EP0362798A2 - Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage - Google Patents

Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0362798A2
EP0362798A2 EP89118339A EP89118339A EP0362798A2 EP 0362798 A2 EP0362798 A2 EP 0362798A2 EP 89118339 A EP89118339 A EP 89118339A EP 89118339 A EP89118339 A EP 89118339A EP 0362798 A2 EP0362798 A2 EP 0362798A2
Authority
EP
European Patent Office
Prior art keywords
voltage
switched
detector
detectors
line voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89118339A
Other languages
English (en)
French (fr)
Other versions
EP0362798A3 (de
EP0362798B1 (de
Inventor
Helfried Dipl.-Ing. Lappe
Otfried Post
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6364535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0362798(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT89118339T priority Critical patent/ATE101445T1/de
Publication of EP0362798A2 publication Critical patent/EP0362798A2/de
Publication of EP0362798A3 publication Critical patent/EP0362798A3/de
Application granted granted Critical
Publication of EP0362798B1 publication Critical patent/EP0362798B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a method for the energy-saving operation of hazard detectors in a hazard detection system, which works in the pulse detection system according to the principle of chain synchronization, with a control center with several two-wire primary reporting lines, to which a plurality of detectors are connected in a chain, which are routinely operated from the control center cyclically controlled and queried for their respective analog detector measured value, each detector having a voltage measuring device that monitors the line voltage applied, a downstream logic logic with an associated sensor, a downstream control device, an energy store and a switching transistor, the logic logic being formed by a microcomputer.
  • Such a hazard alarm system is known from DE-PS 25 33 382.
  • the individual detectors are connected in a chain to the detection line.
  • the measured values of the individual detectors are queried cyclically from the control center and sent to the central evaluation device in order to obtain differentiated fault or alarm messages from the analog values to be linked.
  • all detectors are disconnected from the detection line by a voltage change and then switched on again in a predetermined order in such a way that each detector, after a time delay corresponding to its measured value, is additionally connected to the subsequent detector by means of a switching transistor arranged in one of the wires of the detection line turns on.
  • the respective detector address is derived from the number of previous increases in the line current and the analog measured value from the length of the relevant switching delays.
  • the detectors are operated from their energy storage during this time. After the query, the energy stores are recharged during the so-called rest period with increased line voltage.
  • Control commands can also be transmitted from the control center to the individual detectors, which are received by the individual detectors, as is already known from DE-PS 25 33 354.
  • the data received and reported by the individual detectors can also be transmitted in the form of pulse telegrams within certain time windows.
  • CMOS complementary metal-oxide-semiconductor
  • special sensors for example the pulsed measuring part of an optical stray light smoke detector.
  • CMOS complementary metal-oxide-semiconductor
  • the object of the invention is to provide, while avoiding the disadvantages described above, a method for the energy-saving operation of danger detectors in a danger detection system, which allows a relatively simple and reliable switching on and off of a microcomputer.
  • This object is achieved with a method described at the outset in that the microcomputer is switched to an energy-saving idle state and switched on again as a function of certain switching criteria that are specific to the hazard alarm system, with a required start-up time being guaranteed for the microcomputer.
  • the special feature of the method according to the invention is that no additional and complex criteria have to be created specifically. Rather, switching criteria are used for switching the microcomputer on and off in the respective detector, which are specific to a hazard detection system and already exist, i.e. which are used and designed in a special way for this.
  • the microcomputer is used as a function of a certain line voltage (a switch-off voltage) switched to the power-saving idle state and switched on again with the application of another predetermined line voltage, a switch-on voltage, so that the detector is activated after a certain start-up time.
  • a certain line voltage a switch-off voltage
