EP0362929A1 - Flammfestes Nachrichtenkabel - Google Patents

Flammfestes Nachrichtenkabel Download PDF

Info

Publication number
EP0362929A1
EP0362929A1 EP89202422A EP89202422A EP0362929A1 EP 0362929 A1 EP0362929 A1 EP 0362929A1 EP 89202422 A EP89202422 A EP 89202422A EP 89202422 A EP89202422 A EP 89202422A EP 0362929 A1 EP0362929 A1 EP 0362929A1
Authority
EP
European Patent Office
Prior art keywords
layer
cable according
cable
metallic build
frnc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89202422A
Other languages
English (en)
French (fr)
Inventor
Hans Leo Ditscheid
Walter Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0362929A1 publication Critical patent/EP0362929A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the invention relates to a flame-resistant cable with a jacket made of fire-retardant material, which contains a closed metallic construction layer.
  • flame resistance is intended to summarize various requirements that must be at least partially met by a cable in the event of a fire.
  • the cable should be halogen-free, must not spread a fire, must maintain its function for a certain time even at very high temperatures (service life) and should generate little smoke.
  • FRNC materials F lame R estistant N on orrosive C
  • DE-OS 36 31 699 describes a cable having at least one conductor, under the shielding of which a band of glass fabric with a metal layer applied on one side is applied.
  • a band should act like a closed metallic pipe against flames and have sufficiently large gaps, which enables the escape of gases generated in the event of a fire.
  • the invention has for its object to increase the flame resistance of the cable of the type mentioned with simple means.
  • the solution is achieved in that the metallic build-up layer surrounds an inner jacket which contains a paper wrap layer.
  • the inexpensive paper tapes carbonize inside an outer jacket which prevents the entry of oxygen and is closed with a metallic layer, in particular within a metal tube. They keep their shape and ensure the insulation of the wires against the metal pipe.
  • a paper wrapping layer of the inner jacket also offers a protective function against the pressing or welding heat when the metal pipe is applied.
  • the metal tube is preferably corrugated.
  • a corrugated pipe offers additional cavity inside the cable, which makes heat conduction difficult.
  • the corrugated pipe is only in contact with a small part of the circumferential surface of the inner jacket.
  • the components of a FRNC outer jacket layer located in the outer corrugation troughs of the corrugated tube offer a permanent high heat transfer resistance even after the corrugation.
  • a laminate layer made of a stretchable multilayer film containing plastic and aluminum is also suitable as the closed metallic layer.
  • Such a film is stretchable on the one hand and therefore does not hinder the expansion that occurs when the underlying FRNC layer is curled.
  • the aluminum layer reflects and conducts heat. Since the laminate layer is stretchable, it does not need, as in known case, have gaps through which gases should escape in the event of fire.
  • the laminate layer designed according to the invention remains closed and therefore reliably prevents oxygen from penetrating into the cable core.
  • an FRNC layer is arranged between the metallic build-up layer and the paper wrap layer.
  • the inner jacket has two layers of paper, between which an FRNC layer is arranged.
  • the FRNC layer of the inner jacket forms a heat-insulating protective layer during the fire. Water-releasing fillers cause cooling. The temperature of the FRNC layer is warped.
  • a cable constructed according to the invention maintains its insulation resistance for a long time, at least for 25 minutes. It remains dimensionally stable to a certain extent, so that the core insulation is protected even in the event of a fire.
  • a closed metal tube offers better mechanical protection than a stretchy laminate layer.
  • the service life (service life) is also increased by a metal tube.
