EP0363375B1 - Stranggiessvorrichtung - Google Patents

Stranggiessvorrichtung Download PDF

Info

Publication number
EP0363375B1
EP0363375B1 EP88903813A EP88903813A EP0363375B1 EP 0363375 B1 EP0363375 B1 EP 0363375B1 EP 88903813 A EP88903813 A EP 88903813A EP 88903813 A EP88903813 A EP 88903813A EP 0363375 B1 EP0363375 B1 EP 0363375B1
Authority
EP
European Patent Office
Prior art keywords
cooling
continuous casting
primary
cooler
casting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88903813A
Other languages
English (en)
French (fr)
Other versions
EP0363375A1 (de
Inventor
Hans Horst
Werner S. Horst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT88903813T priority Critical patent/ATE66840T1/de
Publication of EP0363375A1 publication Critical patent/EP0363375A1/de
Application granted granted Critical
Publication of EP0363375B1 publication Critical patent/EP0363375B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • B22D11/047Means for joining tundish to mould

Definitions

  • the invention relates to a continuous casting device according to the preamble of claim 1.
  • Conventional continuous casting devices consist of a mold which is made from a graphite tube or at least has a graphite layer on its inner surface.
  • a mold which is made from a graphite tube or at least has a graphite layer on its inner surface.
  • conventional molds are usually designed to protrude into the melting chamber.
  • this basically has the disadvantage in terms of process technology that considerable amounts of heat are withdrawn from the furnace and, above all, from the material to be cast, which then have to flow off to the surrounding cooler via the mold wall, the one from the EP has nevertheless -A-0158898 known continuous casting device very proven.
  • this known continuous casting device has the essential advantage, which is decisive in comparison with other known devices, that the cooling mold is made of a casting material which is made in the Shrink fit surrounds the cast-in cooling pipe and the spiral cooling pipe surrounding the cooling pipe and through which the coolant medium flows.
  • a two-part mold has also become known, for example, from DE-A-2058051 and from DE-U1-1854884.
  • the mold is divided in two in the longitudinal direction, whereby in the first-mentioned publication the cooling device following the introductory part is divided into two different zones, which differ in the use of different materials on the inner cooling central tube.
  • the much larger and longer part of the cooling central tube is also made of graphite in this prior art, which is why the disadvantages mentioned above exist and occur here.
  • a continuous casting mold with a primary and a secondary cooler is also from "Soviet Invention Illustrated", Section CH, Week K46, December 28, 1983 Derwent Publications Ltd. (London, (GB) - Summary No. 819305, Class M22 & SU-A-990,411, January 23, 1983 (D1).
  • this two-part mold is not suitable for practical operation in many respects due to the conically overlapping arrangement between the primary and secondary coolers and because of the changing inner diameter from the primary to the secondary mold.
  • due to the overlapping conical arrangement of the primary and secondary coolers a large heat flow is already caused in the primary cooler.
  • a two-part continuous casting mold can also be found in GB-A-1227312, in which the secondary cooler consists of copper or a copper alloy, ie a harder material than graphite.
  • Primary and secondary coolers in this case comprise a cooling device in the form of a plurality of cooling tubes lying transversely to the longitudinal direction of the mold.
  • the present invention for the first time creates a continuous casting device in which particularly favorable continuous casting properties can be achieved due to the relatively small axial length of the primary cooler with a comparatively large inner diameter in cooperation with the secondary cooler.
  • the secondary cooler which has a much greater axial length, enables optimized, controlled cooling of the continuous casting while avoiding graphite for the cooling central tube.
  • the use of a cooling coil known per se is just as important as the feature known from EP-A-0158898, in particular, that the central tube, like the cooling coil, is encapsulated by the metal of the heat sink in a shrink fit. This is the only way to achieve the absolutely necessary heat transfer coefficients.
  • the tubular feed part anchored to the crucible can extend as far as the secondary cooler, the extremely short primary cooler only surrounding the lower section of the tubular feed part immediately adjacent to the secondary cooler.
  • This front feed part can consist of good heat-conducting, high-quality graphite which is not soluble in the melt. Due to this short length, the graphite costs for this wearing part are kept extremely low.
  • the wall temperature of this short primary cooler can be regulated so high that it completely solidifies over the entire length of the strand without any noticeable shrinkage taking place.
  • this has the advantage that sufficient hot metal always flows into the short hot feed part of the cooling device and the gases released during the solidification and dissolved in the melt can escape in countercurrent without the metal temperature of the melt and, associated therewith, its gas content disadvantageously to have to lift high.
  • the larger part of the cooling mold, namely the secondary cooler, is designed as a reusable component. It proves to be particularly advantageous here that the use of graphite can be dispensed with in the continuous casting device according to the invention in this secondary cooler, which accounts for the largest part of the longitudinal extent. This saves extreme costs and also ensures that the secondary cooler is continuously reused.
  • a carbide compound in particular silicon carbide, is particularly suitable for the cooling central tube in the secondary cooler.
  • this mold is extremely light and therefore easy to handle.
  • the continuous casting device according to the invention With the continuous casting device according to the invention, the casting performance can also be increased by more than 30% compared to conventional continuous casting devices.
  • the continuous casting device according to the invention is suitable for both horizontal and vertical operation. Above all, it can be used for a continuous continuous casting process, although it is of course also suitable for discontinuous operation. It is precisely here that the particular advantages of the invention are shown by the use of a highly wear-resistant, highly heat-conducting, thermo-shock-resistant and at the same time extremely hard, polishable material such as ceramic material for the inner cooling central tube, which can often be used without otherwise having to rework the inner surface of the casting mold. The otherwise considerable wear of graphite molds during discontinuous continuous casting is obviously avoided here.
  • FIG. 1 denotes the bottom and side walls of a holding furnace in which there is a melt 3.
  • a feed part 5 of the continuous casting device is provided so as to protrude, the opening of which is provided in a known manner with an insert 7 made of refractory material which is not soluble in the melt and has passages 9.
