean-Claude Bavay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine SA
Original Assignee
Ugine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine SA filed Critical Ugine SA
Publication of EP0388283A1 publication Critical patent/EP0388283A1/fr
Application granted granted Critical
Publication of EP0388283B1 publication Critical patent/EP0388283B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper

Definitions

  • the present invention relates to a ferritic stainless steel very resistant to corrosion in a neutral or weakly acidic chlorinated medium and more particularly suitable for the manufacture of heat exchangers for industry, in particular those cooled by brackish water and water from sea.
  • the present invention also relates to a process for the preparation of such a steel.
  • FR-A-2,377,457 discloses a ferritic steel with chromium nickel molybdenum resistant to corrosion and containing in particular from 18 to 32% of chromium, from 0.1 to 6% of molybdenum, from 0.5 to 5% nickel and not more than 3% copper.
  • the examples of steel described in this document relate to steels containing 1.99 to 2.15% molybdenum. Furthermore, it is specified, on page 9 lines 27 to 32, that the steels having the best alloy compositions are those containing 28% chromium, 2% molybdenum and 4% nickel, as well as those containing 20% chromium , 5% molybdenum and 2% nickel, because they have sufficient structural stability and can be produced economically on an industrial scale.
  • FR-A-2,352,893 is a ferritic stainless steel containing from 0.01 to 0.025% by weight of carbon, from 0.005 to 0.025% by weight of nitrogen, from 20 to 30% by weight of chromium , 3 to 5% molybdenum, 3.2 to 4.8% nickel, 0.1 to 1% copper, 0.2 to 0.7% titanium and / or 0.2 to 1% niobium.
  • This document claims more particularly a high nickel content of between 3.2 to 4.8% associated with a limitation of the copper content of between 0.1 to 1% to obtain the temperature ambient high ductility values.
  • FR-A-2,473,069 also discloses an iron-based ferritic stainless steel containing up to 0.08% by weight of carbon, up to 0.060% by weight of nitrogen, from 25 to 35% in weight of chromium, from 3.60 to 5.60% by weight of molybdenum, up to 2% by weight of nickel, up to 2% by weight of titanium, niobium and zirconium according to the following equation: % Ti / 6 +% Zr / 7 +% cb / 8>% C +% N
  • FR-A-2,473,068 discloses a ferritic stainless steel which has the same composition as the preceding steel, but whose nickel content by weight is between 2 and 5%.
  • nickel is an expensive element which accelerates the formation of embrittling intermetallic phases and reduces the resistance to cavernous corrosion in chlorinated medium.
  • the present invention therefore relates to a ferritic stainless steel in which the addition of copper is limited to a value between 0.5 to 2% by weight so as to reinforce the impact resistance of the alloy while reducing the speed for the formation of hard and embrittling intermetallic phases of the sigma and chi type which can form during heat treatments for manufacturing welding.
  • the steel contains less than 0.010% of carbon and less than 0.015% of nitrogen, the sum of the carbon and of the nitrogen being less than 0.025%.
  • the invention also relates to a process for the production of a ferritic stainless steel from which a steel strip is formed which is hot rolled, characterized in that the hot rolled steel strip is subjected annealing at a temperature between 900 and 1200 ° C., then the steel strip is subjected to a first cold rolling followed by an intermediate annealing at a temperature between 900 and 1200 ° C. and finally the steel strip is subjected to a second cold rolling followed by a final annealing at a temperature between 900 and 1200 ° C.
  • the examples which led to the present invention were obtained from 30 kg ingots produced in the vacuum induction furnace. Slabs from these ingots were heated between 1100 and 1250 ° C for hot rolling to a thickness of 5 mm.
  • the hot-rolled strips are then annealed between 1000 and 1200 ° C followed by cold rolling to a thickness of 2 millimeters. After this cold rolling, annealing on the order of 20 s to 5 min is carried out continuously at a temperature between 900 and 1200 ° C.
  • Additional cold rolling makes it possible to obtain strips of a thickness of 0.8 millimeters which then undergo a final annealing of the order of 20 s to 5 min and at a temperature between 900 and 1200 ° C.
  • Molybdenum is a much more efficient alloying element than chromium because a Mo / Cr equivalent coefficient equal to 3.3 is generally accepted to qualify the improvement in resistance to pitting corrosion due to the action of molybdenum.
  • the increase in the chromium content also accelerates the precipitation of the embrittling phases as shown in the diagram in Figure 2.
  • the curves shown in this diagram show the influence of the holding time at 900 ° C on the elongation A% to rupture at room temperature of an experimental alloy at 29Cr 4Mo 4Ni Ti and 25Cr 4Mo 4Ni Ti.
  • the alloy with approximately 25% chromium, 4% molybdenum, 4% nickel and 0.5% titanium does not exhibit brittleness when cold between 0 and -50 ° C. unlike the alloy containing approximately 29 % of chromium, 4% of molybdenum, 4% of nickel and 0.5% of titanium as it appears on the diagram of figure 5 which shows the evolution of the resistance to the impact rupture according to the temperature and the chromium content.
  • the alloy according to the present invention contains no voluntary addition of nickel which is considered to be an element residual. This absence of a significant amount of nickel allows the adoption of high chromium contents greater than 28.5% and molybdenum greater than 3.5% necessary for obtaining optimal resistance to cavernous and pitting corrosion.
  • ferritic stainless steel containing titanium and niobium for ferritic stainless steel containing titanium and niobium.
  • up to 3% copper and preferably 0.5 to 2% copper are added to the steel, which according to this patent increases the resistance to corrosion in non-oxidizing acids, and in particular in hot sulfuric acid solutions.
  • the results reveal that copper does not cause any improvement in the resistance to corrosion in chlorinated media. weakly acid analogous to corrosive media that form in caves.
  • This diagram shows the corrosion rates (mm / year) deducted from the weight losses observed after 24 hours of immersion in NaCl 2M-0.2M HCl medium deaerated by nitrogen bubbling, at the temperature of 30 ° C respectively for the alloys 6 and 7 of Table 1 above.
  • 0.5 to 2% of copper is added to ferritic stainless steel with a high chromium and molybdenum content and containing titanium or niobium.
  • the diagram in FIG. 7, the curves of which show the influence of 1% of copper on impact resistance, indicates that the addition of approximately 1% of copper to an alloy containing approximately 29% of chromium, 4% of molybdenum and 0.5% of titanium results in a decrease of the order of 20 ° C in the transition temperature between the brittle state characterized by very low breaking energies and the ductile state corresponding to high breaking energies . This results in a very significant improvement in the impact resistance of the alloy due to the addition of copper.
  • an alloy of 0.018% carbon, 0.027% nitrogen, 28.90% chromium, 3.75% molybdenum, 0.035% nickel and 0.56% titanium only has an elongation at break of 6% at room temperature while an alloy of 0.03% carbon, 0.010% nitrogen, 28.90% chromium, 3.97% molybdenum, 0.041% nickel and 0.21% titanium has an elongation at break of 26%.
  • the present invention voluntarily excludes the addition of nickel, which is an expensive element and which accelerates the formation of embrittling intermetallic phases and reduces the resistance to cavernous corrosion in chlorinated medium.
  • ferritic stainless steels according to the present invention are all the more resistant to shocks and have structural stability in the range between 650 and 1000 ° C, the higher the lower the contents of C, N, Ti and Nb.
  • the contents of titanium and / or niobium to be added must be equal to the minimum necessary to fix carbon and nitrogen and take into account the fact that titanium and / or niobium solid solution in ferrite do not participate in the sequestration of carbon and nitrogen.
  • the titanium content must satisfy the following equation: % Ti> 0.10 + 4x (% C) + 3.4 x (% N) and in particular to the equation: % Ti> 0.15 + 4 x (% C) + 3.4 x (% N) so that the resistance to intergranular corrosion is optimal.
  • the coefficients 4 and 3,4 logically follow the approximate values of the atomic masses of titanium (48), carbon (12) and nitrogen (14) as well as the formulas of titanium carbide and titanium nitride, respectively TiC and TiN.
  • the atomic mass of niobium being taken equal to 93 grams.
  • the addition of copper is limited to less than 2%, the precipitation of copper-rich particles resulting in a significant degradation of hot forgeability when the copper content is greater than 2%.
  • An addition of aluminum to the ferritic stainless steel according to the present application can be added during the preparation for deoxidation purposes.
  • the ferritic alloy according to the present invention is particularly suitable for the use in the form of sheets and strips whose thickness may be greater than that generally used in practice (less than one mm) for a steel.
  • ferritic stainless with the same chromium and molybdenum content containing titanium or niobium.
  • the stainless steel described by the present invention is particularly intended for the manufacture of welded tubes for heat exchangers conveying chlorinated water. It can, for example, be produced by the steel, electrical, AOD and / or vacuum refining, continuous casting and hot rolling on strip train industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

