EP0372366A1 - Elektroviskose Flüssigkeit - Google Patents

Elektroviskose Flüssigkeit Download PDF

Info

Publication number
EP0372366A1
EP0372366A1 EP89122000A EP89122000A EP0372366A1 EP 0372366 A1 EP0372366 A1 EP 0372366A1 EP 89122000 A EP89122000 A EP 89122000A EP 89122000 A EP89122000 A EP 89122000A EP 0372366 A1 EP0372366 A1 EP 0372366A1
Authority
EP
European Patent Office
Prior art keywords
weight
electroviscous fluid
electroviscous
fluid according
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89122000A
Other languages
English (en)
French (fr)
Other versions
EP0372366B1 (de
Inventor
Yoshiki Fukuyama
Yuichi Ishino
Toshiyuki Osaki
Takayuki Maruyama
Tasuku Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of EP0372366A1 publication Critical patent/EP0372366A1/de
Application granted granted Critical
Publication of EP0372366B1 publication Critical patent/EP0372366B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • C10M2229/025Unspecified siloxanes; Silicones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/0405Siloxanes with specific structure used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • C10M2229/0415Siloxanes with specific structure containing aliphatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/042Siloxanes with specific structure containing aromatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/042Siloxanes with specific structure containing aromatic substituents
    • C10M2229/0425Siloxanes with specific structure containing aromatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/043Siloxanes with specific structure containing carbon-to-carbon double bonds
    • C10M2229/0435Siloxanes with specific structure containing carbon-to-carbon double bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • C10M2229/0445Siloxanes with specific structure containing silicon-to-hydrogen bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/045Siloxanes with specific structure containing silicon-to-hydroxyl bonds
    • C10M2229/0455Siloxanes with specific structure containing silicon-to-hydroxyl bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/046Siloxanes with specific structure containing silicon-oxygen-carbon bonds
    • C10M2229/0465Siloxanes with specific structure containing silicon-oxygen-carbon bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • C10M2229/0475Siloxanes with specific structure containing alkylene oxide groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/048Siloxanes with specific structure containing carboxyl groups
    • C10M2229/0485Siloxanes with specific structure containing carboxyl groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/0505Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • C10M2229/0515Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • C10M2229/0525Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/053Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing sulfur
    • C10M2229/0535Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing sulfur used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/054Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing phosphorus
    • C10M2229/0545Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing phosphorus used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/17Electric or magnetic purposes for electric contacts