  • the end of the feed part 5 opposite the insert 7 in the continuous casting direction is fitted in a conical or cylindrical seat of a primary cooling 11 in the manner of a cooling ring. 13 with thermal insulation is designated, which sits between the furnace wall 1 and the primary cooler 11 designed as a cooling ring.
  • the cooling itself takes place through a cooling spiral 15 provided in the primary cooler 11.
  • the amount of cooling water required for cooling is adjusted accordingly by a control valve 19 arranged in the inflow line 17 for the cooling spiral 15, which is regulated and controlled in a known manner by the temperature of the exiting heated cooling water via a thermal sensor 23 arranged in the outlet pipe 21.
  • the primary cooling 11 designed as a cooling ring sits with only a small longitudinal extension at the end of the feed part 5 directly in front of the subsequent secondary cooler 25.
  • a favorable ratio of the length of this cooled primary or feed part 5, which is pressed into the surrounding metal cooler, to the inner diameter the tubular feed part 5 is less than 60: 100; 50: 100, 40: 100 or 35: 100.
  • the mentioned inner diameter of the tubular feed part 5 corresponds to the outer diameter of the casting strand taking into account the shrinkage factor.
  • the material for the feed part 5 is generally high-quality graphite which is a good heat conductor and is not soluble in the melt.
  • the use of e.g. Boron nitride Due to the relative shortness of the cooled feed part 5, the temperature in the foremost part of the feed part 5 protruding into the crucible is only approximately 60 ° to 110 ° C. less than the temperature range of the melt 3. This realizes the advantage that the melt is little Heat is removed.
  • the extreme ratio of the short length of the primary cooler to its diameter results in a high ⁇ T of at least 550 ° C. to 600 ° C. at the inlet of the primary cooler 11 and less than 200 ° C. at the end of the cooler, especially when entering the primary cooler.
  • the wall temperature on the short primary cooler is still so high that in this front primary cooler a complete edge rigidity over the entire strand circumference occurs, but no noticeable shrinkage.
  • the cooling disc 11 is designed in the manner of a flat cone. It consists of highly thermally conductive metal or a likewise highly thermally conductive metal alloy, e.g. Copper or copper with e.g. 0.5 to 0.7% Si with 1% to 1.2% Ni, i.e. a hardenable, heat-resistant Cu alloy. Discarding this primary cooling disk 11 is almost impossible due to its special, compact shape.
  • the cast-in cooling spirals 15 eliminate the need for expensive machining of cooling channels, as in the case of traditional coolers. Likewise, the welding or brazing otherwise required is not required.
  • the primary cooler 11 is followed by the secondary cooler 25, the inner cooling central tube 27 of which consists of highly thermally conductive ceramic material.
  • the cooling central tube 27 is surrounded by the actual cooler made of highly thermally conductive metal, such as aluminum or an aluminum lining, which are joint-tight to the feed part 5 by means of a snug fit 31 and anchor bolts 33, but are easily detachably connected.
  • the cooling tubes 17 and 21 of the primary cooling circuit are guided in axial alignment through the cooler 25 such that they pass into the cooling spirals 15 in the primary cooler 11.
  • the cooling coil 35 of the secondary cooler 25 like the inner cooling central tube 27, which is made of ceramic material, is connected in a heat-conducting manner by the metal of the cooler 25 which is shrinking around both.
  • the temperature of the secondary cooler 25 is regulated by a further thermal sensor 39 located in the outlet pipe 37, which controls the control valve 41 in the feed pipe 43 of the secondary cooler 25.
  • thermocouple 45 with a thermocouple is designated, which is installed between the inner wall of the cooler 25 and the ceramic central cooling tube 27 just behind the transition of the supply part 5 to the secondary cooler 25.
  • This thermocouple 45 influences the casting speed, ie the strand transport and its speed, in such a way that it is ensured that the edge rigidity of the casting strand in the feed part 5 is completed.
  • FIG. 47 denotes the position of the phase boundary immediately after the end of the pull period, while line 49 shows the solidification front moved back towards the furnace during the stop period.
  • thermocouple 45 effects the regulation of the pull-off speed, for which purpose the thermocouple 45 controls a sensor designated 51 in the drawing, to limit the phase limit at the level of the connection or shortly before the connection between the feed part 5 and the secondary cooler 25.
  • the thermocouple shows 45 an increasing temperature above a set value as a result of the displacement of a phase boundary, the casting speed is reduced via the transmitter 51, as a result of which the temperature measured again at the thermocouple 45 drops.
  • the production of the secondary cooler by simultaneously casting around the inner ceramic cooling central tube 27 and the cooling spiral 35 is particularly cost-saving and efficient. After pouring, the inner cooling central tube 27 forms a firm, non-detachable shrink connection with the surrounding metal of the secondary cooler 25, the inner cooling surface of which no longer has to be machined.
  • FIG. 2 A further exemplary embodiment of the invention is explained below with reference to FIG. 2, in which the same components as in FIG. 1 are provided with corresponding reference symbols.
  • the exemplary embodiment according to FIG. 2 relates to a vertical continuous casting device, in particular for heavy metal alloys.
  • the entire furnace can be protected here by additional floor insulation 61, 63 being a floor plate.
  • the feed part is let into the furnace bottom 1 by means of a fitting piece 65.
  • the fitting 65 lies on the cooling ring-like primary cooler 11 or on the insulation 13 provided there.
  • 67 denotes a hollow casting mandrel, preferably made of graphite, which is precisely in by means of a graphite plug 69 and a centering 71 the middle of the feed part 5 is held.
  • the plug 70 made of refractory cement prevents direct heat flow from the melt to the casting mandrel and prevents possible leakages of melt through the thread 73 into the interior of the casting strand 75.
  • Ceramic materials are particularly suitable for the central cooling pipe.
  • Carbides or carbide compounds are particularly recommended.
  • boron and silicon carbides are considered as covalent carbides, which are hard, difficult to melt and chemically inert.
  • Most metallic carbides are non-stoichiometric compounds of an alloy character. They are resistant to acids, usually harder than the pure metal components and conduct the electrical current.
  • Carbides of chromium, tungsten, hafnium, molybdenum, nadium, niobium, tantalum and titanium are technically important.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Body Structure For Vehicles (AREA)
  • Handcart (AREA)
  • Vehicle Body Suspensions (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