  • a further increase in service life can be achieved with an outer jacket surrounding the metallic build-up layer.
  • Such an outer jacket should contain at least one layer of FRNC material.
  • the outer FRNC layer is a mechanically resistant outer layer, which does not continue the fire in the event of a fire.
  • electrical conductors known per se has proven to be particularly advantageous, which are characterized in that electrical conductors running within the sheath directly from a thin layer of a high-temperature-resistant polymer, in particular of a polyesterimide, polyamideimide or are surrounded by polyimide, and that a much thicker layer of a less temperature-resistant material with a softening temperature of more than 140 ° is applied thereon.
  • a high-temperature-resistant polymer in particular of a polyesterimide, polyamideimide or are surrounded by polyimide, and that a much thicker layer of a less temperature-resistant material with a softening temperature of more than 140 ° is applied thereon.
  • a high-temperature-resistant polymer in particular of a polyesterimide, polyamideimide or are surrounded by polyimide, and that a much thicker layer of a less temperature-resistant material with a softening temperature of more than 140 ° is applied thereon.
  • substances are suitable which either do not melt (such as poly
  • thicker and less temperature-resistant layer cheaper materials can be used, such as, in particular, cross-linked polyolefins. If thermoplastics with a softening temperature lower than 140 ° are used, sufficient flame resistance can be achieved by adding fillers such as aluminum hydroxide. Suitable is e.g. also polyphenylene oxide.
  • the copper conductor 2 of the core 1 drawn in cross section in FIG. 1 has a diameter of 0.8 mm. It is provided with a 0.05 mm thick insulation 3 made of polyester imide. A layer 4 of cross-linked polyolefin with a wall thickness of 0.5 mm is extruded thereon. Several of these wires are placed in a communication cable within different FRNC jackets. In the event of a fire, depending on the sheath structure, the insulation was maintained for 10 to 60 minutes. The thicker layer 4 of the cores that warped and their varnish layer was retained during this time. The non-combustible residues ensured the insulation and the wire spacing.
  • a particularly good flame resistance was achieved with a jacket structure according to FIG. 2, which surrounds two wires 1 and 1a according to FIG. 1.
  • An inner jacket consists of the paper winding 5 (approx. 0.75 mm thick) as a cable core winding, an extruded FRNC layer 6 (approx. 1 mm thick) from a multi-component system with, inter alia, approx. 60% aluminum hydroxide filling and a subsequently applied paper winding 7 (approx. 0 , 75 mm thick). Because of the 0.3 mm thick sheet with a longitudinal seam welded steel shaft jacket 8 prevents the entry of oxygen to the paper windings 5 and 7 in the event of a fire, the paper can only carbonize without falling apart.
  • the insulation of the wires 1 and 1a with respect to the corrugated steel tube 8 is ensured.
  • the flexible corrugated steel tube 8 dissipates heat on the one hand and on the other hand offers mechanical protection of the wires 1 and 1 a against forces acting radially on the cable, which can be caused by parts falling on the cable.
  • a multilayer outer jacket is produced with the extruded FRNC layers 9 and 10 and with an intermediate bandage 11.
  • the 1 to 2 mm thick FRNC layers 9 and 10 consist of a multi-component system with about 60% aluminum hydroxide filling.
  • the intermediate bandage 11 was produced from an aluminum double composite film, in which a 20 ⁇ m thick plastic layer (PETP) was arranged between 15 ⁇ m thick aluminum layers.
  • PETP plastic layer
  • the FRNC layer 9 is held by a heat-dissipating and reflecting intermediate bandage 11 in the event of a fire on the corrugated steel tube 8, so that the heat-insulating and cooling effect of at least the FRNC layer 9 is maintained for a long time in the event of a fire.

