EP0367046B1 - Machine hydrostatique à piston rotatif - Google Patents

Machine hydrostatique à piston rotatif Download PDF

Info

Publication number
EP0367046B1
EP0367046B1 EP89119514A EP89119514A EP0367046B1 EP 0367046 B1 EP0367046 B1 EP 0367046B1 EP 89119514 A EP89119514 A EP 89119514A EP 89119514 A EP89119514 A EP 89119514A EP 0367046 B1 EP0367046 B1 EP 0367046B1
Authority
EP
European Patent Office
Prior art keywords
rotary piston
tooth system
teeth
piston machine
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89119514A
Other languages
German (de)
English (en)
Other versions
EP0367046A1 (fr
Inventor
Siegfried Dipl.-Ing. Eisenmann
Hermann Härle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0367046A1 publication Critical patent/EP0367046A1/fr
Application granted granted Critical
Publication of EP0367046B1 publication Critical patent/EP0367046B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement

Definitions

  • the invention relates to a hydrostatic rotary piston machine of the type specified in the preamble of claim 1.
  • These hydrostatic machines can be used both as a hydraulic pump, but preferably as a hydraulic motor, and are particularly popular as slow-running "torque motors". Liquids and gases are understood as working fluids. Their main advantage is a relatively large swallowing volume per revolution and thus a relatively high output torque.
  • a known machine of this type (DE-A-1.703.573) has a so-called gerotor toothing between the fixed housing and the outer toothing of the rotary piston. This toothing works there as a displacement part.
  • the circular piston also has gerotor teeth in its inner area, its inner rotor being connected in one piece to the input or output shaft in a rotationally fixed manner. In this machine, attempts are made to ensure the supply and disposal of the positive toothing via control slots which are arranged on the rotary piston itself. For design and gear kinematic reasons, it is necessary that the eccentricities of both gerotor gears must be the same.
  • the tooth height of the positive toothing depends on the tooth height of the much smaller toothing on the shaft, so that the conveying surface, that is specific volume per revolution of the positive toothing is still relatively small.
  • the flow cross sections that can be achieved by the commutator control provided there are also unfavorable, so that high throttle losses occur.
  • Rotary piston machines have also become known which have generic differences, for example US Pat. No. 3,288,078, which shows an output shaft mounted on one side. Such solutions are ruled out for high power transmissions, since the shaft in question or its bearings, in particular the relatively fine toothing between the rotor and drive shaft, is hardly suitable for transmitting sufficient forces.
  • a hydrostatic rotary piston machine has become known, which also dispenses with a double-sided central shaft and instead has a driving wobble shaft with a numbered wave profile as the force transmission member.
  • Such arrangements have the disadvantage that they have to be small in diameter, and therefore can only transmit relatively small forces and are subject to high wear, especially since the tooth profiles of the wobble shaft are only partially in engagement with the opposing tooth profiles.
  • the invention has for its object to provide a hydrostatic rotary piston machine of the type specified, in which the disadvantages mentioned above do not occur.
  • the swallowing volume is to be increased and a hydrostatic rotary piston machine is proposed in which as many parts as possible can be produced using highly efficient processes, e.g. in the sintering process.
  • the number of parts required should also be as small as possible.
  • the toothing provided between the rotary piston and the shaft which is referred to as the second inner and external toothing
  • double the tooth height is obtained if the toothing provided between the rotary piston and the shaft, which is referred to as the second inner and external toothing, has a higher difference in the number of teeth than 1.
  • This much larger swallowing volume of the displacement toothing requires time-consuming control (in cm2 / sec) of the inflow and outflow for the working medium, which is why a separate rotary commutator must be provided. Since the rotary piston transfers its torque to the shaft via very large tooth forces, this shaft must be made very stable. Since this thick shaft must be passed through the rotary commutator, a new path must be taken to drive it through the rotary piston. This should also be the reason why the professional world has so far not considered a higher number of teeth difference than possible.
  • the second internal and external toothing has a difference in the number of teeth of at least 2, and in that the rotary commutator of the control part is coupled to the rotary piston via a circular gear with a transmission ratio of 1: 1.
  • the rotary commutator can be freely rotated in relation to the shaft.
  • an internal toothing with concave tooth flanks is suitable, which have a circular arc shape and determine the shape of the tooth flanks of the second external toothing on the input or output shaft by rolling on the second internal toothing of the rotary piston.
  • Such internal teeth have particularly small sliding components, due to a very small pressure angle.