Definitions

  • the present invention relates to an electroviscous fluid which increases its viscosity when an electric potential difference is applied thereto.
  • the electroviscous fluid is a suspension composed of a finely divided hydrophilic solid dispersed in an electrically nonconductive oil.
  • the viscosity of the fluid increases swiftly and reversibly under influence of an electric field applied thereto and the fluid turns to a state of plastic or solid when the influence of the electric field is sufficiently strong.
  • the electric field to be applied for changing the viscosity of the fluid can be not only that of a direct current but also that of an alternating current, and the electric power requirement is very small to make it possible to give a wide range of viscosity variation from liquid state to almost solid state with a small consumption of electric power.
  • the electroviscous fluid has been studied with an expectation that it can be a system component to control such apparatus or parts as a crutch, a hydraulic valve, a shock absorber, a vibrator, a vibration-isolating rubber, an actuator, a robot arm, a damper, for example.
  • USP 3,047,507 proposed various kinds of materials as the dispersed phase of an electroviscous fluid, and silica gel was mentioned as a preferable material among them.
  • silica gel was mentioned as a preferable material among them.
  • an electrically nonconductive oil such as silicone oil was used.
  • the electroviscous fluid using silica gel as the dispersed phase showed small electroviscous effect which is unsatisfactory for practical usages.
  • Japanese Patent Provisional Publication Tokkaisho 53-93186 proposed lithium polyacrylate particles as the dispersed phase.
  • the electroviscous fluid using lithium polyacrylate particles as the dispersed phase has a disadvantage of large electric power consumption, because the lithium polyacrylate dispersed phase requires to contain a large amount of water to exhibit the electroviscous effect and the water induces an excessive electric conductivity.
  • Japanese Patent Provisional Publication Tokkaisho 62-95397 proposed electroviscous fluids using alumino-silicates having Al/Si atomic ratio of 0.15-0.80 at the surface and water content of 1-25% by weight as the dispersed phase, and mentioned electroviscous fluids using various kinds of crystalline zeolite as the dispersed phase in its examples.
  • crystalline zeolites are expressed with following general formula: M (x/n) [(AlO2) x (SiO2) y ] ⁇ wH2O, wherein, M is a hydrogen ion, a metallic cation or a mixture of metallic cations having an average electron value n; x and y are integers; w is a mole number of crystallization water.
  • Al content of a crystalline zeolite as a whole particle is larger than Al content at the surface of it.
  • Al content of the crystalline zeolite as a whole particle is larger than Al content at the surface of it.
  • the Al/Si atomic ratio of 0.15-0.80 (which is equivalent to Si/Al atomic ratio of 1.25-­6.67) at the surface is thought to correspond Si/Al atomic ratio of from about 1 to about 6.7 as a whole particle.
  • the crystalline zeolite of such composition is hydrophilic and contains much water in its crystal. Accordingly, an electroviscous fluid using such crystalline zeolite as the dispersed phase shows an excessive electric conductivity to have a disadvantage of much electric power consumption.
  • USP 4,744,914 proposed an electroviscous fluid using crystalline zeolite having the following general formula and containing substantially no adsorbed water as the dispersed phase; M (x/n) [(AlO2) x (SiO2) y ] ⁇ wH2O, wherein, M is a hydrogen ion, a metallic cation or a mixture of metallic cations having an average electron value n; x and y are integers; y/x of from about 1 to about 5; w is an indefinite number.
  • USP 4,744,914 proposed a treatment wherein the electric insulating oil and the crystalline zeolite particles were treated under a temperature higher than temperatures expected to be employed at the usage of the electroviscous fluid for enough time required to attain necessary degree of degassing and elimination of water.
  • the characteristics of the electroviscous fluid disclosed in USP 4,744,914 is that, by using crystalline zeolite particles containing substantially no adsorbed water as the dispersed phase, the electroviscous fluid shows a reversible increase of viscosity under a high electrical potential difference without discharging undesirable water even at temperatures higher than 100°C.
  • the surface of the zeolite becomes very active and tends to cause secondary coagulation.
  • Mechanism of the electroviscous effect is that the application of an electric potential difference to the electroviscous fluid induces formation of bridges among the particles dispersed therein due to polarization and elevation of viscosity of the fluid.
  • the object of the present invention is to provide an electroviscous fluid which requires no drying step at preparation and shows a quick responses at the application and cancellation of an electric potential difference and can exhibit a greater electroviscous effect with less electric power consumption.
  • the electroviscous fluid of the present invention comprises;
  • the crystalline zeolite having the above-mentioned general formula and Si/Al atomic ratio (y/x) of 10-200, preferably of 30-­120 is hydrophobic and contains 0.05-10% by weight of water, especially 1-5% by weight of water at the preferable atomic ratio without any treatment. It shows a large electroviscous effect with less electric conductivity without drying. Accordingly the problem of secondary coagulation can be avoided.
  • Si/Al atomic ratio (y/x) When the Si/Al atomic ratio (y/x) is smaller than 10, electric conductivity due to water becomes larger and the drying step is required. When the Si/Al atomic ratio (y/x) is larger than 200, the electroviscous effect becomes smaller due to insufficient water content.
  • ZSM-5 type zeolite As an example of the crystalline zeolite having the Si/Al atomic ratio (y/x) of 10-200, ZSM-5 type zeolite is well known.