  • Die Erfindung betrifft eine Stranggießvorrichtung nach dem Oberbegriff des Anspruches 1.
  • Herkömmliche Stranggießvorrichtungen bestehen aus einer Kokille, die aus einem Graphitrohr gefertigt ist oder zumindest an ihrer inneren Oberfläche eine Graphitschicht aufweist. Um einen einwandfreien und heißen Metalldurchfluß von einem Warmhalteofen oder einem Tiegel zu gewährleisten, werden herkömmliche Kokillen meist bis in den Schmelzraum hineinragend ausgebildet.
  • Obgleich dies grundsätzlich den verfahrenstechnischen Nachteil zur Folge hat, daß über die Kokillen dem Ofen und vor allem dem darin befindlichen zu gießenden Material beträchtliche Wärmemengen entzogen werden, die dann über die Kokillenwand an den umgebenden Kühler abströmen müssen, so hat sich gleichwohl die aus der EP-A-0158898 bekannt gewordene Stranggießvorrichtung sehr bewährt. Abgesehen von der in Längsrichtung zweigeteilten Ausgestaltung unter Verwendung eines tiegelseitigen Zuführungsteiles und eine sich daran in Gießrichtung anschließende in ihrer Temperatur regelbare Kühlkolille weist diese vorbekannte Stranggießvorrichtung den wesentlichen und gegenüber anderen bekannten Vorrichtungen entscheidungserheblichen Vorteil auf, daß die Kühlkokille aus einem Gußmaterial gefertigt ist, welches im Schrumpfsitz das eingegossene Kühlzentralrohr und das das Kühlzentralrohr umlaufende und vom Kühlmittelmedium durchströmte spiralförmige Kühlrohr umgibt.
  • Eine zweigeteilte Kokille ist beispielsweise auch aus der DE-A-2058051 und aus dem DE-U1-1854884 bekannt geworden. In beiden Fällen handelt es sich um eine in Längsrichtung zweigeteilte Kokille, wobei in der zuerst genannten Druckschrift die nach dem Einführungsteil nachfolgende Kühleinrichtung in zwei unterschiedliche Zonen unterteilt wird, die sich durch die Verwendung der unterschiedlichen Materialien am inneren Kühlzentralrohr unterscheiden. Der bei weitem größere und längere Teil des Kühlzentralrohres ist aber auch bei diesem Stand der Technik aus Graphit gefertigt, weshalb auch hier die eingangs genannten Nachteile bestehen und auftreten.
  • Eine Stranggießkokille mit einem Primär- und einem Sekundärkühler ist auch aus der "Soviet Invention Illustrated", Section CH, Woche K46, 28. 12. 1983 Derwent Publications Ltd. (London, (GB) ― Zusammenfassung Nr. 819305, Class M22 & SU-A-990,411, 23.01.1983 (D1) bekannt geworden. Diese zweigeteilte Kokille ist aber in vielerlei Hinsicht aufgrund der konisch überlappten Anordnung zwischen Primär- und Sekundärkühler wie aufgrund der sich ändernden Innendurchmesser von der Primär- zur Sekundärkokille für den praktischen Betrieb nicht geeignet. Zudem ist durch die überlappende konische Anordnung vom Primär- und Sekundärkühler ein großer Wärmeabfluß bereits im Primärkühler verursacht.
  • Eine zweigeteilte Stranggießkokille ist schließlich auch aus der GB-A-1227312 zu entnehmen, bei der der Sekundärkühler aus Kupfer oder einer Kupferlegierung, also einem härteren Material als Graphit besteht. Primär- und Sekundärkühler umfassen hierbei eine Kühleinrichtung in Form von quer zur Längsrichtung der Kokille liegenden mehreren Kühlrohren.
  • Demgegenüber ist es Aufgabe der vorliegenden Erfindung, ausgehend von dem eingangs genannten Stand der Technik eine Stranggießkokille zu schaffen, die ebenfalls bei niedrigen Herstellungs- und Betriebskosten die Qualität des Stranggusses gegenüber herkömmlichen Stranggießvorrichtungen noch weiter verbessert.
  • Die Aufgabe wird erfindungsgemäß entsprechend den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Durch die vorliegende Erfindung wird erstmals eine Stranggießvorrichtung geschaffen, bei der durch die relativ geringe Axiallänge des Primärkühlers bei vergleichsweise großem Innendurchmesser in Zusammenwirkung mit dem Sekundärkühler besonders günstige Stranggießeigenschaften erzielbar sind.
  • Erst im Zusammenhang mit diesem kurz gehaltenen Primärkühler ermöglicht der sich daran anschließende, eine sehr viel größere axiale Länge aufweisende Sekundärkühler eine optimierte gesteuerte Kühlung des Stranggusses unter Vermeidung von Graphit für das Kühlzentralrohr. Die Verwendung schließlich einer an sich bekannten Kühlspirale ist ebenso wichtig wie vor allem das auch aus der EP-A-0158898 bekannte Merkmal, daß das Zentralrohr wie die Kühlspirale im Schrumpfsitz umgossen ist von dem Metall des Kühlkörpers. Nur dadurch lassen sich die unbedingt erforderlichen Wärmeübergangszahlen erzielen.