  • the efficiency of the internal gear between the rotary piston and the shaft can be further improved by the second internal toothing (of the rotary piston) having convexly circular tooth flanks, the shape of the tooth flanks of the second external toothing (the shaft) being determined by rolling on the second internal toothing and thus has a concave tooth shape.
  • the notch-free cross-section of the rotary lobe is also larger than in the variant with concave flanks on the second internal toothing, which results in greater stability or a narrower design.
  • a perfect rotary commutator control for the supply and disposal of the displacement part has the condition, as is generally known in such machines, that the rotary commutator executes exactly the same speed as the rotary piston around its own axis. Since the rotary piston does not 'only perform a rotary movement, but also an eccentric movement, this 1: 1 ratio causes constructional difficulties. In the rotary piston machine according to the invention, this becomes 1: 1 ratio achieved in that the rotary commutator has gear extensions directed towards the displacement part, which mesh directly with the second internal toothing of the rotary piston.
  • the 1: 1 ratio arises from the fact that between the rotary commutator and the rotary piston there is a circular gear with the ratio 1: 1, in which the gear extensions protruding from the rotary commutator are designed as teeth with circular tooth flanks - evenly distributed along a circumference of the partial circle - and in circular arcs Engage the teeth of the rotary piston as a second internal toothing, the radius of which is smaller by the eccentricity of the rotary piston machine than the radius of the circular tooth flanks of the gear extensions or vice versa. High performance is not transferred.
  • the teeth between the rotary piston and the output shaft must be designed as rolling teeth with the smallest sliding components to minimize losses.
  • a gear with a relatively high proportion of sliding can be used to drive it, as is the case with the circular-arc gear.
  • a coupling can be provided as in the cyclo transmission.
  • the 1: 1 drive of the rotary commutator is provided by the fact that the gear extensions of the rotary commutator, which are evenly distributed over the circumference, protrude directly into the second internal toothing of the rotary piston with concave circular tooth flanks and the number of extensions is the same is the number of teeth of the second internal toothing, the shape of the extensions being determined according to the guidelines for a circular arc transmission according to claim 7 and having convex tooth flanks. A sufficient degree of coverage can be achieved for the constant rotation angle ratio 1: 1 from the rotary piston to the rotary commutator.
  • the rotary commutator is then driven by the fact that the gear extensions of the rotary commutator, which are evenly distributed on the circumference, also protrude directly into the second internal toothing of the rotary piston provided with convex circular tooth flanks and the number of extensions is equal to that Is the number of teeth of the second internal toothing, the extensions are in turn defined according to the guidelines for a circular arc transmission according to claim 6 and have concave tooth flanks.
  • the embodiment of the displacement teeth in this case the first inner or.
  • External gearing has a significant influence on the efficiency of the machine.
  • One of the sources of loss is the normal force with which the tooth heads of the first external toothing are moved against one another on the tooth heads of the associated internal toothing. This head tooth force is smaller, the smaller the pressure angle of the toothing. Since these tooth heads slide on each other, there are friction losses which can also lead to wear and tear at the same time.
  • this first internal or external toothing is a trochoid toothing
  • the teeth of the first internal toothing being described as described in another context (see EP-PS 43899, which is considered to be disclosed in the context of this description) have approximately trapezoidal shape with convexly curved flanks and heads, and that the pitch circle of the first internal toothing extends outside the circle around the center of the first internal toothing through the lower third of the tooth height of the first internal toothing.
  • an embodiment has also proven itself in which the teeth of the first internal toothing are formed by rollers rotatably mounted in the housing. These are stored in the housing with a certain plain bearing clearance so that a hydrodynamic plain bearing is created between the roller and the housing due to the working fluid.
  • the rotary piston In the type of rotary piston machines on which the invention is based, the rotary piston has an annular shape.
  • the hydrostatic force acts on half of its outer circumference and tends to deform this annular body into an oval.
  • This deformation must not be greater than the backlash of the first internal toothing permits if the rotary piston is to rotate freely in the internal toothing of the housing. If this oval deformation becomes too large, the rotary piston jams, resulting in poor efficiency and high wear on the machine. For this reason, the deformation rigidity of the rotary piston must be optimized. This is achieved if the internal toothing of the rotary piston has the same number of teeth as its external toothing and if the rotary piston is made of a material with a large modulus of elasticity.
  • the rotary piston machine 101 shown in the figures has, in addition to the longitudinal screw connection, not shown in the longitudinal section, an input or output shaft 9 which is stably supported in two tapered roller bearings 10 to the left and right of the hydraulic part.