  • the cut-off voltage is expediently formed from the idle voltage that is present anyway and the cut-off voltage from the start voltage likewise required for the cyclical interrogation, which is generally zero and thus switches off all detectors in a line.
  • the microcomputer switches itself into the idle state when the detector in question switches through to the next detector via its switching transistor.
  • a multiplicity of detectors M1 to Mn are connected to a control center here, for example, only on one reporting primary line ML.
  • the line current IL flows on the signaling line and the line voltage UL is present, which can be switched to different values.
  • the detector M shown in FIG. 2 has, in addition to the switching transistor T switched on in the one wire of the detection line ML the logic logic, which is the heart of the detector and is formed by a microcomputer.
  • the logic logic serves the actual sensor part.
  • the logic logic VL is acted upon by the voltage measuring device, which monitors the line voltage and gives switching functions to the logic logic VL in accordance with the line voltage applied.
  • This logic logic causes signals to a control device ST and also signals to turn on the switching transistor T so that the following detector is connected to the line voltage. It is also indicated by a capacitor C in the detector of the energy store, which is charged in the idle state when a no-load voltage is present and, if necessary, supplies the detector with energy in the disconnected state.
  • Fig. 3 shows how the individual detectors are switched on in sequence.
  • the line voltage UL is plotted against the time t for the detectors M1 to M3.
  • the rest voltage UR is present on the detection line ML.
  • An interrogation cycle then begins by separating the line from the line voltage, i.e. the starting voltage US, which is generally zero, is applied for the starting time ts. After the start time TS has elapsed, the actual query of the entire detection line for the time tla begins.
  • the interrogation voltage UA for this is generally below the value of the quiescent voltage UR. It is shown for the detector M2 that it receives the interrogation voltage UA only after the DS of the first detector M1 has been switched through. The same applies to detector M3.
  • the data transmission to the detector generally takes place by modulating the line voltage UL in the control center, while data transmission to the control center is carried out by modulating the line current IL in the detector.
  • the microcomputer switches itself into the energy-saving idle state when it receives the signal from the voltage measuring device MU that the control center Z has applied the open circuit voltage UR (is the cutoff voltage UAB).
  • the open circuit voltage UR is the cutoff voltage UAB.
  • All the microcomputers (U) are switched off and have only a minimal power consumption in the time tr in which the quiescent voltage UR is applied.
  • All the microcomputers are inactive and can neither operate the sensor section S nor accept or process control commands or send requests from the control center. This is also not necessary in the transmission system based on the principle of chain synchronization.
  • the microcomputers (VL) in all detectors (Mn) are only reactivated when the starting voltage US is applied (is equal to the switching-on voltage UAN), operate the sensor part S and are available for the transmission at the different times of the application of the interrogation voltage UA for the individual detectors from and to the head office.
  • the start time ts corresponds to the start-up time tan for the microcomputer, ie a sufficiently long settling time is available.
  • the microcomputer advantageously only requires significant energy during the short time, which is composed of the start time ts and the line query time tla.
  • the microcomputer switches itself into the energy-saving idle state when it switches through to the next detector via its assigned switching transistor T in the detection line ML (DS).
  • T in the detection line ML ML
  • the time in which the microcomputers are switched off and have minimal power consumption is further extended.
  • the first detector in the line is then in the power-saving state for almost the entire line inquiry time Tla, so that on average all detectors, the microcomputers for half the line inquiry time tla, are active and require energy, which means that the corresponding energy requirement of a signaling primary line continues, to almost half, is reduced. All in all, the microcomputers are only active a few percent of the total time and therefore use little energy.
  • This method according to the invention advantageously does not require any circuit extensions worth mentioning compared to the known method of pulse signaling technology.
  • the improved performance characteristics are achieved in that the microcomputer in the individual detectors is equipped accordingly, e.g. B. by expanding the control program (firmware).