  • the particle size and shape of the crystalline zeolite to be used in the present invention can be easily controlled by adopting an appropriate manufacturing method to improve the sedimenting property of the particles which is an important property in an electroviscous fluid.
  • the particle size of the crystalline zeolite suitable for the dispersed phase of the electroviscous fluid is in the range of 0.01-20 micrometer, preferably in the range of 0.3-5 micrometer.
  • the size is smaller than 0.01 micrometer, initial viscosity of the fluid under no application of electric field becomes extremely large and the change in viscosity due to the electroviscous effect is small.
  • the size is over 20 micrometer, the dispersed phase can not be held sufficiently stable in the liquid.
  • hydrocarbon oils As the electric insulating oil to constitute the liquid phase of an electroviscous fluid, hydrocarbon oils, ester oils, aromatic oils, halogenated hydrocarbon oils such as perfluoropolyether and polytrifluoromonochloroethylene, phosphazene oils and silicone oils are mentioned. They may be used alone or in a combination of more than two kinds. Among these oils, such silicone oils as polydimethylsiloxane, polymethylphenylsiloxane and polymethyltrifluropropylsiloxane are preferred, since they can be used in direct contact with materials such as rubber and various kinds of polymers.
  • the desirable viscosity of the electric insulating oil is in the range of 0.65-500 centistokes (cSt), preferably in the range of 5-200 cSt, and more preferably in the range of 10-50 cSt at 25°C.
  • cSt centistokes
  • stability of the liquid phase becomes inferior due to an increased content of volatile components, and a too high viscosity of the oil brings about an heightened initial viscosity under no application of electric field to result in a decreased changing range of viscosity by the electroviscous effect.
  • an electric insulating oil having an appropriate low viscosity is employed as the liquid phase, the liquid phase can suspend a dispersed phase efficiently.
  • the content of the dispersed phase composed of the aforementioned crystalline zeolite particles is 1-60% by weight, preferably 20-50% by weight, and the content of the liquid phase composed of the aforementioned electrical insulating oils is 99-40% by weight, preferably 80-50% by weight.
  • the dispersed phase is less than 1% by weight, the electroviscous effect is too small, and when the content is over 60% by weight an extremely large initial viscosity under no application of electric field appears.
  • H-ZSM-5 type crystalline zeolite particles manufactured by Catalysts & Chemicals Industries Co.
  • a liquid phase component being 60 parts by weight of a silicone oil (Toshiba-Silicone Co.: TSF 451-20 ®) having 20 cSt viscosity at 25°C to prepare an electroviscous fluid in a suspension form.
  • H-ZSM-5 type crystalline zeolite particles manufactured by Catalysts & Chemicals Industries Co.
  • a liquid phase component being 60 parts by weight of a silicone oil (Toshiba-Silicone Co.: TSF 451-20 ®) having 20 cSt viscosity at 25°C to prepare an electroviscous fluid in a suspension form.
  • H-ZSM-5 type crystalline zeolite particles manufactured by Catalysts & Chemicals Industries Co.
  • a liquid phase component being 60 parts by weight of a silicone oil (Toshiba-Silicone Co.: TSF 451-20 ®) having 20 cSt viscosity at 25°C to prepare an electroviscous fluid in a suspension form.
  • a silica-gel (Nippon Silica Co.: NIPSIL VN-3 ®) was treated to make the water content to 6% by weight, and 13 parts by weight thereof were dispersed in a liquid phase component being 87 parts by weight of a silicone oil (Toshiba-Silicone Co.: TSF 451-20 ®) having 20 cSt viscosity at 25°C to prepare an electroviscous fluid in a suspension form.
  • a silicone oil Toshiba-Silicone Co.: TSF 451-20 ®
  • Na-Y type crystalline zeolite particles manufactured by Catalysts & Chemicals Industries Co.
  • a liquid phase component being 70 parts by weight of a silicone oil (Toshiba-Silicone Co.: TSF 451-20 ®) having 20 cSt viscosity at 25°C to prepare an electroviscous fluid in a suspension form.
  • T is the shearing force under application of electric potential difference of 2 KV/mm
  • T-To is the difference of T
  • To and the current density is the value under application of electric potential difference of 2KV/mm.
  • T-To indicates the magnitude of electroviscous effect of the fluid. That is, a fluid showing a larger T-To in Table 1 exhibits a larger electroviscous effect. And the value of the current density ( ⁇ A/cm2) concerns an electric power required to apply the electric potential difference (2KV/mm).
  • the electroviscous fluids of Examples 1-3 showed large electroviscous effects with little electric power consumptions.
  • the electroviscous fluids of Comparative Example 1 using silica gel as the dispersed phase showed an inferior electroviscous effect though the electric power consumption was small.
  • the electroviscous fluids of Comparative Example 2 and 3 using high water content crystalline zeolite as the dispersed phase showed enormous electric power consumption.
  • the electroviscous fluids of Example 4 which used the same crystalline zeolite particles as the dispersed phase after drying, showed a large electroviscous effect with less electric power consumption.
  • the electroviscous fluid of Comparative Example 4 showed unstable behavior at the application of the electric potential difference E (2 KV/mm) and delayed response at the cancellation of the electric potential difference. The reason of this phenomenon is supposed to be caused by secondary coagulation of zeolite particles.
  • the electroviscous fluid of Example 1 showed a rapid and sharp response at the application and cancellation of electric potential difference (2 KV/mm).
  • E in abscissa shows the period of the application of electric field 2 KV/mm at 25°C and ordinate shows the shearing force observed.
EP89122000A 1988-12-01 1989-11-29 Elektroviskose Flüssigkeit Expired - Lifetime EP0372366B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63302227A JPH02150494A (ja) 1988-12-01 1988-12-01 電気粘性液体
JP302227/88 1988-12-01