  • the machine is leak-free sealed to the outside by a shaft sealing ring 50, the leak oil lines and leak oil return lines serving to relieve the pressure of the seal in the low pressure range are not shown for the sake of clarity.
  • the shaft 9 is provided with strong external toothing 8 (8a with convex and 8b with concave tooth flanks 28a and 28b), which transmits the input and output torque, the internal toothing 7 (7a with concave and 7b with convex tooth flanks 29a and 29b) the rotary piston 5 combs.
  • the machine also has a drum-shaped rotary commutator 11 which is mounted in the control part 2 in a pressure-tight manner but with running play. It has radially outwardly open control slots 12 and 13 which are alternately axially offset and evenly distributed on the circumference.
  • the control slots are connected to the connections 19 and 20 for the pumped medium both via circumferential grooves 15 and 16 and also via inner grooves 17 and 18.
  • the mode of operation of such a rotary commutator for controlling, for example, a generic rotary piston machine is known to the person skilled in the art (cf. OMM hydraulic motor from Danfoss) and therefore need not be explained in more detail.
  • the rotary commutator supplies and disposes of the displacer part 1 via the radial control channels 21 and 22 and via the axial channels 23 with pressure media.
  • the channels 23 open into the tooth spaces 26 of the housing internal teeth 4, which together with the associated external teeth 6 of the rotary piston 5 form the working spaces of the hydrostatic machine in a known manner.
  • the mode of operation of these known internal gear pumps or motors is also known to the person skilled in the art and need not be explained further.
  • the rotary commander 11 With correct control of the inflow and outflow of the working medium from the working spaces 26a and 26b by the rotary commander 11, for example, all the working spaces 26a to the left of the center line 40 are with the inlet 19, all to the right thereof lying working spaces 26b with the drain 20 in connection.
  • the inlet 19 is under high pump pressure
  • the outlet 20 is approximately under atmospheric pressure
  • the rotary piston 5 is rotated clockwise with a high torque around the engagement point 27 of the housing teeth 4 in the example of FIGS .
  • the size and uniformity of this torque depends crucially on the number of teeth and the pitch circle diameter of the external toothing of the rotary piston. This leads to a linear relationship between the absorption volume of the machine per revolution of the rotary piston around its own axis and its torque. Large number of teeth and large eccentricity e result in high machine performance in a given installation space.
  • the rotary piston 5 now outputs its torque in the form of a large tooth force at the point of engagement 44 between its internal toothing 7 and the external toothing 8 of the shaft on the output shaft 9.
  • the efficiency of this power transmission between the rotary piston and the shaft is influenced by the pressure angle of the engaged gears.
  • the toothing according to FIG. 3 is superior to that of FIG. 2 by approx. 4%, provided that it is optimized in terms of construction. This optimization must be carried out on the drawing board and at the same time computationally, which need not be explained in detail here and is known to a person skilled in the art.
  • a bending-resistant shaft 9 is important for the successful operation of such a rotary piston machine, which is why it must be striven for that the external toothing 8 preferably placed on it in one piece has the largest possible diameter.
  • the rotary piston 5 should also be as rigid as possible. It can be seen in particular from FIG. 6 that it is advantageous if the internal teeth of the rotary piston 5 have the same number of teeth as the external teeth 6 thereof.
  • the projections 14, which are designed as teeth and have the arc-shaped tooth flank 30a, can be produced in one piece with the rotary commutator 11, for example using the sintering process. Since the rotary commutator does not consume any power, the tooth load is practically zero.
  • FIG. 6 A machine with a very high and proven wear resistance is shown in FIG. 6, in which the internal toothing 4 of the housing is produced from rotatable, hardened and ground rollers 34.
  • the rollers 34 are supported hydrodynamically on an oil film in the gap 35 between the roller and the housing, so that the efficiency of this displacement toothing is improved.
  • the manufacturing effort is of course correspondingly higher, since the lubricating film may only be a few micrometers thick, so that the inside shape of the housing must be correspondingly precise.
  • the variant shown in section in FIG. 8 shows the control part 2a with the connections 19a, 20a closer to the output end of the shaft 9 than in the variant according to FIG.
  • This enables a radial feed, and the radial bearing forces for the bearings 10 are even better distributed.
  • This also results in less flow restriction losses at high speed, because there are no large curvatures; longer sealing distances "L" on the commutator and therefore better volumetric efficiency with the same overall length as Fig.1; Easier to install and a more market-compliant arrangement of the connections.
  • the other components correspond to those of the other figures and are therefore not described in detail.