  • La présente invention concerne un acier inoxydable ferritique très résistant à la corrosion en milieu chloruré neutre ou faiblement acide et plus particulièrement adapté pour la fabrication d'échangeurs de chaleur pour l'industrie, notamment ceux refroidis par l'eau saumâtre et l'eau de mer.
  • La présente invention a également pour objet un procédé pour l'élaboration d'un tel acier.
  • On connaît dans le FR-A-2.377.457 un acier ferritique au chrome nickel molybdène résistant à la corrosion et contenant notamment de 18 à 32 % de chrome, de 0,1 à 6 % de molybdène, de 0,5 à 5 % de nickel et pas plus de 3 % de cuivre.
  • Les exemples d'acier décrits dans ce document concernent des aciers contenant 1,99 à 2,15 % de molybdène. Par ailleurs, il est précisé, page 9 lignes 27 à 32, que les aciers présentant les meilleures compositions d'alliage sont ceux contenant 28 % de chrome, 2 % de molybdène et 4 % de nickel, ainsi que ceux contenant 20 % de chrome, 5 % de molybdène et 2 % de nickel, car ils possèdent une stabilité structurale suffisante et peuvent être fabriqués de manière économique à échelle industrielle.
  • On connaît également dans le FR-A-2.352.893, un acier inoxydable ferritique contenant de 0,01 à 0,025 % en poids de carbone, de 0,005 à 0,025 % en poids d'azote, de 20 à 30 % en poids de chrome, de 3 à 5 % de molybdène, de 3,2 à 4,8 % de nickel, de 0,1 à 1 % de cuivre, de 0,2 à 0,7 % de titane et/ou de 0,2 à 1 % de niobium.
  • Ce document revendique plus particulièrement une teneur élevée en nickel comprise entre 3,2 à 4,8 % associée à une limitation de la teneur en cuivre comprise entre 0,1 à 1 % pour obtenir à la température ambiante des valeurs élevées de ductilité.
  • On connaît également dans le FR-A-2.473.069 un acier inoxydable ferritique à base de fer contenant jusqu'à 0,08 % en poids de carbone, jusqu'à 0,060 % en poids d'azote, de 25 à 35 % en poids de chrome, de 3,60 à 5,60 % en poids de molybdène, jusqu'à 2 % en poids de nickel, jusqu'à 2 % en poids de titane, de niobium et zirconium selon l'équation suivante :