Abstract

Die Erfindung betrifft ein flammfestes Kabel mit einem aus feuerhemmendem Material bestehenden Mantel, welcher eine geschlossene metallische Aufbauschicht (8) enthält. Zur Erhöhung der Flammfestigkeit ist vorgesehen, daß die metallische Aufbauschicht (8) einen Innenmantel umgibt, welcher eine Papierwickelschicht (5,7) enthält.

Description

  • Die Erfindung bezieht sich auf ein flammfestes Kabel mit einem aus feuerhemmendem Material bestehenden Mantel, welcher eine geschlossene metallische Aufbauschicht enthält.
  • Unter dem Begriff "Flammfestigkeit" sollen verschiedene Anforderungen zusammengefaßt werden, die im Brandfall von einem Kabel zumindest teilweise erfüllt werden müssen. Das Kabel soll halogenfrei sein, darf einen Brand nicht fort­leiten, muß seine Funktion auch bei sehr hohen Temperatu­ren für eine gewisse Zeit aufrechterhalten (Standzeit) und soll dabei wenig Rauch entwickeln.
  • Für solche Kabel werden flammwidrige halogenfreie Isolier- und Mantelwerkstoffe verwendet, welche mit dem Sammelbe­griff FRNC-Materialien bezeichnet werden (Flame Restistant Non Corrosive).
    Bei einem derartigen durch die DE-U 87 16 167 bekannten Kabel sind die den Leiter umgebenden Schichten (Glimmer­band und Glasseidegeflecht) von einem geschlossenen metallischen Rohr umgeben. Dadurch findet innerhalb des Rohres keine Oxydation statt, so daß dort die beiden Schichten bei Brandeinwirkung im wesentlichen unverändert bleiben.
  • In der DE-OS 36 31 699 ist ein mindestens einen Leiter aufweisendes Kabel beschrieben, unter dessen Abschirmung ein Band aus Glasgewebe mit einer einseitig angebrachten Metallschicht aufgebracht ist. Ein solches Band soll wie ein geschlossenes metallisches Rohr gegen Flammen wirken und genügend große Spalte aufweisen, wodurch das Entwei­chen von im Brandfall entstehenden Gasen ermöglicht wird.
  • Der Erfindung liegt die Aufgabe zugrunde, die Flammfestigkeit des Kabels der eingangs genannten Art mit einfachen Mitteln zu erhöhen.
  • Die Lösung gelingt dadurch, daß die metallische Aufbauschicht einen Innenmantel umgibt, welcher eine Papierwickelschicht enthält.
  • Innerhalb eines den Sauerstoffzutritt verhindernden, mit einer metallischen Schicht geschlossenen Außenmantels, insbesondere innerhalb eines Metallrohres, verkohlen die preisgünstigen Papierbänder. Sie behalten dabei ihre Form und sichern die Isolation der Adern gegenüber dem Metallrohr. Auch beim Aufbringen des Metallrohrs bietet eine Papierwickelschicht des Innenmantels eine Schutzfunktion gegenüber der Preß- oder Schweißwärme. Das Metallrohr ist vorzugsweise gewellt. Ein Wellrohr bietet zusätzlichen Hohlraum im Kabelinneren, wodurch die Wärmeleitung erschwert wird. Das Wellrohr liegt nur an einem geringen Teil der Umfangsfläche des Innenmantels an. Die in den äußeren Wellentälern des Wellrohrs befindlichen Bestandteile einer FRNC-Außenmantelschicht bieten auch nach der Verzellung einen bleibenden hohen Wärmeübergangswiderstand.
  • Als geschlossene metallische Schicht ist auch eine Laminatschicht aus einer Kunststoff und Aluminium enthaltenden dehnbaren Mehrschichtfolie geeignet. Eine solche Folie ist einerseits dehnbar und behindert deshalb nicht die bei der Verzellung der darunter liegenden FRNC-Schicht entstehende Ausdehnung. Andererseits reflektiert die Alu-Schicht und leitet Wärme. Da die Laminatschicht dehnbar ist, braucht sie nicht, wie im bekannten Fall, Spalte aufweisen durch welche im Brandfall Gase entweichen sollen. Die erfindungsgemäß ausgebildete Laminatschicht bleibt geschlossen und verhindert deshalb zuverlässig das Eindringen von Sauerstoff in die Kabel­seele.