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

Die nach dem Prinzip der Kettensynchronisation arbeitende Anlage mit einer Zentrale (Z) mit mehreren zweiadrigen Meldeprimärleitungen (ML), an die kettenförmig eine Vielzahl von Melder (Mn) angeschlossen sind, die regelmäßig von der Zentrale (Z) aus zyklisch angesteuert und auf ihren jeweiligen analogen Meldermeßwert abgefragt werden, besitzt jeweils Melder (Mn), die eine Spannungsmeßeinrichtung (MU), die die angelegte Linienspannung (UL) überwacht, eine nachgeschaltete Verknüpfungslogik (VL) mit zugeordnetem Sensorteil (S), eine nachgeschaltete Steuereinrichtung (St), einen Energiespeicher (C) und einen Durchschaltetransistor (T) aufweisen. Die Verknüpfungslogik (VL) ist im wesentlichen von einem Mikrorechner gebildet, der an- und abschaltbar ist. Erfindungsgemäß wird der Mikrorechner in Abhängigkeit von bestimmten Schaltkriterien, die spezifisch für die Gefahrenmeldeanlage sind, in einen stromsparenden Ruhezustand geschaltet und wiedereingeschaltet, wobei eine erforderliche Anlaufzeit (tan) für den Mikrorechner gewährleistet ist. Z.B. wird der Mikrorechner in Abhängigkeit von einer bestimmten Linienspannung (Abschaltspannung UAB = UR) in den Ruhezustand geschaltet und mit dem Anliegen einer anderen vorgegebenen Linienspannung (Anschaltspannung UAN = US) wieder eingeschaltet, so daß der Melder nach einer gewissen Anlaufzeit (tan = ts) aktiviert ist.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum energie­sparenden Betrieb von Gefahrenmeldern in einer Gefahrenmelde­anlage, die im Pulsmeldesystem nach dem Prinzip der Kettensynchronisation arbeitet, mit einer Zentrale mit mehreren zweiadrigen Meldeprimärleitungen, an die kettenförmig eine Vielzahl von Meldern angeschlossen ist, die regelmäßig von der Zentrale aus zyklisch angesteuert und auf ihren jeweiligen ana­logen Meldermeßwert abgefragt werden, wobei jeder Melder eine Spannungsmeßeinrichtung, die die angelegte Linienspannung über­wacht, eine nachgeschaltete Verknüpfungslogik mit zugeordnetem Sensor, eine nachgeschaltete Steuereinrichtung, einen Energie­speicher und einen Durchschaltetransistor aufweist, wobei die Verknüpfungslogik von einem Mikrorechner gebildet ist.
  • Eine derartige Gefahrenmeldeanlage ist aus der DE-PS 25 33 382 bekannt. Bei dieser Gefahrenmeldeanlage, insbesondere Brand­meldeanlage, zur Übertragung von analogen Meldermeßwerten sind die einzelnen Melder kettenförmig an der Meldelinie ange­schlossen. Dabei werden die Meßwerte der einzelnen Melder zyklisch von der Zentrale aus abgefragt und zur zentralen Auswerteeinrichtung gegeben, um dort daraus differenzierte Störungs- bzw. Alarmmeldungen aus den zu verknüpfenden Analogwerten zu gewinnen. Zu Beginn eines jeden Abfragezyklus werden alle Melder durch eine Spannungsänderung von der Meldelinie abgetrennt und dann in vorgegebener Reihenfolge in der Weise wieder angeschaltet, daß jeder Melder nach einer seinem Meßwert entsprechenden Zeitverzögerung mittels eines in einer der Adern der Meldelinie angeordneten Durchschalte­transistors den jeweils nachfolgenden Melder zusätzlich an­schaltet.
  • In der zentralen Auswerteeinrichtung wird die jeweilige Melderadresse aus der Anzahl der vorhergehenden Erhöhungen des Linienstroms und der analoge Meßwert aus der Länge der be­treffenden Schaltverzögerungen abgeleitet. Die Melder werden während dieser Zeit aus ihrem Energiespeicher betrieben. Die Energiespeicher werden nach der Abfrage in der sogenannten Ruhezeit mit erhöhter Linienspannung wieder aufgeladen.
  • In zunehmendem Maße benötigen Gefahrenmelder eine hochwertige Sensorik und Ubertragungstechnik. Anstatt einer Kollektiv­adresse wird eine Einzeladressierung verlangt, wie dies bei der oben geschilderten Gefahrenmeldeanlage der Fall ist. Es können auch von der Zentrale aus Steuerbefehle an die einzelnen Melder übertragen werden, die von den einzelnen Meldern empfangen werden, wie bereits aus der DE-PS 25 33 354 bekannt ist. Es können die Daten, die von den einzelnen Meldern empfangen und gemeldet werden, auch in Form von Pulstelegrammen innerhalb bestimmter Zeitfenster übermittelt werden.