    % Ti/6 + % Zr/7 + % cb/8 > % C + % N
    Figure imgb0001

  • La somme desdits carbone et azote étant supérieure à 0,0275 % en poids.
  • On connaît dans le FR-A-2.473.068 un acier inoxydable ferritique qui a la même composition que l'acier précédent, mais dont la teneur pondérale en nickel est comprise entre 2 et 5 %.
  • Or, on sait que le nickel est un élément coûteux qui accélère la formation de phases intermétalliques fragilisantes et amoindrit la résistance à la corrosion caverneuse en milieu chloruré.
  • La présente invention a donc pour objet un acier inoxydable ferritique dans lequel l'addition du cuivre est limitée à une valeur comprise entre 0,5 à 2 % en poids de façon à renforcer la résistance aux chocs de l'alliage tout en réduisant la vitesse de formation des phases intermétalliques dures et fragilisantes du type sigma et chi qui peuvent se former lors des traitements thermiques de fabrication du soudage. Il en découle la possibilité d'élaborer un alliage stabilisé au titane et/ou au niobium à très haute teneur en chrome et en molybdène indispensable à l'obtention d'une résistance à la corrosion maximale tout en minimisant les difficultés de fabrication et les risques de dégradation des autres propriétés finales.
  • Ce résultat est obtenu par l'invention grâce à un acier inoxydable ferritique ayant la composition chimique pondérale suivante :
    • 28,5 à 35 % de chrome,
    • 3,5 à 5,50 % de molybdène,
    • 0,5 à 2 % de cuivre,
    • moins de 0,40 % de manganèse,
    • moins de 0,40 % de silicium,
    • moins de 0,030 % de carbone,
    • moins de 0,030 % d'azote,
    • un pourcentage en titane et/ou en niobium au moins égal à 0,10 % et inférieur à 0,60 % , lesdits pourcentages en titane et/ou niobium satisfaisant aux équations suivantes :