  • Besonders hohe Standzeiten ergeben sich dadurch, daß eine FRNC-Schicht zwischen der metallischen Aufbauschicht und der Papierwickelschicht angeordnet ist. Bei einem besonders flammfesten Kabel ist vorgesehen, daß der Innen­mantel zwei Papierschichten aufweist, zwischen welchen eine FRNC-Schicht angeordnet ist.
  • Die FRNC-Schicht des Innenmantels bildet während der Brand­einwirkung eine wärmedämmende Schutzschicht. Wasserabspal­tende Füllstoffe bewirken eine Kühlung. Bei Temperaturein­wirkung ergibt sich eine Verzellung der FRNC-Schicht.
  • Ein erfindungsgemäß aufgebautes Kabel behält im Brandfall für lange Zeit, mindestens für 25 Min. seine Isolations­festigkeit bei. Es bleibt dabei in gewissem Umfang formbe­ständig, so daß die Aderisolierung auch im Brandfall geschützt ist.
  • Ein geschlossenes Metallrohr bietet einen besseren mechanischen Schutz als eine dehnbare Laminatschicht. Auch die Funktionsdauer (Standzeit) wird durch ein Metallrohr erhöht.
  • Eine weitere Erhöhung der Standzeit kann man mit einem die metallische Aufbauschicht umgebenden Außenmantel erreichen. Ein solcher Außenmantel sollte mindestens eine Schicht aus FRNC-Material enthalten.
  • Ein Zerbröckeln und Abfallen dieser Schicht kann dabei durch eine aufgewickelte dehnbare Laminatschicht verhindert werden. Die äußere FRNC-Schicht ist eine mechanisch widerstandsfähige Außenschicht, welche im Brandfall den Brand nicht fortleitet.
  • In Verbindung mit einem erfindungsgemäß aufgebauten Kabel­mantel hat sich die Verwendung von an sich bekannten elektrischen Leitern als besonders vorteilhaft erwiesen, welche dadurch gekennzeichnet sind, daß innerhalb des Mantels verlaufende elektrische Leiter unmittelbar von einer dünnen Schicht aus einem hochtemperaturfestem Polymeren, insbesondere aus einem Polyesterimid, Polyamidimid oder Polyimid umgeben sind, und daß darauf eine vielfach dickere Schicht aus einem weniger tempera­turfestem Material mit einer Erweichungstemperatur von mehr als 140° aufgebracht ist. Dabei sind für die dünne hochtemperaturfeste Schicht Stoffe geeignet, welche entweder nicht schmelzen (wie Polyamidimide oder Polyimide) oder erst bei sehr hohen Temperaturen schmelzen (wie Polyesterimide oder Polyetherimide). Für die dickere und weniger temperaturfeste Schicht können preisgünstigere Materialien verwendet werden wie insbesondere vernetzte Polyolefine. Bei Verwendung von Thermoplasten mit einer an sich niedrigeren Erweichungstemperatur als 140° kann eine ausreichende Flammfestigkeit durch Zusatz von Füll­materialien wie insbesondere Aluminiumhydroxid erreicht werden. Geeignet ist z.B. auch Polyphenylenoxid.
  • Die dickere Schicht aus weniger flammfestem Material hält den bei Nachrichtenkabeln erforderlichen Abstand zwischen benachbarten Leitern auch im Brandfall für längere Zeit aufrecht. An diese Schicht brauchen keine außergewöhnli­chen Anforderungen an Isolierfestigkeit gestellt zu werden. Diese dickwandigere Schicht verzögert aber insbesondere dann, wenn sie im Brandfall Wasser abspaltende Füllstoffe wie Aluminiumhydroxid enthält, den Wärmeübergang zur darunterliegenden hochwärmefesten isolierenden Schicht.