Claims (11)

  1. Machine hydraulique à piston rotatif comprenant une partie de refoulement (1) qui agit comme un élément menant ou un élément mené, respectivement, et une partie de commande (2) qui est située à côté d'elle et qui sert à alimenter la partie de refoulement (1) en fluide moteur et à en évacuer celui-ci, cependant que la partie de refoulement (1) comporte un premier carter fixe (3) présentant une première denture intérieure (4) qui coopère avec un piston rotatif circulaire (5) monté d'une manière excentrée et pourvu d'une première denture extérieure (6), lequel piston rotatif (5) présente une deuxième denture intérieure (7) qui engrène avec une deuxième denture extérieure (8) ménagée sur un arbre (9) qui est monté d'une manière centrée, qui traverse également du moins la partie de commande (2) et qui est monté sur des paliers des deux côtés, et qu'il existe une différence entre le nombre des dents des premières dentures intérieure et extérieure (4, 6) qui est égale à 1, caractérisée par le fait que les deuxièmes dentures intérieure et extérieure (7, 8) présentent une différence entre le nombre de leurs dents qui est au moins égale à 2 - la denture extérieure (6, 8) étant à chaque fois celle dont le nombre des dents est le plus faible -, et par le fait qu'un collecteur tournant (11) de la partie de commande (2) est accouplé au piston rotatif (5) par l'intermédiaire d'un engrenage à dents en ogive (28, 29) dont le rapport de transmission est égal à 1/1.
  2. Machine hydraulique à piston rotatif selon la revendication 1, caractérisée par le fait que la deuxième denture intérieure (7a) présente des flancs de dents (29a) dont la conformation est concave et qui présentent en particulier une forme en arc de cercle, et par le fait que la forme des flancs de dents (28a) de la deuxième denture extérieure (8a) ménagée sur l'arbre (9), respectivement menant ou mené, est déterminée en vue de leur roulement sur la deuxième denture intérieure (7a) du piston rotatif (5a) (figure 2).
  3. Machine hydraulique à piston rotatif selon la revendication 1, caractérisée par le fait que la deuxième denture intérieure (7b) présente des flancs de dents (29b) dont la conformation est convexe et qui présentent en particulier une forme en arc de cercle, et par le fait que la forme des flancs de dents (28b) de la deuxième denture extérieure (8b) ménagée sur l'arbre (9) est déterminée en vue de leur roulement sur la deuxième denture intérieure (7b) (figure 3).
  4. Machine hydraulique à piston rotatif selon l'une des revendications 1 à 3, caractérisée par le fait que le collecteur tournant (11) présente des prolongements formant engrenage (14a, b) qui sont dirigés vers la partie de refoulement (1) et qui engrènent directement avec la deuxième denture intérieure (7) du piston rotatif (5) (figures 1 et 4).
  5. Machine hydraulique à piston rotatif selon l'une des revendications 2 à 4, caractérisée par le fait que les prolongements formant engrenage (14a, b) et faisant saillie depuis le collecteur tournant sont réalisés sous la forme de dents - régulièrement réparties le long d'un périmètre de cercle primitif - qui présentent des flancs de dents (30) - de préférence en forme d'arcs de cercle - et qui pénètrent dans la deuxième denture intérieure (7a, b), cependant que le rayon des dents de celle-ci est inférieur au rayon des flancs des dents (30a, b) - de préférence en forme d'arcs de cercle - des prolongements formant engrenage (14a, b), et ce, d'une valeur égale à l'excentricité (e) de la machine à piston rotatif, ou inversement (figures 4 et 5).