Publications (2)

Publication Number Publication Date
EP0372366A1 true EP0372366A1 (de) 1990-06-13
EP0372366B1 EP0372366B1 (de) 1992-09-02

Family

ID=17906477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122000A Expired - Lifetime EP0372366B1 (de) 1988-12-01 1989-11-29 Elektroviskose Flüssigkeit

Country Status (3)

Country Link
EP (1) EP0372366B1 (de)
JP (1) JPH02150494A (de)
DE (1) DE68902734T2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424840A1 (de) * 1989-10-25 1991-05-02 Bridgestone Corporation Elektrorheologische Flüssigkeit
EP0374525B1 (de) * 1988-12-17 1993-11-18 Bridgestone Corporation Elektroviskose Flüssigkeit
EP0589637A1 (de) * 1992-09-21 1994-03-30 Dow Corning Corporation Organosiloxane enthaltende verbesserte elektrorheologische Flüssigkeitzubereitungen
GB2562309A (en) * 2017-05-12 2018-11-14 Univ Belfast Porous liquids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047507A (en) * 1960-04-04 1962-07-31 Wefco Inc Field responsive force transmitting compositions
EP0170939A1 (de) * 1984-07-26 1986-02-12 Bayer Ag Elektroviskose Flüssigkeiten
FR2612910A1 (fr) * 1987-03-31 1988-09-30 Mizusawa Industrial Chem Procede de preparation de particules siliceuses, analcime active et silice amorphe obtenues par ce procede, et charges et fluide electrovisqueux qui en contiennent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047507A (en) * 1960-04-04 1962-07-31 Wefco Inc Field responsive force transmitting compositions
EP0170939A1 (de) * 1984-07-26 1986-02-12 Bayer Ag Elektroviskose Flüssigkeiten
FR2612910A1 (fr) * 1987-03-31 1988-09-30 Mizusawa Industrial Chem Procede de preparation de particules siliceuses, analcime active et silice amorphe obtenues par ce procede, et charges et fluide electrovisqueux qui en contiennent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374525B1 (de) * 1988-12-17 1993-11-18 Bridgestone Corporation Elektroviskose Flüssigkeit
EP0424840A1 (de) * 1989-10-25 1991-05-02 Bridgestone Corporation Elektrorheologische Flüssigkeit
US5130042A (en) * 1989-10-25 1992-07-14 Bridgestone Corporation Electrorheological fluids comprising carbonaceous particulates dispersed in electrical insulating oily medium having P═N bonds in the molecule
EP0589637A1 (de) * 1992-09-21 1994-03-30 Dow Corning Corporation Organosiloxane enthaltende verbesserte elektrorheologische Flüssigkeitzubereitungen
US5480573A (en) * 1992-09-21 1996-01-02 Dow Corning Corporation Electrorheological fluid compositions containing alkylmethylsiloxanes
GB2562309A (en) * 2017-05-12 2018-11-14 Univ Belfast Porous liquids
US11565212B2 (en) 2017-05-12 2023-01-31 The Queen's University Of Belfast Porous liquids
US11571656B2 (en) 2017-05-12 2023-02-07 The Queen's University Of Belfast Type 3 porous liquids
EP4134151A1 (de) * 2017-05-12 2023-02-15 The Queen's University of Belfast Poröse flüssigkeiten

Also Published As

Publication number Publication date
DE68902734T2 (de) 1993-01-14
DE68902734D1 (de) 1992-10-08
EP0372366B1 (de) 1992-09-02
JPH02150494A (ja) 1990-06-08

Similar Documents

Publication Publication Date Title
EP0374525B1 (de) Elektroviskose Flüssigkeit
EP0361106B1 (de) Elektroviskose Flüssigkeiten
US4879056A (en) Electric field dependent fluids
EP0100201B1 (de) Von einem elektroviskosen Fluidum betätigte Vorrichtungen
US5429761A (en) Carbonated electrorheological particles
US5607996A (en) Electrorheological elastomers useful as variable stiffness articles
JPS63185812A (ja) 電界反応性流体
EP0372366A1 (de) Elektroviskose Flüssigkeit
JPH06185565A (ja) 電気レオロジー装置
US5849212A (en) Electroviscous fluid containing β-alumina
GB2236761A (en) Electrorheological fluids
EP0342041B1 (de) Elektrorheologische Flüssigkeiten
EP0614964B1 (de) Elektrorheologische Flüssigkeiten mit Hydrocarbyl aromatischen Hydroxy Verbindungen
EP0424840B1 (de) Elektrorheologische Flüssigkeit
EP0393831A1 (de) Elektrorheologische Flüssigkeiten
JPH04164996A (ja) 電気粘性液体
JPH03119098A (ja) 電気粘性流体
JPH06336595A (ja) 電気粘性流体
JPH02169695A (ja) 電気粘性流体
JPH0234691A (ja) 電気粘性液体
JP2599963B2 (ja) 高温安定性、応答性及び増粘効果に優れた電気粘性流体
JPH03166295A (ja) 改良された分散性を有する電気粘性流体
JPH0428794A (ja) 電気粘性流体
JPH06228586A (ja) 電気粘性流体組成物
JPH04175399A (ja) 電気粘性流体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901116

17Q First examination report despatched

Effective date: 19910328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRIDGESTONE CORPORATION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: STUDIO FERRARIO

ET Fr: translation filed
REF Corresponds to:

Ref document number: 68902734

Country of ref document: DE

Date of ref document: 19921008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951129

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130