  • Wegen der hohen Kosten des Leitungsnetzes werden immer mehr Melder an einer Meldeprimärleitung betrieben. Alle diese Ein­flüsse vergrößern den Energiebedarf der einzelnen Melder und erst recht den Energiebedarf der mit mehreren Meldern bestückten Meldeprimärleitung. Besonders problematisch wird es, wenn die Funktionsanforderungen den Einsatz von schnellen Mikrorechnern mit ihrem erheblichen Energiebedarf auch in den Meldern erforderlich machen und wenn über dieselbe Leitung auch noch die notwendige Energie zugeführt wird, wie bisher üblich.
  • Es ist beispielsweise bekannt, stromsparende Schaltkreis­techniken, z.B. CMOS zu verwenden und spezielle Sensoren, z.B. den Meßteil eines optischen Streulicht-Rauchmelders gepulst zu betreiben. Ferner ist bekannt, um den Spannungsabfall auf der Meldelinie genügend klein zu halten, diese mit dickem Draht und kurz auszuführen, was natürlich die Kosten erhöht und/oder dem Wunsch zuwiderläuft, eine Vielzahl von Meldern auf einer Leitung zu betreiben. Ebenfalls bekannt ist die Möglichkeit, die nötige Energie ganz oder teilweise getrennt, z.B. über eine eigene Leitung zuzuführen, was ebenfalls die Komplexität und die Kosten einer Gefahrenmeldeanlage erhöht.
  • Es ist ganz allgemein schon vorgeschlagen worden, Mikrorechner abzuschalten, wenn sie nicht benötigt werden, um deren Energie­verbrauch zu reduzieren. Das hat aber in der Regel den Nachteil, daß einerseits geeignete Kriterien für das Aus- und Einschalten nicht verfügbar bzw. nur mit großem, zusätzlichen Aufwand herstellbar sind und andererseits das Einschalten eines Mikrorechners relativ lange dauert, weil z.B. der Taktgenerator mehrere Millisekunden lang anschwingen muß, bevor er funktions­fähig ist.
  • Aufgabe der Erfindung ist es, unter Vermeidung der oben geschilderten Nachteile ein Verfahren zum energiesparenden Betreiben von Gefahrenmeldern einer Gefahrenmeldeanlage an zu­geben, welches ein verhältnismäßig einfaches und zuverlässiges An- und Abschalten eines Mikrorechners gestattet.
  • Diese Aufgabe wird mit einem eingangs beschriebenen Verfahren dadurch gelöst, daß der Mikrorechner in Abhängigkeit von bestimmten Schaltkriterien, die spezifisch für die Gefahren­meldeanlage sind, in einen stromsparenden Ruhezustand ge­schaltet und wieder eingeschaltet wird, wobei eine erforderliche Anlaufzeit für den Mikrorechner gewährleistet ist.
  • Das besondere bei dem erfindungsgemäßen Verfahren besteht darin, daß keine zusätzlichen und aufwendigen Kriterien eigens geschaffen werden müssen. Vielmehr werden für das An- und Abschalten des Mikrorechners im jeweiligen Melder Schalt­kriterien herangezogen, die für eine Gefahrenmeldeanlage spezi­fisch sind und bereits vorhanden sind, d.h. die in besonderer Weise hierfür genutzt und ausgestaltet werden.
  • So wird beispielsweise in einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens der Mikrorechner in Abhängigkeit von einer bestimmten Linienspannung (einer Abschaltspannung) in den stromsparenden Ruhezustand geschaltet und mit dem Anlegen einer anderen vorgegebenen Linienspannung, einer An­schaltspannung wieder eingeschaltet, so daß der Melder nach einer gewissen Anlaufzeit aktiviert ist. Dabei wird zweck­mäßigerweise die Abschaltspannung von der ohnehin vorhandenen Ruhespannung gebildet und die Anschaltspannung von der ebenfalls für die zyklische Abfrage erforderliche Start­spannung, die in der Regel Null beträgt und damit alle Melder einer Linie abschaltet.
  • In einer weiteren Ausgestaltung der Erfindung schaltet der Mikrorechner sich selbst in den Ruhezustand, wenn der betreffende Melder über seinen Durchschaltetransistor zum nächsten Melder durchschaltet.
  • Im folgenden wird das erfindungsgemäße Verfahren näher erläutert, dabei wird zum besseren Verständnis das bekannte Pulsmeldesystem anhand der Zeichnung erläutert. Dabei zeigen
    • Fig. 1 eine schematische Darstellung einer Gefahrenmelde­anlage,
    • Fig. 2 schematisch einen Melder in der Melderprimärleitung und
    • Fig. 3 Linienspannungsdiagramme für drei Melder.
  • Bekanntermaßen sind an eine Zentrale beispielsweise hier nur an einer Meldeprimärleitung ML eine Vielzahl von Meldern M1 bis Mn angeschlossen. Auf der Meldeleitung fließt der Linienstrom IL und es liegt die Linienspannung UL an, die auf verschiedene Werte umschaltbar ist.