      %Ti > 0,10 + 4 x (%C) + 3,4 x (%N),
      Figure imgb0002

      %Nb > 0,10 + 7,7 x (%C) + 6,6 x (%N),
      Figure imgb0003

    • et pouvant contenir du nickel en addition involontaire et en élément résiduel en tout cas à raison de moins de 0,5% et contenant jusqu'à 0,10% d'éléments ajoutés pour la désoxydation tels que l'aluminium,du magnésium, du calcium, du bore, des matériaux de terres rares, le reste étant du fer et des impuretés résultant de la fusion des matières nécessaires à l'élaboration
  • Selon une caractéristique préférée de l'invention, l'acier contient moins de 0,010 % de carbone et moins de 0,015 % d'azote, la somme du carbone et de l'azote étant inférieure à 0,025 %.
  • L'invention a également pour objet un procédé d'élaboration d'un acier inoxydable ferritique à partir duquel on forme une bande d'acier qui est laminée à chaud, caractérisé en ce que l'on soumet la bande d'acier laminée à chaud à un recuit à une température comprise entre 900 et 1200°C, puis on soumet la bande d'acier à un premier laminage à froid suivi d'un recuit intermédiaire à une température comprise entre 900 et 1200°C et enfin on soumet la bande d'acier à un second laminage à froid suivi d'un recuit final à une température comprise entre 900 et 1200°C.
  • Selon d'autres caractéristiques de l'invention :
    • le recuit intermédiaire et le recuit final sont effectués en continu pendant 20 secondes à 5 minutes,
    • les recuits sont suivis d'un refroidissement rapide.
    Les caractéristiques et avantages de l'invention ressortiront d'ailleurs des diagrammes annexés aux figures
  • Les exemples ayant conduit à la présente invention ont été obtenus à partir de lingots de 30 kg élaborés au four à induction sous vide. Des bramettes issues de ces lingots ont été réchauffées entre 1100 et 1250°C en vue d'un laminage à chaud à une épaisseur de 5 mm.
  • Les feuillards laminés à chaud subissent ensuite un recuit entre 1000 et 1200°C suivi d'un laminage à froid jusqu'à une épaisseur de 2 millimètres. Après ce laminage à froid, un recuit de l'ordre de 20 s à 5 mn est effectué en continu à une température comprise entre 900 et 1200°C.
  • Un laminage à froid supplémentaire permet d'obtenir des feuillards d'une épaisseur de 0,8 millimètres qui subissent ensuite un recuit final de l'ordre de 20 s à 5 mn et à une température comprise entre 900 et 1200°C.
  • Tous les traitements thermiques sont suivis d'un refroidissement rapide. Les conditions de traitement thermique sont adaptées de manière à ce que la grosseur de grain soit sensiblement constante.
  • Les analyses chimiques exactes c'est-à-dire les pourcentages pondéraux des alliages expérimentaux sont précisés dans le tableau ci-dessous :
    Figure imgb0004
  • On sait que les éléments favorables vis-à-vis de la résistance à la corrosion, à savoir le chrome, le molybdène, le titane, le niobium, etc... ont des effets néfastes sur d'autres propriétés, comme les propriétés mécaniques. Selon l'application recherchée, il est donc nécessaire d'adapter la composition chimique de l'alliage afin de réaliser un compromis entre la résistance à la corrosion et les caractéristiques mécaniques. Une composition chimique mal ajustée peut en outre conduire à des difficultés insurmontables de fabrication de l'alliage, notamment par suite de la précipitation de phases fragilisantes lors du traitement thermique de recuit avant ou après un laminage à froid par exemple, ou encore à la précipitation de phases fragilisantes pendant une opération de soudage.
  • Par ailleurs, on sait qu'en milieu neutre chloruré, la résistance à la corrosion par piqûres des aciers inoxydables ferritiques augmente avec la teneur en chrome. Le molybdène est un élément d'alliage beaucoup plus efficace que le chrome car un coefficient d'équivalent Mo/Cr égal à 3,3 est généralement admis pour qualifier l'amélioration de la résistance à la corrosion par piqûre dûe à l'action du molybdène.
  • En utilisant des échantillons prélevés dans des tôles industrielles d'acier inoxydable ferritique connues, il a été vérifié qu'en milieu chloruré concentré et chaud, le potentiel, au-dessus duquel la corrosion par piqûres a lieu, est d'autant plus élevé que la somme % Cr + 3,3 x (%Mo) est élevée. En conséquence, la résistance à la corrosion par piqûres est d'autant plus élevée que le paramètre % Cr + 3,3 x (%Mo) est élevé.
  • C'est pour cette raison, qu'une teneur en chrome supérieure à 28,5 % et une teneur en molybdène supérieure à 3,5 % ont été déterminées pour l'acier inoxydable ferritique selon la présente invention.
  • Des essais menés à partir des coulées expérimentales répertoriées dans le tableau précédent montrent que le molybdène favorise la précipitation de phases fragilisantes du type sigma comme le montre le diagramme de la figure 1. Les courbes représentées sur ce diagramme montrent l'influence du temps de maintien à 900°C sur l'allongement A% à la rupture à température ambiante d'un alliage expérimental à 29Cr 4Mo 2Ni Nb et 29Cr 3Mo 2Ni Nb c'est-à-dire d'alliages à teneur en molybdène respectivement égale à 3 et 4 %.
  • L'élévation de la teneur en chrome accélère également la précipitation des phases fragilisantes comme le montre le diagramme de la figure 2. Les courbes représentées sur ce diagramme montrent l'influence du temps de maintien à 900°C sur l'allongement A % à la rupture à température ambiante d'un alliage expérimental à 29Cr 4Mo 4Ni Ti et 25Cr 4Mo 4Ni Ti.
  • Il en est de même de l'augmentation de la teneur en nickel comme le montre le diagramme de la figure 3. Les courbes représentées sur ce diagramme montrent l'effet d'une addition de 2 à 4 % de Ni sur l'allongement A % à la rupture à température ordinaire d'un alliage expérimental à 29Cr 4Mo Ti après des temps croissants de maintien à 900°C.