  • In einer bevorzugten Ausführungsform kann das rohrförmige am Tiegel verankerte Zuführungsteil bis zum Sekundärkühler reichen, wobei der extrem kurze Primärkühler lediglich den unteren Abschnitt des rohrförmigen Zuführungsteiles unmittelbar benachbart vor dem Sekundärkühler umgibt. Dieser vordere Zuführungsteil kann aus gut wärmeleitendem, in der Schmelze nicht löslichen, hochwertigen Graphit bestehen. Durch diese geringe Länge werden aber die Graphitkosten für dieses Verschleißteil extrem niedrig gehalten. Durch die gezielte Steuerung der Kühltemperatur kann die Wandtemperatur dieses kurzen Primärkühlers so hoch geregelt werden, daß in ihm über den gesamten Strangumfang eine vollständige Randerstarrung eintritt, ohne daß eine merkliche Schrumpfung stattfindet.
  • Zudem wird durch die geringe Längserstreckung der das rohrförmige Zuführungsteil scheibenförmig umgebenden Primär-Kühlereinrichtung gegenüber herkömmlichen Lösungen bei weitem weniger Wärme der Kühlkokille entzogen.
  • Ferner wird dadurch der Vorteil erzielt, daß in dem kurzen heißen Zuführungsteil der Kühlvorrichtung stets ausreichend heißes Metall zufließt und dadurch die bei der Erstarrung freiwerdenden, in der Schmelze gelösten Gase im Gegenstrom entweichen können, ohne die Metalltemperatur der Schmelze und damit verbunden auch ihren Gasgehalt unvorteilhaft hoch anheben zu müssen.
  • Der größere Teil der Kühlkokille, nämlich der SekundärKühler ist als wieder verwendbares Bauteil ausgebildet. Als besonders vorteilhaft erweist sich dabei, daß bei der erfindungsgemäßen Stranggießvorrichtung bei diesem den größten Teil der Längserstreckung ausmachenden Sekundärkühler auf die Verwendung von Graphit verzichtet werden kann. Dadurch werden extreme Kosten eingespart und zudem die stetige Wiederverwendung des Sekundärkühlers sichergestellt.
  • Besonders gut eignet sich für das Kühlzentralrohr im Sekundärkühler eine Karbidverbindung, insbesondere Siliziumkarbid. Durch die Verwendung von Aluminium oder einer AL-Legierung, welches im Schrumpfsitz sowohl das innere Kühlzentralrohr vorzugsweise aus Siliziumkarbid, wie auch die Kühlschlangen umgibt, wird eine optimale Wärmeleitfähigkeit und Kühlwirkung erzielt. Zudem ist diese Kokille extrem leicht und damit auch leicht handhabbar.
  • Durch Verwendung des erwähnten Spezial-Siliziumkarbids, welches bei geringsten thermischen Ausdehnungskoeffizienten eine extrem hohe Härte aufweist, wird auch eine hohe Oberflächengüte der Kokillenwand mit einer Rauhtiefe von z.B. 2 bis 5 µ erzielt. Dadurch wird dem in diesem Kühlzentralrohr hindurch laufenden Strangguß, der zunächst nur am Rand erstarrt ist, nur eine sehr geringe Reibung entgegengesetzt.
  • Dies, sowie die große Härte des Materials führt dazu, daß keine den Wärmeübergang beeinträchtigenden Ansätze im Kühlzentralrohr gebildet werden können. Schließlich wird durch eine dem "schwarzen Körper" nahekommende Strahlungszahl ein konstanter hoher Wärmeübergang/Wärmeaustausch zwischen dem heißen nur randerstarrten durchlaufenden Strangguß und dem Sekundärkühler bewirkt, ohne daß dabei der Strang ungewollt zu sehr abgeschreckt wird. Ein Vorgang, der besonders beim Vergießen von Gußeisen zu der bekannten "Weißeinstrahlung" der äußeren Gußhaut führen würde.
  • Durch die erfindungsgemäße Stranggießvorrichtung kann zudem die Gießleistung um mehr als 30% gegenüber herkömmlichen Stranggießvorrichtungen gesteigert werden. Dabei eignet sich die erfindungsgemäße Stranggießvorrichtung sowohl für den Horizontal- wie auch den Vertikalbetrieb. Mit ihr kann vor allem ein kontinuierlicher Stranggießvorgang durchgeführt werden, wobei sie sich aber natürlich auch für diskontinuierlichen Betrieb eignet. Gerade hier zeigen sich die besonderen Vorteile der Erfindung durch die Verwendung eines hochverschleißfesten, hochwärmeleitenden, thermoschockbeständigen und zugleich extrem harten, polierfähigen Werkstoff wie keramisches Material für das innere Kühlzentralrohr, das vielfach ohne ansonsten erforderliches Nacharbeiten der Innenfläche der Gießform verwendbar ist. Der ansonsten beachtliche Verschleiß von Graphitkokillen beim diskontinuierlichen Stranggießen wird hier augenfällig vermieden.
  • Durch die sichere Stütz- und Führungswirkung des im Sekundärkühler weiter erstarrenden Gießstranges wird dieser gegen Durchbiegung und mechanische Einflüsse geschützt und auch in der Primärkühlzone sicher geführt und zentriert. Hierdurch wird eine gleichmäßige, zentrische Primär-Erstarrung gefördert und ungleichmäßiger Verschleiß der empfindlichen, weichen Primär-Graphitkokille vermieden, was sich besonders deutlich auch bei einer Horizontal-Stranggießvorrichtung bemerkbar macht.
  • Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den anhand von Zeichnungen dargestellten Ausführungsbeispielen. Dabei zeigen im einzelnen:
  • Figur 1:
    ein erstes Ausführungsbeispiel einer erfindungsgemäßen Stranggießvorrichtung für Horizontalstranggießen von Rundbolzen;
    Figur 2:
    eine weitere Ausführungsform einer erfindungsgemäßen Stranggießvorrichtung, insbesondere für Vertikalstranggießen von Rohren aus Metall-, insbesondere Schwermetallegierungen.