    Die Erfindung wird anhand der Beschreibung eines in der Zeichnung dargestellten besonders vorteilhaften Ausfüh­rungsbeispiels näher erläutert.
    • Fig. 1 zeigt einen Querschnitt durch eine erfindungsgemäß aufgebaute Ader
    • Fig. 2 zeigt einen Längsschnitt durch ein erfindungsgemäß aufgebautes Kabel.
  • Der Kupferleiter 2 der in Fig. 1 im Querschnitt gezeichne­ten Ader 1 hat einen Durchmesser von 0,8 mm. Er ist mit einer 0,05 mm dicken Isolierung 3 aus Polyesterimid versehen. Darauf ist eine Schicht 4 aus vernetztem Polyolefin mit einer Wanddicke von 0,5 mm extrudiert. Mehrere dieser Adern werden in ein Nachrichtenkabel innerhalb verschiedener FRNC-Mäntel angeordnet. Im Brandfall ergaben sich je nach Mantelaufbau Standzeiten des Isolationserhalts von 10 bis 60 Min. Die dabei verzellende dickere Schicht 4 der Adern und deren Lackschicht blieb während dieser Zeit erhalten. Die nicht brennbaren Rückstände sicherten dabei den Isolationserhalt und den Aderabstand.
  • Eine besonders gute Flammfestigkeit wurde mit einem Mantelaufbau nach Fig. 2 erreicht, welcher zwei Adern 1 und 1a nach Fig. 1 umgibt. Ein Innenmantel besteht aus der Papierbewicklung 5 (ca. 0,75 mm dick) als Kabelseelen­bewicklung, einer aufextrudierten FRNC-­Schicht 6 (ca. 1mm dick) aus einem Mehrstoffsystem mit u.a. ca 60% Aluminiumhydroxidfüllung und einer anschlie­ßend aufgebrachten Papierbewicklung 7 (ca. 0,75 mm dick). Da der aus 0,3 mm dickem Blech mit einer Längsnaht geschweißte Stahlwellenmantel 8 den Zutritt von Sauerstoff zu den Papierbewicklungen 5 und 7 im Brandfall verhindert, kann das Papier lediglich verkohlen ohne dabei zu zerfallen. Die preisgünstig herstellbaren Papierbewick­lungen 5 und 7 bilden gemeinsam mit der FRNC-Schicht 6 einen die Adern 1 und 1a im Brandfall zuverlässig schützenden Innenmantel, welcher nicht zerfällt und einen hohen Wärmeübergangswiderstand bietet. Dabei ist die Isolation der Adern 1 und 1a gegenüber dem Stahlwellrohr 8 gewährleistet.
  • Das biegsame Stahlwellrohr 8 leitet einerseits Wärme ab und bietet andererseits einen mechanischen Schutz der Adern 1 und 1 a gegen radial auf das Kabel einwirkende Kräfte, welche durch auf das Kabel fallende Teile verursacht werden können.
  • Ein mehrschichtiger Außenmantel ist mit den aufextrudier­ten FRNC-Schichten 9 und 10 sowie mit einer Zwischenban­dagierung 11 herstellt. Die 1 bis 2mm dicken FRNC-­Schichten 9 und 10 bestehen aus einem Mehrstoffsystem mit etwa 60% Aluminiumhydroxid-Füllung.
  • Die Zwischenbandagierung 11 wurde aus einer Aluminium­doppelverbundfolie hergestellt, bei welcher zwischen 15 um dicken Aluminiumschichten eine 20 um dicke Kunststoffschicht (PETP) angeordnet war.
  • Die die Wellentäler des Stahlwellrohrs 8 ausfüllende FRNC-Schicht 9 wird durch eine die Wärme ableitende und reflektierende Zwischenbandagierung 11 im Brandfall am Stahlwellrohr 8 gehalten, so daß die wärmeisolierende und kühlende Wirkung zumindest der FRNC-Schicht 9 im Brandfall lange aufrecht erhalten bleibt.
  • Mit einem Kabel nach Fig. 2 wurden beim Brandtest nach DIN VDE 0472 Teil 814 Standzeiten der Isolierung von mehr als 25min erreicht.