  • Der in Fig.2 gezeigte Melder M weist neben den in der einen Ader der Meldelinie ML eingeschalteten Durchschaltetransistor T die Verknüpfungslogik auf, die das Herzstück des Melders darstellt und von einem Mikrorechner gebildet ist. Die Ver­knüpfungslogik bedient das eigentliche Sensorteil. Die Verknüpfungslogik VL ist von der Spannungsmeßeinrichtung be­aufschlagt, welche die Linienspannung überwacht und entsprechend der angelegten Linienspannung Schaltfunktionen an die Verknüpfungslogik VL gibt. Diese Verknüpfungslogik ver­anlaßt Signale an eine Steuereinrichtung ST und auch Signale zum Durchschalten des Durchschaltetransistors T, damit der nachfolgende Melder an die Linienspannung angeschlossen wird. Es ist noch durch einen Kondensator C im Melder der Energie­speicher angedeutet, der im Ruhezustand beim Anliegen einer Ruhespannung aufgeladen wird und im abgetrennten Zustand den Melder bei Bedarf mit Energie versorgt.
  • In Fig.3 ist nochmals veranschaulicht, wie die einzelnen Melder der Reihe nach angeschaltet werden. Dabei ist die Linien­spannung UL über der Zeit t aufgetragen für die Melder M1 bis M3. Während der Ruhezeit tr liegt auf der Meldelinie ML die Ruhespannung UR an. Ein Abfragezyklus beginnt dann mit dem Abtrennen der Linie von der Linienspannung, d.h. es wird für die Startzeit ts die Startspannung US, die im allgemeinen gleich Null ist, angelegt. Nach Ablauf der Startzeit TS beginnt die eigentliche Abfrage der gesamten Meldelinie für die Zeit tla. Die Abfragespannung UA liegt hierfür im allgemeinen unter dem Wert der Ruhespannung UR. Für den Melder M2 ist gezeigt, daß er erst nach dem Durchschalten DS des ersten Melders M1 die Abfragespannung UA erhält. Gleiches gilt für den Melder M3.
  • Die Datenübertragung zum Melder geschieht im allgemeinen durch Modulation der Linienspannung UL in der Zentrale, während eine Datenübertragung zur Zentrale durch die Modulation des Linien­stroms IL im Melder vorgenommen wird.
  • Mit dem erfindungsgemäßen Verfahren schaltet sich der Mikro­rechner selbst in den stromsparenden Ruhezustand, wenn er von der Spannungsmeßeinrichtung MU das Signal erhält, daß die Zentrale Z die Ruhespannung UR (ist gleich Abschaltspannung UAB) angelegt hat. Das bedeutet, daß in der Zeit tr, in der die Ruhespannung UR anliegt, alle Mikrorechner (U) abgeschaltet sind und nur einen minimalen Stromverbrauch haben. Dabei sind alle Mikrorechner inaktiv und können weder den Sensorteil S bedienen noch Steuerbefehle oder Sendeaufforderungen von der Zentrale entgegennehmen oder bearbeiten. Dies ist bei dem Übertragungssystem nachdem Prinzip der Kettensynchronisation auch nicht nötig. Erst mit dem Anlegen der Startspannung US (ist gleich Anschaltspannung UAN) werden die Mikrorechner (VL) in allen Meldern (Mn) wieder aktiviert, bedienen der Sensorteil S und stehen bei den für die einzelnen Melder unterschiedlichen Zeitpunkte des Anlegen der Abfragespannung UA für die Ubertragung von und zu der Zentrale zur Verfügung. Dabei entspricht die Startzeit ts der Anlaufzeit tan für den Mikrorechner, d.h., es steht eine ausreichend lange Einschwing­zeit zur Verfügung. Somit benötigt in vorteilhafter Weise der Mikrorechner nur während der kurzen Zeit, die sich aus der Startzeit ts und der Linienabfragezeit tla zusammensetzt, nennenswerte Energie.
  • In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens schaltet sich der Mikrorechner selbst in den strom­sparenden Ruhezustand, wenn er über seinen zugeordneten Durch­schaltetransistor T in der Meldelinie ML zum nächsten Melder durchschaltet (DS). Auf diese Weise wird die Zeit, in der die Mikrorechner abgeschaltet sind und nur einen minimalen Stromverbrauch haben, weiter verlängert. Der erste Melder in der Linie ist dann für fast die gesamte Linienabfragezeit Tla im stromsparenden Zustand, so daß im Mittel alle Melder die Mikrorechner für die halbe Linienabfragezeit tla aktiv sind und Energie benötigen, womit der entsprechende Energiebedarf einer Meldeprimärleitung weiter, auf nahezu die Hälfte, reduziert wird. Insgesamt sind also die Mikrorechner nur noch wenige Prozent der Gesamtzeit aktiv und verbrauchen entsprechend wenig Energie.
  • Dieses erfindungsgemäße Verfahren benötigt in vorteilhafter Weise keine gegenüber dem bekannten Verfahren der Pulsmelde­technik nennenswerte Schaltungserweiterungen. Die verbesserten Leistungseigenschaften werden dadurch erreicht, daß der Mikro­rechner in den einzelnen Meldern entsprechend ausgestattet ist, z. B. durch Erweiterung des Steuerprogramms (firmware).