  6. Machine hydraulique à piston rotatif selon la revendication 2 ou 5, caractérisée par le fait que le nombre des prolongements d'engrenage (14a) est égal au nombre des dents de la deuxième denture intérieure (7a), les prolongements formant engrenage (14a) présentant des flancs de dents (30a) qui sont concaves (figure 4).
  7. Machine hydraulique à piston rotatif selon la revendication 3 ou 5, caractérisée par le fait que le nombre des prolongements d'engrenage (14b) est égal au nombre des dents de la deuxième denture intérieure (7b), les prolongements formant engrenage (14b) présentant des flancs de dents (30b) qui sont convexes (figure 5).
  8. Machine hydraulique à piston rotatif selon l'une des revendications 1 à 7, caractérisée par le fait que les premières dentures intérieure et extérieure (4, 6) sont des dentures en cycloïdes, chaque dent (25) de la première denture intérieure (4) présentant approximativement la forme d'un trapèze avec des flancs et des têtes à courbure convexe, et par le fait que le cercle de pied (41) de la première denture intérieure (4) s'étend à l'extérieur du cercle (42) qui est tracé autour du centre (43) du cercle primitif de la première denture intérieure (4) en passant par le tiers inférieur de la hauteur des dents de celle-ci (figure 2).
  9. Machine hydraulique à piston rotatif selon l'une des revendications précédentes, caractérisée par l'une au moins des caractéristiques suivantes :
    a) le piston rotatif (5), mais de préférence aussi le premier carter (3) qui reçoit celui-ci, et le collecteur tournant (11), ainsi que le disque de commande (38) et le deuxième carter (39), le cas échéant, sont fabriqués à partir d'un métal fritté et/ou de poudre céramique ;
    b) la denture intérieure (7a, b) du piston rotatif (5) présente le même nombre de dents que sa denture extérieure (6a, b) ;
    c) les dents de la première denture intérieure (4) sont constituées par des rouleaux (34) qui sont montés tournants dans le carter (3).
  10. Machine hydraulique à piston rotatif selon l'une des revendications précédentes, caractérisée par le fait que, dans la région du collecteur tournant, la partie de commande (2) est divisée en un carter de commande (38) et en un carter de raccordement (39), coaxiaux et vissés d'une manière étanche à la pression, le carter de raccordement (39) recevant de préférence un palier (10) destiné à l'arbre (9).
  11. Machine hydraulique à piston rotatif selon l'une des revendications précédentes, caractérisée par le fait que l'entrée ou, respectivement, la sortie de l'arbre (9) qui transmet la puissance est plus éloignée de la partie de refoulement (1) que de la partie de commande (2) (figure 8).
EP89119514A 1988-10-24 1989-10-20 Machine hydrostatique à piston rotatif Expired - Lifetime EP0367046B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3943/88A CH679062A5 (fr) 1988-10-24 1988-10-24
CH3943/88 1988-10-24