  • Nachfolgend wird auf figur 1 Bezug genommen, in der eine Stranggießvorrichtung für Horizontalbetrieb im schematischen Längsschnitt gezeigt ist. Dabei sind mit 1 die Boden- und Seitenwände eines Warmhalteofens bezeichnet, in dem sich eine Schmelze 3 befindet. In einer Stirnwand des Warmhalteofens ist ein Zuführungsteil 5 der Stranggießvorrichtung hineinragend vorgesehen, dessen Öffnung in bekannter Weise mit einem Einsatz 7 aus feuerfestem und in der Schmelze nicht löslichem Material mit Durchlässen 9 versehen ist.
  • Das in Stranggießrichtung zum Einsatz 7 gegenüberliegende Ende des Zuführungsteiles 5 ist in einem konischen oder zylindrischen Sitz einer Primärkühlung 11 nach Art eines Kühlringes eingepaßt. Mit 13 ist eine Wärmeisolierung bezeichnet, die zwischen der Ofenwand 1 und dem als Kühlring ausgebildeten Primärkühler 11 sitzt. Die Kühlung selbst erfolgt durch eine im Primärkühler 11 vorgesehene Kühlspirale 15.
  • Die zur Kühlung benötigte Kühlwassermenge wird durch ein in der Zuflußleitung 17 für die Kühlspirale 15 angeordnetes Regelventil 19 entsprechend eingestellt, welches über einen im Auslaufrohr 21 angeordneten Thermo-Sensor 23 in bekannter Weise durch die Temperatur des austretenden erwärmten Kühlwassers geregelt und gesteuert wird.
  • Wie aus der Zeichnung ersichtlich ist, sitzt die als Kühlring ausgebildete Primärkühlung 11 mit nur geringer Längserstreckung am Ende des Zuführungsteiles 5 unmittelbar vor dem nachfolgenden Sekundärkühler 25. Ein günstiges Verhältnis der Länge dieses gekühlten, also im umgebenden Metallkühler eingepreßten Primär- oder Zuführungsteiles 5 zum Innendurchmesser des rohrförmigen Zuführungsteiles 5 beträgt weniger als 60: 100; 50: 100, 40: 100 oder 35: 100. Der erwähnte Innendurchmesser des rohrförmigen Zuführungsteiles 5 entspricht dabei dem Außendurchmesser des Gießstranges unter Berücksichtigung des Schrumpfungsfaktors.
  • Als material für das Zuführungsteil 5 wird in der Regel gut wärmeleitender, in der Schmelze nicht löslicher hochwertiger Graphit verwendet.
  • Möglich ist aber ebenso auch der Einsatz von z.B. Bornitrid. Durch die relative Kürze des gekühlten Zuführungsteiles 5 beträgt die Temperatur bei dem in den Tiegel ragenden vordersten Teil des Zuführungsteiles 5 nur ca. 60° bis 110°C weniger als der Temperaturbereich der Schmelze 3. Hierdurch wird der Vorteil realisiert, daß der Schmelze dadurch wenig Wärme entzogen wird. Durch das extreme Verhältnis der geringen Länge des Primärkühlers zu dessen Durchmesser ergibt sich vor allem beim Eintritt in den Primärkühler ein hohes ΔT von wenigstens 550°C bis 600°C am Eintritt des Primärkühlers 11 und von weniger als 200°C am Kühlerende. Die Wandtemperatur am kurzen Primärkühler liegt jedoch noch so hoch, daß in diesem vorderen Primärkühlteil über den gesamten Strangumfang eine vollständige Randerstarrung, jedoch noch keine merkliche Schrumpfung einsetzt.
  • In Figur 1 ist die Kühlscheibe 11 nach Art eines flachen Kegels ausgebildet. Sie besteht aus hoch wärmeleitendem Metall oder aus einer ebenfalls hoch wärmeleitenden Metall-Legierung, z.B. Kupfer oder Kupfer mit z.B. 0,5 bis 0,7% Si bei 1% bis 1,2% Ni, also einer aushärtbaren warmfesten Cu-Legierung. Ein Verwerfen dieser Primär-Kühlscheibe 11 ist durch ihre besondere, kompakte Form nahezu ausgeschlossen. Durch die eingegossenen Kühlspiralen 15 fällt teures, spanabhebendes Ausarbeiten von Kühlkanälen, wie bei hergebrachten Kühlern, weg. Ebenso wird das sonst erforderliche Schweißen oder Hartlöten nicht erforderlich.
  • An dem Primärkühler 11 schließt sich ― wie bereits erwähnt ― der Sekundärkühler 25 an, dessen inneres Kühlzentralrohr 27 aus hoch wärmeleitendem keramischen Material besteht.
  • Umgeben ist das Kühlzentralrohr 27 durch den eigentlichen Kühler aus hoch wärmeleitendem Metall, wie beispielsweise Aluminium oder einer Aluminium-Lebierung, die durch einen Paßsitz 31 und Ankerbolzen 33 mit dem Zuführungsteil 5 fugendicht, jedoch leicht lösbar verbunden sind. Dabei sind die Kühlrohre 17 und 21 des Primärkühlkreises in axialer Ausrichtung so durch den Kühler 25 hindurch geführt, daß sie im Primärkühler 11 in die dortigen Kühlspiralen 15 übergehen.