Claims (4)

1. Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage, die im Pulsmeldesystem nach dem Prinzip der Kettensynchronisation arbeitet, mit einer Zentrale (Z) mit mehreren zweiadrigen Meldeprimärleitungen (ML), an die kettenförmig eine Vielzahl von Melder (Mn) ange­schlossen sind, die regelmäßig von der Zentrale (Z) aus zyklisch angesteuert und auf ihren jeweiligen analogen Melder­meßwert abgefragt werden, wobei jeder Melder (Mn) eine Spannungsmeßeinrichtung (MU), die die angelegte Linien­spannung (UL) überwacht, eine nachgeschaltete Verknüpfungs­logik (VL) mit zugeordnetem Sensorteil (S), eine nachge­schaltete Steuereinrichtung (St), einen Energiespeicher (C) und einen Durchschaltetransistor (T) aufweist, wobei die Ver­knüpfungslogik (VL) im wesentlichen von einem Mikrorechner gebildet ist, der an- und abschaltbar ist,
dadurch gekennzeichnet, daß der Mikro­rechner in Abhängigkeit von bestimmten Schaltkriterien, die spezifisch für die Gefahrenmeldeanlage sind, in einen strom­sparenden Ruhezustand geschaltet und wiedereingeschaltet wird, wobei eine erforderliche Anlaufzeit (tan) für den Mikrorechner gewährleistet ist.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß der Mikro­rechner in Abhängigkeit von einer bestimmten Linienspannung (Abschaltspannung UAB) sich selbst in den Ruhezustand schaltet und mit dem Anliegen einer anderen vorgegebenen Linien­spannung (Anschaltspannung UAN) wieder einschaltet, so daß der Melder nach einer gewissen Anlaufzeit (tan) aktiviert ist.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, daß die bestimmte Linienspannung (UAB) gleich der Ruhespannung (UR) und die andere Linienspannung (UAN) gleich der Startspannung (US) ist, und daß die Anlaufzeit (tan) von der Startzeit (ts) gebildet ist.
4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß der Mikrorechner sich selbst in den Ruhezustand schaltet, wenn der betreffende Melder über seinen Durchschaltetransistor (T) zum nächsten Melder durchschaltet (DS).
EP89118339A 1988-10-06 1989-10-03 Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage Revoked EP0362798B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89118339T ATE101445T1 (de) 1988-10-06 1989-10-03 Verfahren zum energiesparenden betrieb von gefahrenmeldern in einer gefahrenmeldeanlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834044 1988-10-06
DE3834044 1988-10-06