  • Ainsi, lorsque les teneurs en chrome, nickel et molybdène croissent, des durées de maintien de plus en plus courtes à 900°C provoquent la précipitation de phases intermétalliques nuisibles pour la ductibité de l'alliage, ce qui entraîne une augmentation très sensible, voir rédhibitoire des difficultés de fabrication industrielle de ces aciers inoxydables ferritiques.
  • On comprend dès lors que les alliages industriels actuellement disponibles soient :
    • du type 25 %Cr 4 %Mo 4 %Ni stabilisés au titane et au niobium, la plus faible teneur en chrome permettant d'adopter des teneurs élevées en molybdène et en nickel mais au détriment de la résistance à la corrosion par piqûres,
    • du type 28 %Cr 2 %Mo 4 %Ni stabilisés au titane ou au niobium, les fortes teneurs en chrome et en nickel nécessitant une diminution de la teneur en molybdène pour réduire la vitesse de précipitation des phases fragilisantes.
  • Dans le brevet FR-A-2.377.457 l'addition de nickel jusqu'à 5 % est justifiée en tant qu'amélioration de la tenacité à froid, c'est-à-dire de la résistance au choc, et de la résistance à la corrosion.
  • Des essais ont montré que l'amélioration de la résistance au choc que peut procurer l'addition de 4 % de nickel à un acier inoxydable ferritique du type 25%Cr 4%Mo 0,5%Ti n'était plus observée quand la teneur en chrome est supérieure à 28 % comme le montre le diagramme de la figure 4. Le diagramme de la figure 4 montre l'évolution de la résistance aux chocs en fonction de la température et de la teneur en nickel. Ce diagramme ne met pas en évidence d'effets bénéfiques du nickel quand l'essai de rupture par choc d'une éprouvette entaillée a lieu au-dessus de 0°C dans le cas d'un acier inoxydable ferritique contenant environ 29% de chrome, 4 % de molybdène et 0,5 % de titane.
  • Contrairement à l'opinion couramment émise, l'effet du nickel apparaît néfaste car l'énergie nécessaire pour rompre l'éprouvette est, dans ce cas, nettement inférieure à celle de l'acier inoxydable ferritique ne contenant pas de nickel. L'influence bénéfique du nickel n'apparait que pour les teneurs en chrome plus faibles.
  • Ainsi, l'alliage à environ 25 % de chrome, 4 % de molybdène, 4 % de nickel et 0,5 % de titane ne présente pas de fragilité à froid entre 0 et -50°C contrairement à l'alliage contenant environ 29 % de chrome, 4 % de molybdène, 4% de nickel et 0,5 % de titane comme cela apparaît sur le diagramme de la figure 5 qui montre l'évolution de la résistance à la rupture aux chocs en fonction de la température et de la teneur en chrome.
  • Ce même diagramme révèle en outre, qu'à l'état ductile, l'énergie de rupture de l'acier à environ 25 % de chrome, 4 % de molybdène, 4 % de nickel et 0,5 % de titane est nettement supérieure à celle de l'acier contenant une teneur plus élevée en chrome et des teneurs sensiblement voisines en molybdène, nickel et titane.
  • Par ailleurs, en milieu chloruré, la résistance à la corrosion caverneuse, c'est-à-dire dans les espaces confinés sous les dépôts ou les interstices de construction, est un critère d'utilisation primordial. En effet, dans une caverne, il est connu que se produit une acidification progressive par formation d'acide chlorhydrique provenant de l'hydrolyse des produits de corrosion.
  • Contrairement aux enseignements du FR-A-2.377.457, l'addition de 4 % de nickel à un acier inoxydable ferritique stabilisé au titane ou au niobium se traduit par une nette diminution de la résistance à la corrosion caverneuse. En effet, des examens effectués sur des échantillons après test ASTM G48 montrent que les échantillons d'acier contenant 4 % de nickel subissent une attaque sévère.
  • Compte tenu de l'effet accélérateur du nickel sur la précipitation à chaud des phases intermétalliques qui fragilisent l'alliage et amoindrissent sa résistance à la corrosion, l'alliage selon la présente invention ne contient aucune addition volontaire de nickel qui est considéré comme un élément résiduel. Cette absence d'une quantité significative de nickel permet l'adoption de hautes teneurs en chrome supérieure à 28,5 % et en molybdène supérieure à 3,5 % nécessaires à l'obtention d'une résistance à la corrosion caverneuse et par piqûres optimale pour l'acier inoxydable ferritique contenant du titane et du niobium. Dans l'acier ferritique selon le FR-A-2.377.457, on ajoute à l'acier jusqu'à 3 % de cuivre et, de préférence, de 0,5 à 2 % de cuivre, ce qui selon ce brevet augmente la résistance à la corrosion dans les acides non oxydants, et, en particulier dans les solutions chaudes d'acide sulfurique. Or, selon des recherches effectuées dans le cadre de la présente invention et présentées sur le diagramme de la figure 6, les résultats révèlent que le cuivre n'est à l'origine d'aucune amélioration de la résistance à la corrosion dans les milieux chlorurés faiblement acides analogues aux milieux corrosifs qui se forment dans les cavernes.
  • Ce diagramme montre les vitesses de corrosion (mm/an) déduites des pertes de poids observées après 24heures d'immersion en milieu NaCl 2M-HCl 0,2M désaéré par barbotage d'azote, à la température de 30°C respectivement pour les alliages 6 et 7 du tableau 1 précédent.
  • Par conséquent, en l'absence de nickel, l'addition de cuivre compris entre 0,5 et 2 % ne dégrade pas et n'améliore pas la résistance à la corrosion caverneuse et par piqûres en milieu chloruré.
  • Selon la présente invention, on ajoute de 0,5 à 2 % de cuivre à l'acier inoxydable ferritique à haute teneur en chrome et en molybdène et contenant du titane ou du niobium.