  • Die Kühlspirale 35 des Sekundärkühlers 25 ist ebenso wie auch das aus keramischem Material bestehende innere Kühlzentralrohr 27 durch das beide umschrumpfende Metall des Kühlers 25 wärmeleitend verbunden. Die Regelung der Temperatur des Sekundärkühlers 25 erfolgt durch einen im Auslaufrohr 37 befindlichen weiteren Thermosensor 39, der das Regelventil 41 im Zulaufrohr 43 des Sekundärkühlers 25 steuert.
  • Mit 45 ist ein Thermoelement bezeichnet, das zwischen der inneren Wand des Kühlers 25 und dem keramischen Kühlzentralrohr 27 kurz hinter dem Übergang des Zuführungsteiles 5 zum Sekundärkühler 25 eingebaut ist. Durch dieses Thermoelement 45 wird die Gießgeschwindigkeit, d.h. der Strangtransport und dessen -geschwindigkeit so beeinflußt, daß sichergestellt ist, daß die Randerstarrung des Gußstranges im Zuführungsteil 5 abgeschlossen ist. Zur Verdeutlichung der Funktion dieses Thermoelementes ist in Figur 1 schematisch die Lage der Phasengrenze flüssig/fest bzw. die Liquidus/Solidus-Linie dargestellt. Dabei ist mit 47 die Lage der Phasengrenze unmittelbar nach Beendigung der Zugperiode bezeichnet, während die Linie 49 die während der Stopp-Periode in Richtung Ofen zurückverlegte Erstarrungsfront verdeutlicht.
  • Das Thermoelement 45 bewirkt über die Regelung der Abziehgeschwindigkeit, wozu das Thermoelement 45 einen in der Zeichnung mit 51 bezeichneten Geber ansteuert, die Begrenzung der Phasengrenze in Höhe der Verbindung bzw. kurz vor der Verbindung zwischen dem Zuführungsteil 5 und dem Sekundärkühler 25. Zeigt der Thermofühler 45 eine ansteigende Temperatur über einen eingestellten Wert in Folge der Verlagerung einer Phasengrenze an, so wird über den Geber 51 die Gießgeschwindigkeit vermindert, wodurch die am Thermoelement 45 wieder gemessene Temperatur sinkt. Die Herstellung des Sekundärkühlers durch gleichzeitiges Umgießen des inneren keramischen Kühlzentralrohres 27 und der Kühlspirale 35 ist besonders kostensparend und rationell. Nach dem Eingießen bildet das innere Kühlzentralrohr 27 mit dem umgebenen Metall des Sekundärkühlers 25 eine feste unlösbare Schrumpfverbindung, deren innere Kühlfläche nicht mehr bearbeitet werden muß. Vor allem die Verwendung von hoch wärmeleitenden keramischen Werkstoffen, wie beispielsweise Siliziumkarbid, haben sich als besonders günstig erwiesen. Derartige Materialien, wie eben Spezialsilizium-Karbid weisen eine hohe Wärmeleitfähigkeit und niedrige Wärmeausdehnung und dabei eine hohe Thermo-Schockbeständigkeit und Altersbeständigkeit auf. Sie sind zudem extrem hart und polierfähig.
  • Nachfolgend wird ein weiteres Ausführungsbeispiel der Erfindung anhand von Figur 2 erläutert, in der gleiche Bauteile wie in Figur 1 mit entsprechenden gleichen Bezugszeichen versehen sind.
  • Das Ausführungsbeispiel nach Figur 2 betrifft eine Vertikal-Stranggießvorrichtung insbesondere für Schwermetall-Legierungen. Der gesamte Ofen kann hier durch zusätzliche Bodenisolierungen 61 geschützt sein, wobei mit 63 ein Bodenblech dargestellt ist.
  • Das Zuführungsteil ist in dieser Ausführungsform mittels eines Paßstückes 65 in den Ofenboden 1 eingelassen. Das Paßstück 65 liegt auf dem kühlringartigen Primärkühler 11. bzw. auf der dort vorgesehenen Isolierung 13. Mit 67 ist bei dieser Ausführungsform ein hohler, vorzugsweise aus Graphit bestehender Gießdorn bezeichnet, der mittels eines ebenfalls aus Graphit bestehenden Stopfens 69 und einer Zentrierung 71 genau in der Mitte des Zuführungsteiles 5 gehalten wird. Der aus feuerfestem Zement bestehende Stopfen 70 verhindert einen direkten Wärmefluß von der Schmelze an den Gießdorn und verhütet mögliche Leckagen von Schmelze durch das Gewinde 73 in das Innere des Gießstranges 75.
  • Oben ist ausgeführt, daß sich vor allem keramische Materialien für das Kühlzentralrohr eignen. Dabei sind vor allem Karbide bzw. Karbidverbindungen zu empfehlen. Als kovalente Karbide werden in der Regel nur Bor- und Siliziumkarbide angesehen, die hart, schwer schmelzbar und chemisch inert sind. Die meisten metallischen Karbide sind nichtstöchiometrische Verbindungen von Legierungscharakter. Sie sind gegen Säuren beständig, in der Regel härter als die reinen Metallkomponenten und leiten den elektrischen Strom. Technisch wichtig sind Karbide von Chrom, Wolfram, Hafnium, Molybdän, Nadium, Niob, Tantal und Titan.