Publications (3)

Publication Number Publication Date
EP0362798A2 true EP0362798A2 (de) 1990-04-11
EP0362798A3 EP0362798A3 (de) 1991-01-16
EP0362798B1 EP0362798B1 (de) 1994-02-09

Family

ID=6364535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118339A Revoked EP0362798B1 (de) 1988-10-06 1989-10-03 Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage

Country Status (3)

Country Link
EP (1) EP0362798B1 (de)
AT (1) ATE101445T1 (de)
DE (1) DE58906937D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491216A2 (de) * 1990-12-18 1992-06-24 Siemens Aktiengesellschaft Gefahrenmeldeanlage
WO2002039050A1 (de) * 2000-11-09 2002-05-16 Orica Explosives Technology Pty Limited Sensor zur überwachung elektronischer zündkreise

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2131991A (en) * 1982-11-12 1984-06-27 Robert Philp Telemetry and like signalling systems
EP0125485A1 (de) * 1983-04-12 1984-11-21 Siemens Aktiengesellschaft Schaltungsanordnung zur Störsignalunterdrückung in optischen Rauchmeldern
EP0279697A2 (de) * 1987-02-20 1988-08-24 Nec Corporation Tragbares Funkgerät mit einer batteriesparenden Kanalsuchlauffunktion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2131991A (en) * 1982-11-12 1984-06-27 Robert Philp Telemetry and like signalling systems
EP0125485A1 (de) * 1983-04-12 1984-11-21 Siemens Aktiengesellschaft Schaltungsanordnung zur Störsignalunterdrückung in optischen Rauchmeldern
EP0279697A2 (de) * 1987-02-20 1988-08-24 Nec Corporation Tragbares Funkgerät mit einer batteriesparenden Kanalsuchlauffunktion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491216A2 (de) * 1990-12-18 1992-06-24 Siemens Aktiengesellschaft Gefahrenmeldeanlage
EP0491216A3 (en) * 1990-12-18 1992-12-09 Siemens Aktiengesellschaft Hazard detection system
WO2002039050A1 (de) * 2000-11-09 2002-05-16 Orica Explosives Technology Pty Limited Sensor zur überwachung elektronischer zündkreise
US6941869B2 (en) 2000-11-09 2005-09-13 Orica Explosives Technology Pty Ltd Sensor for monitoring electronic detonation circuits