  • Le diagramme de la figure 7 dont les courbes montrent l'influence de 1 % de cuivre sur la résistance aux chocs, indique que l'addition d'environ 1 % de cuivre à un alliage contenant environ 29 % de chrome, 4 % de molybdène et 0,5 % de titane se traduit par une diminution de l'ordre de 20°C de la température de transition entre l'état fragile caractérisé par de très faibles énergies de rupture et l'état ductile correspondant à des énergies de rupture élevées. Il s'en suit une amélioration très sensible de la résistance aux chocs de l'alliage dûe à l'addition de cuivre.
  • La mise en évidence de l'effet bénéfique du cuivre sur la fragilité à froid constitue une caractéristique essentielle de la présente invention. En effet, l'ajout de cuivre est en général préconisé pour améliorer la résistance à la corrosion dans les solutions chaudes d'acide sulfurique comme le précise le FR-A-2.377.457, et non pour améliorer la résistance aux chocs à température ambiante.
  • Outre l'effet particulièrement favorable du cuivre sur la résistance aux chocs, une autre particularité essentielle de la présente demande réside également dans la mise en évidence d'une inhibition de la précipitation des phases intermétalliques fragilsantes par l'addition de cuivre comme le prouve le diagramme de la figure 8 dont les courbes représentent l'influence de l'addition de cuivre sur la cinétique de précipitation des phases intermétalliques fragilisantes dans un acier inoxydable ferritique à 29Cr 4Mo Ti. L'addition de cuivre retarde donc de façon très nette l'apparition de phases fragilisantes dans le domaine de température 750 à 950°C.
  • D'autre part, pour éviter la corrosion intergranulaire dûe à la précipitation de carbure et de nitrure de chrome ayant pour conséquence un appauvrissement en chrome au voisinage immédiat des joints de grains, les additions de titane ou de niobium sont couramment effectuées aux aciers inoxydables ferritiques pour fixer le carbone et l'azote à l'état de carbure et de nitrure de titane ou de niobium.
  • Cependant, ces additions de titane ou de niobium ont deux effets néfastes connus qualitativement, mais non quantifiés jusqu'à présent. Ils accélèrent la précipitation des phases intermétalliques fragilisantes et diminuent la résistance aux chocs.
  • En diminuant la teneur en carbone et en azote, ce qui permet de réduire la quantité de titane ou de niobium nécessaire pour fixer le carbone et l'azote, il a été constaté dans le cadre de la présente invention qu'on améliorait de façon très nette la résistance aux chocs d'un acier inoxydable ferritique à teneur élevée en chrome et en molybdène et qu'on retardait simultanément la vitesse de formation des phases intermétalliques fragilisantes.
  • Ainsi, une diminution de la température de transition de l'état fragile à l'état ductile de l'ordre de 20°C peut être observée dans le cas d'une tôle de 2 mm d'épaisseur comme l'indique le diagramme de la figure 9 dont les courbes montrent la différence de la résistance aux chocs d'un acier inoxydable super-ferritique à 29Cr 4Mo 0,21Ti (C + N = 0,013 %) et un acier inoxydable super-ferritique à 29Cr 4Mo 0,56Ti (C + N = 0,045 %).
  • Le domaine d'apparition des faces fragilisantes est, en outre fortement déplacé vers la droite, du côté des durées de maintien isotherme plus élevées comme l'indiquent les courbes du diagramme de la figure 10 qui comparent la cinétique de précipitation des phases fragilisantes pour un acier inoxydable super-ferritique à 29Cr 4Mo 0,56Ti (C + N = 0,045) et pour un acier inoxydable super-ferritique à 29Cr 4Mo 0,21Ti (C + N = 0,013).
  • Après un maintien de 1 heure à 900°C, un alliage à 0,018 % de carbone, 0,027 % d'azote, 28,90 % de chrome, 3,75 % de molybdène, 0,035 % de nickel et 0,56 % de titane, ne possède plus, à température ambiante, qu'un allongement à la rupture de 6 % tandis qu'un alliage de 0,03 % de carbone, 0,010 % d'azote, 28,90 % de chrome, 3,97 % de molybdène, 0,041 % de nickel et 0.21 % de titane présente un allongement à la rupture de 26 %.
  • La réduction des teneurs en carbone et en azote associée à une addition de cuivre permet également d'obtenir une température de transition de l'état fragile à l'état ductile nettement inférieure à 0°C pour une tôle de 2 mm d'épaisseur.
  • Par ailleurs, la présente invention exclut volontairement l'addition de nickel, qui est un élément coûteux et qui accélère la formation de phases intermétalliques fragilisantes et amoindrit la résistance à la corrosion caverneuse en milieu chloruré.
  • Compte tenu de l'effet accélérateur du titane et du niobium sur la formation des phases intermétalliques fragilisantes et de leur influence néfaste sur la résistance aux chocs lorsqu'ils sont combinés au carbone et à l'azote, les aciers inoxydables ferritiques selon la présente invention sont d'autant plus résistants aux chocs et ont une stabilité structurale dans le domaine compris entre 650 et 1000°C d'autant plus élevée que les teneurs en C,N,Ti et Nb sont faibles. Pour optimiser la résistance à la corrosion intergranulaire, les teneurs en titane et/ou en niobium à ajouter, doivent être égales au minimum nécessaire pour fixer le carbone et l'azote et prendre en considération le fait que le titane et/ou le niobium en solution solide dans la ferrite ne participent pas au piégeage du carbone et de l'azote.
  • Ainsi, la teneur en titane doit satisfaire à l'équation suivante :
    %Ti > 0,10 + 4x (%C) + 3,4 x (% N)
    Figure imgb0005
    et en particulier à l'équation :
    %Ti > 0,15 + 4 x (%C) + 3,4 x(% N)
    Figure imgb0006
    pour que la résistance à la corrosion intergranulaire soit optimale.
  • Les coefficients 4 et 3,4 découlent logiquement des valeurs approchées des masses atomiques du titane (48), du carbone (12) et de l' azote (14) ainsi que des formules du carbure de titane et du nitrure de titane, respectivement TiC et TiN.
  • Si l'acier inoxydable ferritique est stabilisé au niobium, l'équation devient :