Claims (10)

1. Stranggießvorrichtung für Vertikal- und/oder Horizontalbetrieb mit einem an einem Tiegel (1) ansetzbaren und gegebenenfalls einen Gießdorn (67) umfassenden Zuführungsteil (5) und einem anschließenden, ein Kühlzentralrohr (27) umfassenden Kühlkokillenabschnitt, der aus einem Kühlzentralrohr (27), einer Kühlspirale (35) sowie aus einem, das Kühlrohr (27) und die Kühlspirale (35) im Schrumpfsitz umgossenen Kühlermaterial besteht, dadurch gekennzeichnet, daß zusätzlich zum Zuführungsteil (5) in Axialrichtung versetzt zueinander liegend ein Primär- und ein Sekundärkühler (11, 25) mit einem getrennten Kühlmittelkreislauf (15, 35) in ihren Kühlkörpern vorgesehen sind, daß das Verhältnis der Längserstreckung des Primärkühlers (11) in Stranggußrichtung zum Innendurchmesser des Primärkühlers (11) weniger als 60: 100 aufweist und daß das gegenüber dem Primärkühler (11) sich länger erstreckende Kühlzentralrohr (27) des Sekundärkühlers (25) zumindest an der Innenfläche aus graphitfreiem material besteht, dessen Härte größer ist als die von Graphit.
2. Stranggießvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Innenrohr des Primärkühlers (11) bzw. dessen Innenbeschichtung aus Bornitrid bzw. vorzugsweise Graphit besteht.
3. Stranggießvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das rohrförmige Zuführungsteil (5) in Stranggußrichtung bis zum Kühlzentralrohr (27) des Sekundärkühlers (25) reicht, und daß der Primärkühler (11) nach Art eines das Zuführungsteil (5) umgebenden Kühlringes ausgebildet ist.
4. Stranggießvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der das Zuführungsteil (5) umgebende Kühlring (11) am Ende des rohrförmigen Zuführungsteiles (5) benachbart zum Sekundärkühler (25) liegt.
5. Stranggießvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Verhältnis der Längserstreckung zum Außen- bzw. Innendurchmesser des Kühlrohres (Zuführungsteil 5) der Primärkühlung (11) weniger als 50: 100, vorzugsweise weniger als 40: 100 beträgt.
6. Stranggießvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Material des Kühlzentralrohres (27) aus thermoschockbeständigem, extrem hartem Material mit geringer Wärmeausdehnung besteht.
7. Stranggießvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Kühlzentralrohr (27) aus Karbid, einer Karbidverbindung, vorzugsweise Siliziumkarbid bzw. Keramik besteht oder umfaßt.
8. Stranggießvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß auch im Kühlkreislauf des Primärkühlers (11) ein Thermosensor (23) zur Steuerung eines die Kühlmittelmenge regelnden Regelventiles (19) vorgesehen ist.
9. Stranggießvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Thermosensor (23) im zugehörigen Auslaufrohr (21) der Kühlspirale (35) zur Temperaturmessung des erwärmten Kühlmediums angeordnet ist.
10. Stranggießvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein Thermoelement (45) im Übergangsbereich vom Primär- zum Sekundärkühler (11, 25) zur Steuerung der Abzugsgeschwindigkeit des erstarrenden Gießstranges (75) angeordnet ist.
EP88903813A 1987-04-28 1988-04-27 Stranggiessvorrichtung Expired - Lifetime EP0363375B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88903813T ATE66840T1 (de) 1987-04-28 1988-04-27 Stranggiessvorrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873714139 DE3714139A1 (de) 1987-04-28 1987-04-28 Stranggiessvorrichtung
DE3714139 1987-04-28