Claims (7)

1. Flammfestes Kabel mit einem aus feuerhemmendem Material bestehenden Mantel, welcher eine geschlossene metallische Aufbauschicht (8) enthält,
dadurch gekennzeichnet, daß die metallische Aufbauschicht (8) einen Innenmantel umgibt, welcher eine Papierwickelschicht (5,7) enthält.
2. Kabel nach Anspruch 1,
dadurch gekennzeichnet, daß die metallische Aufbauschicht ein insbesondere gewelltes Metallrohr (8) ist.
3. Kabel nach Anspruch 2,
dadurch gekennzeichnet, daß die metallische Aufbauschicht (8) eine dehnbare Laminatschicht ist, die aus einer eine Metallschicht, insbesondere Aluminiumschicht, enthaltenden Mehrschichtfolie besteht.
4. Kabel nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß über der metallischen Aufbauschicht (8) ein Außenmantel (9,10,11) angeordnet ist.
5. Kabel nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß eine FRNC-Schicht (6) zwischen der metallischen Aufbauschicht (8) und der Papierwickelschicht (5) angeordnet ist.
6. Kabel nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß der Innenmantel zwei Papierwickelschichten (5,7) aufweist, zwischen welchen eine FRNC-Schicht (6) angeordnet ist.
7. Kabel nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß innerhalb des Mantels verlau­fende elektrische Leiter (2) unmittelbar von einer dünnen Schicht (3) aus einem hochtemperaturfestem Polymeren, insbesondere aus einem Polyesterimid, Polyetherimid, Polyamidimid oder Polyimid umgeben sind, und daß darauf eine vielfach dickere Schicht (4) aus einem weniger temperaturfestem Material mit einer Erweichungstemperatur von mehr als 1400 aufgebracht ist.
EP89202422A 1988-10-03 1989-09-27 Flammfestes Nachrichtenkabel Withdrawn EP0362929A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3833597 1988-10-03
DE19883833597 DE3833597A1 (de) 1988-10-03 1988-10-03 Flammfestes nachrichtenkabel

Publications (1)

Publication Number Publication Date
EP0362929A1 true EP0362929A1 (de) 1990-04-11

Family

ID=6364283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202422A Withdrawn EP0362929A1 (de) 1988-10-03 1989-09-27 Flammfestes Nachrichtenkabel

Country Status (2)

Country Link
EP (1) EP0362929A1 (de)
DE (1) DE3833597A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828022B2 (en) 2000-02-21 2004-12-07 Cables Pirelli Fire-resistant and water-resistant halogen-free low-voltage cables
EP2346130A3 (de) * 2009-10-27 2013-07-31 Kabelovna Kabex a.s. Feuerfester Kabelrohr
EP3367393A1 (de) * 2017-02-24 2018-08-29 Hitachi Metals, Ltd. Lan-kabel
EP3410444A1 (de) * 2017-05-29 2018-12-05 Maria Iciar Zublezu Llona Schützende hülle für kabel
US10937569B2 (en) 2018-03-28 2021-03-02 General Cable Technologies Corporation Fire resistant data communication cable
US11465002B2 (en) 2014-09-10 2022-10-11 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503672A1 (de) * 1995-01-25 1996-08-01 Siemens Ag Mehradriges, kunststoffisoliertes Niederspannungs-Starkstromkabel
GB9707300D0 (en) 1997-04-10 1997-05-28 Plastic Insulated Cables Ltd Communications cable
DE19737309A1 (de) * 1997-08-27 1999-03-04 Alsthom Cge Alcatel Halogenfreie flammwidrige Polymermischung
DE19959575A1 (de) * 1999-12-10 2001-07-05 Nkt Cables Gmbh Verkabelungselement
DE10203900A1 (de) 2002-01-31 2003-08-14 Nexans Elektrische Leitung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154976A (en) * 1977-10-25 1979-05-15 General Cable Corporation Flame retardant inside wiring cable made with an annealed metal sheath
GB2043326A (en) * 1979-02-26 1980-10-01 Kabel Metallwerke Ghh Fire resistant cable
DE8716166U1 (de) * 1987-12-08 1988-01-21 Kabelmetal Electro Gmbh, 3000 Hannover, De
DE8716167U1 (de) * 1987-12-08 1988-01-21 Kabelmetal Electro Gmbh, 3000 Hannover, De