    %Nb > 0,10 + 7,7 x(%C) + 6,6 x(% N).
    Figure imgb0007

  • La masse atomique du niobium étant prise égale à 93 grammes.
  • Dans le cas particulier correspondant à une résistance à la corrosion intergranulaire optimale, l'équation devient :

    %Nb > 0,20 + 7,7 x(%C) + 6,6 x(%N).
    Figure imgb0008

  • Compte tenu du coût du titane et du niobium et des effets néfastes possibles d'un excès de ces éléments, il est souhaitable de se rapprocher au mieux de l'excès de la quantité théoriquement nécessaire pour fixer le carbone et l'azote.
  • Selon la présente demande, l'addition de cuivre est limitée à moins de 2 %, la précipitation de particules riches en cuivre ayant pour conséquence une dégradation sensible de la forgeabilité à chaud lorsque la teneur en cuivre est supérieure à 2 %.
  • Une addition d'aluminium à l'acier inoxydable ferritique selon la présente demande peut être ajoutée lors de l'élaboration à des fins de désoxydation.
  • Par conséquent, l'ajout du cuivre entre 0,5 et 2 % renforce la résistance aux chocs de l'alliage tout en réduisant la vitesse de formation des phases intermétalliques dures et fragilisantes du type sigma et chi qui peuvent se former lors des traitements thermiques de fabrication ou du soudage. Il en découle la possibilité d'élaborer un alliage stabilisé au titane ou au niobium à très haute teneur en chrome entre 28,5 à 35 % et en molybdène entre 3,5 et 5,5 %, indispensables à l'obtention d'une résistance à la corrosion maximale tout en minimisant les difficultés de fabrication et les risques de dégradation des autres propriétés finales.
  • De par ses propriétés, l'alliage ferritique selon la présente invention est particulièrement approprié pour l'utilisation sous forme de tôles et de feuillards dont l'épaisseur peut être supérieure à celle généralement utilisée en pratique (moins d'un mm) pour un acier inoxydable ferritique de même teneur en chrome et en molybdène contenant du titane ou du niobium.
  • L'acier inoxydable décrit par la présente invention est particulièrement destiné à la fabrication de tubes soudés pour des échangeurs de chaleur véhiculant de l'eau chlorurée. Il peut être par exemple élaboré par la filière acierie électrique, AOD et/ou affinage sous vide, coulée continue et laminage à chaud sur train à bande.

Claims (5)

  1. Acier inoxydable ferritique résistant à la corrosion dans des milieux chlorurés neutres ou faiblement acides, ductile et résistant au choc, et dont la composition chimique pondérale est la suivante :
    - 28,5 à 35% de chrome,
    - 3,5 à 5,50% de molybdène,
    - 0,5 à 2% de cuivre,
    - moins de 0,40% de manganèse,
    - moins de 0,40% de silicium,
    - moins de 0,030% de carbone,
    - moins de 0,030% d'azote
    - un pourcentage en titane et/ou en niobium au moins égal à 0,10% et inférieur à 0,60%, lesdits pourcentages en titane et/ou niobium satisfaisant aux équations suivantes :

    %Ti > 0,10 + 4 x (%C) + 3,4 x (%N),
    Figure imgb0009

    %Nb > 0,10 + 7,7 x (%C) + 6,6 x (%N),
    Figure imgb0010

    - et pouvant contenir du nickel en addition involontaire et en élément résiduel en tout cas à raison de moins de 0,5% et contenant jusqu'à 0,10% d'éléments ajoutés pour la désoxydation tels que de l'aluminium, du magnésium, du calcium, du bore, des matériaux de terres rares, le reste étant du fer et des impuretés résultant de la fusion des matières nécessaires à l'élaboration.
  2. Acier inoxydable ferritique selon la revendication 1, caractérisé en ce qu'il contient moins de 0,010 % de carbone et moins de 0,015 % d'azote, la somme du carbone et de l azote étant inférieure à 0,025 %.
  3. Procédé d'élaboration d'un acier inoxydable ferritique selon l'une quelconque des revendications 1 et 2, à partir duquel on forme une bande d'acier qui est laminée à chaud, caractérisé en ce que l'on soumet la bande d'acier laminée à chaud à un recuit à une température comprise entre 900 et 1200°C, puis on soumet la bande d'acier à un premier laminage à froid suivi d'un recuit intermédiaire à une température comprise entre 900 et 1200°C et enfin on soumet la bande d'acier à un second laminage à froid suivi d'un recuit final à une température comprise entre 900 et 1200°C.
  4. Procédé selon la revendication 3, caractérisé en ce que le recuit intermédiaire et le recuit final sont effectués en continu pendant 20 secondes à 5 minutes.
  5. Procédé selon la revendication 3 , caractérisé en ce que les recuits sont suivis d'un refroidissement rapide.
EP90400666A 1989-03-16 1990-03-13 Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier Expired - Lifetime EP0388283B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8903472A FR2644478B1 (fr) 1989-03-16 1989-03-16
FR8903472 1989-03-16

Publications (2)

Publication Number Publication Date
EP0388283A1 EP0388283A1 (fr) 1990-09-19
EP0388283B1 true EP0388283B1 (fr) 1994-12-28

Family

ID=9379766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90400666A Expired - Lifetime EP0388283B1 (fr) 1989-03-16 1990-03-13 Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier

Country Status (11)