Publications (2)

Publication Number Publication Date
EP0363375A1 EP0363375A1 (de) 1990-04-18
EP0363375B1 true EP0363375B1 (de) 1991-09-04

Family

ID=6326432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88903813A Expired - Lifetime EP0363375B1 (de) 1987-04-28 1988-04-27 Stranggiessvorrichtung

Country Status (8)

Country Link
US (1) US5027881A (de)
EP (1) EP0363375B1 (de)
AT (1) ATE66840T1 (de)
AU (1) AU640342B2 (de)
CA (1) CA1327111C (de)
DE (2) DE3714139A1 (de)
NZ (1) NZ224397A (de)
WO (1) WO1988008344A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331152B1 (ko) * 1999-06-28 2002-04-01 황해웅 무산소동이나 특수합금동의 일체형 수평연속주조 설비 및 탈산·정제방법
AU2001280541A1 (en) 2000-07-17 2002-01-30 Consolidated Engineering Company, Inc. Methods and apparatus for utilization of chills for castings
DE10392959B4 (de) * 2002-07-22 2014-05-28 Showa Denko K.K. Aluminiumgusslegierungsstrang und Verfahren zu dessen Herstellung und Vorrichtung dafür
US9950362B2 (en) 2009-10-19 2018-04-24 MHI Health Devices, LLC. Clean green energy electric protectors for materials
RU2637454C1 (ru) * 2013-12-23 2017-12-04 Виктор Викторович Шигин Способ совмещенного литья и прокатки медных сплавов из медных ломов
CN104057039A (zh) * 2014-06-19 2014-09-24 无锡隆达金属材料有限公司 热冷组合型水平连铸专用内冷式封炉压板
KR102222896B1 (ko) * 2019-08-02 2021-03-03 권상철 연속 주조용 냉각튜브 어셈블리 및 이를 포함하는 연속 주조용 냉각 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169893A (en) * 1937-11-01 1939-08-15 Chase Brass & Copper Co Cooling means for continuous casting apparatus
GB1227312A (de) * 1967-02-06 1971-04-07
AT287215B (de) * 1968-01-09 1971-01-11 Boehler & Co Ag Geb Verfahren und Vorrichtung zum Elektroschlackenumschmelzen von Metallen, insbesondere von Stählen
US3730251A (en) * 1971-06-21 1973-05-01 Gen Motors Corp Method of continuous casting
GB1431729A (en) * 1973-08-04 1976-04-14 Hitachi Shipbuilding Eng Co Copper alloy and mould produced therefrom
CH568113A5 (de) * 1974-05-15 1975-10-31 Concast Ag
CH577352A5 (de) * 1975-02-28 1976-07-15 Concast Ag
SU950490A1 (ru) * 1981-01-28 1982-08-15 Липецкий Филиал Всесоюзного Проектно-Технологического Института Литейного Производства Кристаллизатор дл непрерывного лить полых заготовок
EP0158898B1 (de) * 1984-04-13 1990-06-06 Hans Horst Stranggiessvorrichtung und Verfahren zu deren Herstellung
US4669529A (en) * 1984-12-03 1987-06-02 Egon Evertz Continuous casting mould
US4789021A (en) * 1986-09-29 1988-12-06 Steel Casting Engineering, Ltd. Short mold for continuous casting
US4774996A (en) * 1986-09-29 1988-10-04 Steel Casting Engineering, Ltd. Moving plate continuous casting aftercooler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Soviet Inventions Illustrated, Section CH, week K46, 28 December 1983, Derwent Publications Ltd, London (GB), abstract no. 819305, Class M22 & SU,A,990411 (Don Poly) 23 January 1983 *

Also Published As

Publication number Publication date
NZ224397A (en) 1991-01-29
DE3714139A1 (de) 1987-10-22
CA1327111C (en) 1994-02-22
AU640342B2 (en) 1993-08-26
AU1706288A (en) 1988-12-02
ATE66840T1 (de) 1991-09-15
US5027881A (en) 1991-07-02
DE3864686D1 (de) 1991-10-10
EP0363375A1 (de) 1990-04-18
WO1988008344A1 (en) 1988-11-03

Similar Documents

Publication Publication Date Title
DE2734388C2 (de) Verfahren und Vorrichtung zum Stranggießen
DE2230317C2 (de) Verfahren zum Gießen von metallenen Werkstücken, insbesondere Turbinenschaufeln
DE2735928B2 (de) Verfahren zum Gießen eines Formteils aus einem temperaturbeständigen metallischen Verbundwerkstoff und Vorrichtung zur Durchführung des Verfahrens
EP0363375B1 (de) Stranggiessvorrichtung
DE2531571B2 (de) Verfahren zum Einfahren von Zuschlagstoffen in Drahtform zu einer Metallschmelze und Einrichtung zur Durchführung des Verfahrens
EP0255475A2 (de) Füllbüchse für Druckgiessmaschinen
AT400311B (de) Stranggiesskokille
EP0158898B1 (de) Stranggiessvorrichtung und Verfahren zu deren Herstellung
DD141276A5 (de) Verfahren und anlage fuer den strangguss roehrenfoermiger erzeugnisse
EP0936010A1 (de) Verfahren zum Vergiessen von Metallen unter Druck und Vorrichtung zur Durchführung des Verfahrens
EP0915746A1 (de) Verfahren, vorrichtung und feuerfester ausguss zum angiessen und/oder vergiessen von flüssigen metallen
DE2825940A1 (de) Schmiededorn
DE846900C (de) Giessform fuer das stetige Giessen von Metallen
DE102011075627A1 (de) Stützwalze mit Innenkühlung in einer Stranggießanlage
DE1939653C3 (de) Wassergekühlte Stranggießkokille
WO2011117296A1 (de) Verfahren, giessrohr und stranggiessanlage zum vergiessen einer schmelze aus flüssigem metall zu einem stranggegossenen giessprodukt
DE2945577A1 (de) Giessform zum kontinuierlichen stranggiessen
EP0268909A2 (de) Verfahren zur Bildung von Kanälen in Gusskörpern für das Durchleiten von Medien zur Temperaturbeeinflussung sowie Gusskörper zur Verwendung als temperaturbeaufschlagtes Bauteil oder Werkzeug
DE4038304C2 (de) Mit elektromagnetischem Hub arbeitende Stranggießeinrichtung
CH648499A5 (de) Kokille zum horizontalen stranggiessen von metallen, insbesondere von stahl.
DE19829336A1 (de) Verfahren zum Vergießen von Metallen unter Druck und Vorrichtung zur Durchführung des Verfahrens
DE19544716A1 (de) Druckgießmaschine mit Füllkammer und Temperierverfahren
DE2553087A1 (de) Form zum kontinuierlichen giessen von metall
CH695210A5 (de) Kokille zum Stranggiessen einer Stahlschmelze.
AT157450B (de) Verfahren zur Herstellung von Gußstücken durch Zuführen überhitzten geschmolzenen Metalls zu einem Ende der Form und Entfernen des unter Verwendung wärmeentziehender Mittel erstarrten Metalls am andern Ende der Form.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 19901004

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910904

REF Corresponds to:

Ref document number: 66840

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3864686

Country of ref document: DE

Date of ref document: 19911010

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920124

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920430

Ref country code: CH

Effective date: 19920430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940208

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103