Publications (2)

Publication Number Publication Date
EP0367046A1 EP0367046A1 (fr) 1990-05-09
EP0367046B1 true EP0367046B1 (fr) 1993-09-15

Family

ID=4266826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119514A Expired - Lifetime EP0367046B1 (fr) 1988-10-24 1989-10-20 Machine hydrostatique à piston rotatif

Country Status (6)

Country Link
US (1) US5056994A (fr)
EP (1) EP0367046B1 (fr)
JP (1) JP2820290B2 (fr)
CH (1) CH679062A5 (fr)
DE (2) DE58905616D1 (fr)
HK (1) HK58394A (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228846A (en) * 1991-11-25 1993-07-20 Eaton Corporation Spline reduction extension for auxilliary drive component
EP0761968A1 (fr) * 1995-09-08 1997-03-12 Siegfried A. Dipl.-Ing. Eisenmann Soupape pour moteur à engrenage à denture intérieure avec palier hydrostatique
DE19536060C2 (de) * 1995-09-28 1998-06-18 Danfoss As Hydraulische Maschine
GB2313411B (en) * 1996-05-25 1999-10-13 Concentric Pumps Ltd Improvements in drive systems
US6019584A (en) * 1997-05-23 2000-02-01 Eaton Corporation Coupling for use with a gerotor device
US5860884A (en) * 1996-10-28 1999-01-19 Tecumseh Products Company Variable speed transmission and transaxle
EP1074740B1 (fr) * 1999-08-03 2001-12-19 Siegfried A. Dipl.-Ing. Eisenmann Machine hydrostatique à piston rotatif
EP1074739A1 (fr) * 1999-08-03 2001-02-07 Siegfried A. Dipl.-Ing. Eisenmann Machine hydrostatique à piston rotatif
DE19961401C2 (de) * 1999-12-20 2002-06-27 Sauer Danfoss Nordborg As Nord Hydraulische Maschine
US6524087B1 (en) 2000-08-03 2003-02-25 Siegfried A. Eisenmann Hydrostatic planetary rotation machine having an orbiting rotary valve
US20030070429A1 (en) * 2001-08-21 2003-04-17 Jolliff Norman E. Hydrostatic transmission
CH701073B1 (de) * 2004-07-22 2010-11-30 Siegfried A Dipl-Ing Eisenmann Hydrostatischer Kreiskolbenmotor.
US7395665B2 (en) * 2006-02-07 2008-07-08 White Drive Products, Inc. Hydraulic transaxle for garden care vehicle
JP5916078B2 (ja) * 2011-12-07 2016-05-11 株式会社ジェイテクト 内接ギアポンプ
DE102011122027B3 (de) * 2011-12-22 2013-04-11 Böhm + Wiedemann Feinmechanik AG Hydrostatischer Kreiskolbenmotor
WO2013133641A1 (fr) * 2012-03-07 2013-09-12 Kim Woo Kyun Unité de compresseur à deux étages et système de compresseur la comprenant
CN102900665A (zh) * 2012-10-16 2013-01-30 李庆中 一种多层结构的内啮合齿轮泵或齿轮马达装置
DE102014015809A1 (de) 2014-10-24 2016-04-28 Man Truck & Bus Ag Hydraulischer Radantrieb für ein Kraftfahrzeug und Verfahren zu dessen Betrieb
DE102015001235A1 (de) * 2015-02-03 2016-08-04 Man Truck & Bus Ag Verfahren zum Betreiben einer Zahnradpumpe und Zahnradpumpe
EP3441613B1 (fr) 2017-08-07 2022-01-05 Siegfried A. Eisenmann Machine hydrostatique à pistons rotatifs et à engrenage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3106163A (en) * 1960-04-04 1963-10-08 Roper Hydraulics Inc Pumps, motors and like devices
US3288078A (en) * 1964-08-25 1966-11-29 Trw Inc Hydraulic device
US3456559A (en) * 1967-07-21 1969-07-22 Reliance Electric & Eng Co Rotary device
US3658449A (en) * 1970-10-16 1972-04-25 George V Woodling Orbital fluid pressure device for exerting a force
US3784336A (en) * 1971-12-10 1974-01-08 Sperry Rand Corp Power transmission
DE2752036C2 (de) * 1977-11-22 1985-06-27 Danfoss A/S, 6430 Nordborg Rotationskolbenmaschine für Flüssigkeiten
DE3026222A1 (de) 1980-07-10 1982-02-04 Siegfried Alexander Dipl.-Ing. 7960 Aulendorf Eisenmann Zahnringpumpe
US4411606A (en) * 1980-12-15 1983-10-25 Trw, Inc. Gerotor gear set device with integral rotor and commutator
US4741681A (en) * 1986-05-01 1988-05-03 Bernstrom Marvin L Gerotor motor with valving in gerotor star
DE3632155A1 (de) * 1986-09-22 1988-03-31 Johann Langmaier Kraft- oder arbeitsmaschine