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154976A (en) * 1977-10-25 1979-05-15 General Cable Corporation Flame retardant inside wiring cable made with an annealed metal sheath
GB2043326A (en) * 1979-02-26 1980-10-01 Kabel Metallwerke Ghh Fire resistant cable
DE8716166U1 (de) * 1987-12-08 1988-01-21 Kabelmetal Electro Gmbh, 3000 Hannover, De
DE8716167U1 (de) * 1987-12-08 1988-01-21 Kabelmetal Electro Gmbh, 3000 Hannover, De

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828022B2 (en) 2000-02-21 2004-12-07 Cables Pirelli Fire-resistant and water-resistant halogen-free low-voltage cables
EP2346130A3 (de) * 2009-10-27 2013-07-31 Kabelovna Kabex a.s. Feuerfester Kabelrohr
US11465002B2 (en) 2014-09-10 2022-10-11 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members
EP3367393A1 (de) * 2017-02-24 2018-08-29 Hitachi Metals, Ltd. Lan-kabel
US10748676B2 (en) 2017-02-24 2020-08-18 Hitachi Metals, Ltd. LAN cable
EP3410444A1 (de) * 2017-05-29 2018-12-05 Maria Iciar Zublezu Llona Schützende hülle für kabel
US10937569B2 (en) 2018-03-28 2021-03-02 General Cable Technologies Corporation Fire resistant data communication cable

Also Published As

Publication number Publication date
DE3833597A1 (de) 1990-04-05

Similar Documents

Publication Publication Date Title
US4547626A (en) Fire and oil resistant cable
US4154976A (en) Flame retardant inside wiring cable made with an annealed metal sheath
US5422614A (en) Radiating coaxial cable for plenum applications
EP0609771B1 (de) Elektrische Heizleitung
EP0260373B1 (de) Flammbeständige elektrische Leitung
DD254460A5 (de) Schutzhuelle gegen hitze- und feuereinwirkung von aussen fuer strangfoermiges gut
DE4236560A1 (de) Kabel und Verfahren zur Herstellung eines Kabels
EP0362929A1 (de) Flammfestes Nachrichtenkabel
DE2551568A1 (de) Elektrische verbindungskabel, geeignet insbesondere fuer transportfahrzeuge und schiffe
EP1667169A1 (de) Elektrisches Kabel
DE10051962A1 (de) Isolierter elektrischer Leiter mit Funktionserhalt im Brandfall
DE3704249C2 (de) Feuerfestes strahlendes Hochfrequenz-Koaxialkabel
DE4132390A1 (de) Flammwidriges elektrisches kabel
EP0226190A1 (de) Abschottungsvorrichtung
EP1333450A2 (de) Elektrische Leitung
EP1045401B1 (de) Flammbeständiges Kabel
EP0191321A1 (de) Flammgeschützte Kabelmuffe aus Kunststoff
EP0150879B1 (de) Flammwidriges koaxiales Hochfrequenzkabel
JP3148079B2 (ja) 高圧耐火ケーブル
JP2002231068A (ja) 耐火ケーブル
DE19920462A1 (de) Optisches Kabel
AT405694B (de) Lichtwellenleiterkabel
DE10131569B4 (de) Kabel mit Polyethylenmantel und Verfahren zur Herstellung eines Kabels
EP3721455B1 (de) Kabel mit brandschutzschicht
DE19943116A1 (de) Elektrische und/oder optische Ader sowie Kabel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901009

17Q First examination report despatched

Effective date: 19920723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921204