Country Link
US (1) US5230752A (fr)
EP (1) EP0388283B1 (fr)
JP (1) JPH04504140A (fr)
AT (1) ATE116379T1 (fr)
AU (1) AU5289090A (fr)
CA (1) CA2050315C (fr)
DE (1) DE69015394T2 (fr)
DK (1) DK0388283T3 (fr)
ES (1) ES2069035T3 (fr)
FR (1) FR2644478B1 (fr)
WO (1) WO1990010723A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824265A (en) * 1996-04-24 1998-10-20 J & L Fiber Services, Inc. Stainless steel alloy for pulp refiner plate
US7981561B2 (en) * 2005-06-15 2011-07-19 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7842434B2 (en) * 2005-06-15 2010-11-30 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) * 2005-06-15 2012-04-17 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
WO2006034054A1 (fr) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Systeme et procede de depot, et matieres pour revetements composites
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US10883160B2 (en) 2018-02-23 2021-01-05 Ut-Battelle, Llc Corrosion and creep resistant high Cr FeCrAl alloys
CN115572898B (zh) * 2022-09-23 2023-12-01 成都先进金属材料产业技术研究院股份有限公司 一种高铬铁素体不锈钢的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB465999A (en) * 1935-09-16 1937-05-20 Stahlwerke Roechling Buderus Improvements in articles that are subjected to and must resist attack by solutions containing free chlorine or hypochlorous acid, its salts and solutions thereof
FR2091642A5 (en) * 1970-05-16 1972-01-14 Nippon Steel Corp Stainless steel resistant to pitting corrosion -and suitable for comp - used in sewater
JPS50109809A (fr) * 1974-02-07 1975-08-29
CA1184402A (fr) * 1980-04-11 1985-03-26 Sumitomo Metal Industries, Ltd. Acier inoxydable ferritique a bonne resistance a la corrosion
DE3169748D1 (en) * 1981-01-16 1985-05-09 Allegheny Ludlum Steel Low interstitial, corrosion resistant, weldable ferritic stainless steel and process for the manufacture thereof

Also Published As

Publication number Publication date
FR2644478B1 (fr) 1993-10-15
AU5289090A (en) 1990-10-09
JPH04504140A (ja) 1992-07-23
DK0388283T3 (da) 1995-04-03
ES2069035T3 (es) 1995-05-01
ATE116379T1 (de) 1995-01-15
CA2050315C (fr) 1999-04-27
DE69015394D1 (de) 1995-02-09
DE69015394T2 (de) 1995-08-17
US5230752A (en) 1993-07-27
EP0388283A1 (fr) 1990-09-19
WO1990010723A1 (fr) 1990-09-20
FR2644478A1 (fr) 1990-09-21

Similar Documents

Publication Publication Date Title
EP0889145B1 (fr) Acier inoxydable austénoferritique à très bas nickel et présentant un fort allongement en traction
KR101226335B1 (ko) 오스테나이트계 강 및 강철 제품
JP4420140B2 (ja) 高合金継目無管の製造方法
JP7059357B2 (ja) 二相ステンレスクラッド鋼板およびその製造方法
JP3388411B2 (ja) 高強度の切欠き延性析出硬化ステンレス鋼合金
FR2490680A1 (fr) Acier inoxydable ferritique ayant une tenacite et une soudabilite ameliorees
EP0388283B1 (fr) Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier
US9512509B2 (en) Duplex stainless steel
CH636644A5 (fr) Alliages a faible dilatation resistant aux hautes temperatures.
EP1312691A1 (fr) Alliage austénitique pour tenue à chaud à coulabilité et transformation améliorées, procédé de fabrication de billettes et de fils
FR2710657A1 (fr) Procédé de désensibilisation à la corrosion intercristalline des alliages d'Al séries 2000 et 6000 et produits correspondants.
EP1228253B1 (fr) Composition d'acier, procede de fabrication et pieces formees dans ces compositions, en particulier soupapes
JP2018534421A (ja) 新規なオーステナイト系ステンレス合金
EP0337846B1 (fr) Acier inoxydable austéno-ferritique
JP2022026809A (ja) 相安定性に優れた高耐食Ni-Cr-Mo-N合金
JP3779043B2 (ja) 二相ステンレス鋼
JPS61201759A (ja) ラインパイプ用高強度高靭性溶接クラツド鋼管
EP0172776B1 (fr) Procédé d'amélioration de la forgeabilité d'un acier inoxydable austenoferritique
JP7054078B2 (ja) 二相ステンレスクラッド鋼およびその製造方法
JP7054079B2 (ja) 二相ステンレスクラッド鋼およびその製造方法
WO2023187301A1 (fr) Tôle en alliage 6xxx de recyclage et procédé de fabrication
JP2000204448A (ja) 延性ニッケル―鉄―クロム合金
WO2019224290A1 (fr) Alliage austénitique à base de nickel
JP2020079437A (ja) オーステナイト系ステンレス鋼
JPH06145913A (ja) 耐食オーステナイト系Fe基合金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920710

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UGINE S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941228

REF Corresponds to:

Ref document number: 116379

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

EAL Se: european patent in force in sweden

Ref document number: 90400666.5

REF Corresponds to:

Ref document number: 69015394

Country of ref document: DE

Date of ref document: 19950209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950112

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069035

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030217

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030218

Year of fee payment: 14

Ref country code: AT

Payment date: 20030218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030307

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030312

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030313

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030314

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030328

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040313

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040313

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: S.A. *UGINE

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050313

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040315