Also Published As

Publication number Publication date
EP0367046A1 (fr) 1990-05-09
JP2820290B2 (ja) 1998-11-05
JPH02245485A (ja) 1990-10-01
CH679062A5 (fr) 1991-12-13
US5056994A (en) 1991-10-15
DE58905616D1 (de) 1993-10-21
DE8912593U1 (fr) 1990-01-25
HK58394A (en) 1994-06-17

Similar Documents

Publication Publication Date Title
EP0367046B1 (fr) Machine hydrostatique à piston rotatif
DE4241320C2 (de) Drehkolbenmaschine
EP0552443A1 (fr) Machine à engrenages
DE2732086A1 (de) Innenachsige kreiskolbenmaschine mit kaemmeingriff und festpunktlos gelagertem innenzahnrad
DE1528983B2 (de) Steuerdrehschiebereinrichtung fuer eine rotationskolbenmaschine
EP0433576B1 (fr) Pompe à engrenages annulaires pour moteurs à combustion interne et transmissions automatiques
DE4311166C2 (de) Hydraulische Maschine
DE3117651A1 (de) Drehkolbenmotor mit im durchmesser vergroesserter antriebswelle
DE60011319T2 (de) Gerotormotor
EP0846861B1 (fr) Pompe annulaire à engrenages continuellement variable
DE3209945A1 (de) Antriebswellenanordnung fuer kreiskolbenmaschinen
EP0087747A2 (fr) Machine à piston rotatif à axe interne sans arbre à excentriques
DE3402710A1 (de) Hydraulische kreiskolbenmaschine
DE2051066A1 (de) Zahnradsatz
DE4421255C1 (de) Füllstücklose Innenzahnradpumpe
DE3327772A1 (de) Verdraengermaschine, insbesondere zykloiden-planetengetriebe mit integriertem hydraulischem motor
DE3346519C2 (fr)
EP1074740B1 (fr) Machine hydrostatique à piston rotatif
DE3144423T1 (de) Planetenhydromotor
EP0185236B1 (fr) Machine à piston rotatif
WO2008125106A1 (fr) Moteur à pistons rotatifs
DE69918675T2 (de) Hydraulische rotierende axielkolbenmaschine
DE3536884A1 (de) Hydromotor
DE2718148A1 (de) Zahnringpumpe oder -motor
DE1528960C (de) Zahnradringpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901107

17Q First examination report despatched

Effective date: 19911211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58905616

Country of ref document: DE

Date of ref document: 19931021

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931027

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010925

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011018

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011116

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020