Also Published As

Publication number Publication date
EP0362798A3 (de) 1991-01-16
DE58906937D1 (de) 1994-03-24
EP0362798B1 (de) 1994-02-09
ATE101445T1 (de) 1994-02-15

Similar Documents

Publication Publication Date Title
DE2533354C3 (de) Einrichtung zum Übertragen von Steuerbefehlen in einem Brandschutzsystem
DE102009041434A1 (de) Verfahren und Vorrichtung zum Aufwecken von Teilnehmern eines Bussystems und entsprechender Teilnehmer
EP0421471A1 (de) Kommunikationsverfahren für eine Schaltungsanordnung, die aus einer Zentrale und mehreren Peripherieeinheiten besteht
CH660926A5 (de) Ueberwachungsanlage.
EP0362798B1 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE19705365A1 (de) Vorrichtung zur zeitmultiplexen Übertragung von Informationen
DE10006408A1 (de) Beleuchtungssystem
EP0993637B1 (de) Serieller daten- und steuer-bus mit versorgungsspannung
EP0362797B1 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE2654026A1 (de) Fernwirksystem zum selektiven ansteuern von verbrauchern, insbesondere in einem kraftfahrzeug
DE3150313C2 (de) Anordnung zur Ermittlung und Rückmeldung der Stellung einer Reihe von Schaltern und zur Überwachung der Verbindungsleitung
DE3614692C2 (de)
DE3424294A1 (de) Abfrageeinrichtung zur identifikation der stellung von schaltern
DE3637681A1 (de) Gefahrenmeldeanlage nach dem pulsmeldesystem
WO2011054458A1 (de) Sicherheits-kommunikationssystem zur signalisierung von systemzuständen
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
DE102007026601B3 (de) Verfahren zur Rückmeldung von Zuständen einer elektrischen Komponente an ein Motorsteuergerät einer Verbrennungskraftmaschine
EP0212106B1 (de) Verfahren zur Uebertragung von Messwerten
DE19648657C1 (de) Verfahren und Gerät zur Steuerung und Überwachung von elektrischen Verbrauchern
DE3910405C2 (de) Schaltungsanordnung, insbesondere zur Steuerung elektrischer Leistung
EP0347806B1 (de) Gefahrenmeldeanlage
EP0098553B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und/oder der Melderkennung in einer Gefahrenmeldeanlage
EP0137964A2 (de) Vorrichtung zur Signalsicherung bei Lichtzeichenanlagen
DE1152643B (de) Zentral gesteuerte Lichtsignalanlage fuer den Strassenverkehr
DE10235827B3 (de) Verfahren zum Betreiben eines Gefahrenmeldesystems, Gefahrenmeldesystem und Linienelement für ein Gefahrenmeldesystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19901205

17Q First examination report despatched

Effective date: 19930310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 101445

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58906937

Country of ref document: DE

Date of ref document: 19940324

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940415

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940912

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940916

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940921

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941024

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 6

Ref country code: LU

Payment date: 19941031

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941216

Year of fee payment: 6

26 Opposition filed

Opponent name: ZETTLER GMBH

Effective date: 19941026

26 Opposition filed

Opponent name: PREUSSAG AG

Effective date: 19941108

Opponent name: ZETTLER GMBH

Effective date: 19941026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950118

Year of fee payment: 6

EAL Se: european patent in force in sweden

Ref document number: 89118339.4

NLR1 Nl: opposition has been filed with the epo

Opponent name: ZETTLER GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: PREUSSAG AG

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19950629

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 950629

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL