EP0351327A1 - Procédé de fabrication par coulée continue de produits métalliques thixotropes - Google Patents

Procédé de fabrication par coulée continue de produits métalliques thixotropes Download PDF

Info

Publication number
EP0351327A1
EP0351327A1 EP89420240A EP89420240A EP0351327A1 EP 0351327 A1 EP0351327 A1 EP 0351327A1 EP 89420240 A EP89420240 A EP 89420240A EP 89420240 A EP89420240 A EP 89420240A EP 0351327 A1 EP0351327 A1 EP 0351327A1
Authority
EP
European Patent Office
Prior art keywords
cold zone
zone
mold
axis
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89420240A
Other languages
German (de)
English (en)
Other versions
EP0351327B1 (fr
Inventor
Jean-Luc Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9368462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0351327(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to AT89420240T priority Critical patent/ATE72527T1/de
Publication of EP0351327A1 publication Critical patent/EP0351327A1/fr
Application granted granted Critical
Publication of EP0351327B1 publication Critical patent/EP0351327B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Definitions

  • This invention relates to a process for the production by continuous casting of thixotropic metal products.
  • metal products means any product of elongated shape having a circular or polyhedral cross section constituted by a metal such as aluminum for example or one of its alloys.
  • thixotropic metal product is meant any metal composition having a non-dendritic primary solid phase and more particularly a phase with dendrites degenerated to such an extent that it is in the form of substantially spheroidal particles.
  • thixotropic products provide significant advantages over conventional products during their shaping. This is how the energy required for this operation is much lower, the cooling time is shorter, the shrinkage formed has reduced dimensions and the erosive action of the metal with respect to the dies or shaping molds. is significantly reduced.
  • the metal is poured liquid in a mold provided at one of its ends with a movable bottom and consisting of two adjacent parts of the same axis which, according to the direction of the pouring, form an upstream part called hot zone whose wall is made of a material heat insulator at least on its internal face and a downstream part known as the cold zone, the wall of which is made, at least partially, of a heat-conducting material and where the external surface is cooled by a frigopor fluid so as to cause by solidification within the liquid that said part contains, the appearance of crystals and the formation on contact of the internal surface of a solid crust sufficiently rigid to allow the gradual extraction of the product thus formed on using the movable floor, this process being characterized in that a movement is imparted to the liquid in the course of solidification ensuring at least one transfer from the cold zone to the
  • the invention consists in introducing a liquid metal into a mold composed of an upstream part constituted by a material having heat-insulating properties at least as regards its wall in contact with the metal.
  • This material can be, for example, of the type of those which are commonly used in foundry for the manufacture of chutes or nozzles. Due to the reduced heat exchanges which take place in this part, the metal maintains itself normally, that is to say without any external disturbance, at a temperature sufficient for no crystallization to occur. Hence the designation of this part by the expression "hot zone".
  • This upstream part is connected by means of a suitable joint to a downstream part which, unlike the previous one, is very good conductor of heat at least over a portion of its height located most downstream and which, because of its ability to easily evacuate the calories from the metal it contains to the outside is called the "cold zone".
  • This part is the analog of the ingot mold in a conventional continuous casting and it is within it that the crystallization process is initiated and that from the wall cooled externally cooled by a coolant fluid a crystalline envelope sufficiently rigid to allow progressive extraction using the movable bottom of the cast product, while inside this envelope delimited by the "solidification front", surface having the general profile of a meniscus whose apex is oriented towards the 'downstream, a "swamp" is formed, consisting of a mixture of liquid and generally dendritic solid particles, particles which will gradually integrate into the solidification front and allow the solid part to develop and the flow to progress.
  • the movement of the particles takes place in at least loops, the assembly of which generates a torus with an axis substantially coincident with the axis of the mold.
  • These loops are located in meridian planes of the mold, that is to say passing through its axis, and each is entirely contained in the half-plane limited by said axis.
  • the portion of the loop along which the liquid passes from the cold zone to the hot zone is closest to the axis, the portion corresponding to the return being close to the wall of the mold.
  • two types of means are used: One of them is to pass a single-phase electric current of frequency less than or equal to the industrial frequency within the downstream part of the mold which is known to be made at least partially by an electrically conductive material .
  • the wall of this part must have over its entire thickness and along at least one generator an insert of material insulating from electricity on either side of which are fixed current leads.
  • this part plays the role of whorl and the current which crosses it generates a magnetic field which develops electromagnetic forces generating the desired movement.
  • the internal wall of this part must be covered with an electrically insulating film so that there is no electrical continuity between said metal part and the cast metal because if this were the case it would cause a short circuit and would prevent the development of the magnetic field conducive to movement.
  • the electromagnetic forces being a function of the intensity of the current flowing in the turn, preferably used for making the downstream part of metals of low electrical resistivity but mechanical strength nevertheless compatible with the cast metal. It can be, for example, copper or aluminum and their alloys in the case where aluminum is poured.
  • the insulating film may consist of an oxide layer obtained by anodization in the case of aluminum or an enamel, or even a fluorocarbon resin for example.
  • the thickness of this film is a function of the electrical voltage under which the wall is located relative to the cast metal. We can use an oxide thickness of 1 ⁇ m for a voltage of 100 volts.
  • the downstream parts thus formed can be fitted on their internal face with a graphite ring a few millimeters thick which plays the role of lubricant with respect to the cast metal and can amplify the role of a lubricating agent with which it is sometimes necessary to coat the inner wall of the downstream part to facilitate the casting of certain metals.
  • This ring can be divided according to its generators in at least two sectors to avoid not only any Joule effect in the zone where on the contrary it is desired to cool, but also a reduction in energy which would limit the movement of the metal.
  • the other means of producing the movement of the liquid within the mold consists in placing at the outside of the downstream part of the mold at least one metal coil of axis substantially parallel to the axis of the mold and having it pass through by a single-phase current of frequency less than or equal to the industrial frequency.
  • This turn electrically insulated from the wall of said part in fact creates a magnetic field parallel to the axis of the mold which develops electromagnetic forces generating the desired movement.
  • this movement is more or less wide and a function of the intensity admitted in the turn, but it also depends on other factors such as the composition of the material constituting the wall of the cold zone or the structure of said wall.
  • a material having a resistivity greater than 5 ⁇ .cm it is preferable to use a material having a resistivity greater than 5 ⁇ .cm. It may for example be a non-magnetic stainless steel or titanium or else a ceramic provided that it has sufficient thermal conductivity.
  • the best solution not to break with the habits of the profession is to use aluminum but in the form of an alloy containing by weight about 1.8% Mn; 0.25% Cr; 0.2% Ti and 0.1% V whose resistivity is equal to 9.3 ⁇ .cm instead of less than 3 ⁇ .cm for conventional alloys.
  • This resistivity can however be increased by adding Mg up to 5% in which case, values are reached from 11 to 12 ⁇ .cm.
  • the addition of Li up to 1% or Zr up to 0.15% is also favorable.
  • the wall of the cold zone is divided along its generators into at least two sectors separated from each other by an electrical insulator such as mica, said sectors being kept assembled together by means of stainless steel pins and insulating dowels.
  • All these types of embodiment of the downstream part can also be lined on their internal wall and in the vicinity of the hot zone with a coaxial graphite ring preferably shared along its generatrices in at least two sections, all these particularities always having the aim to improve the efficiency of the electric current in its transformation into electromagnetic forces generating movement.
  • All the turns which surround the downstream part of the mold are designed and mounted so as to be able to adapt to any form of downstream part and to best respond to obtaining both optimum current-force performance. and a distribution of force within the metal which ensures movement of the liquid over the entire section and the entire height of the mold in order to cause the greatest possible degeneration of the dendrites on the greatest possible number of crystals.
  • the cold zone may be surrounded by magnetic yoke elements formed from metal sheets electrically isolated from one another and situated in planes passing through it. mold axis.
  • the cooling of the cold zone is obtained as is known either by means of fluid boxes integrated into the external wall of said zone or by direct application of a peripheral fluid blade on said wall.
  • the fluid is adjusted in flow and / or in temperature while modifying in the case of direct cooling the impact surfaces of the fluid blade.
  • the hot zone or at least its part closest to the cold zone can be surrounded by a sheath in which circulates a gas under pressure and chemically inert with respect to the cast metal because under these conditions it is found that the cast product then presents a better surface appearance.
  • FIG. 1 represents a vertical half-section passing through the axis of a mold applicable to the invention.
  • an upstream part 1 made of a heat insulating material which encloses the liquid metal 2 and forms the hot zone
  • a downstream part 3 made of heat conducting material fitted internally with a graphite ring 4 and cooled externally by a film 5 of water from a supply box 6 which forms the cold zone.
  • the metal solidifies along the front 7 to give the product 8 cast.
  • a coil 9 supplied with alternating current surrounds the cold zone and creates a magnetic field which induces electromagnetic forces so that the liquid metal moves along arrow 10 parallel to the axis of the mold towards the hot zone and returns to the cold zone along the wall of the mold according to arrow 11 causing in its movement the particles 12.
  • An example of a structure obtained at the heart of the billet examined by micrography see fig. 2 under magnification 50) makes it possible to appreciate the effectiveness of the process in obtaining a structure with degenerate dendrites.
  • An alloy 2124 (according to the standards of the Aluminum Association) was cast in the form of a billet with a diameter of 400 mm according to the method described.
  • the overall design of the tool was similar to that described in the previous example, with the exception of the current flow; in this case, it was operated through a whorl independent of the downstream part.
  • the casting speed was 40 mm / min, which is conventionally used for this billet diameter. After micrographic examination, it was found that with the exception of a peripheral zone of the order of 15 mm, the structure of the grains was particularly rounded, practically without dendrite arms and of very fine size, from the 'around 70 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Glass Compositions (AREA)

Abstract

Cette invention est relative à un procédé de fabrication par coulée continue de produits métalliques thixotropes. Ce procédé consiste à verser le métal liquide (2) dans un moule à fond mobile constitué dans le sens de la coulée par une partie amont (1) réalisée en un matériau isolant de la chaleur et une partie aval (3) réalisée en un matériau conducteur de la chaleur et refroidie et à imprimer au liquide en cours de solidification un mouvement assurant au moins un transfert de la partie aval vers la partie amont (10) et vice-versa (11) pour provoquer une refusion de surface des cristaux (12) formés dans la partie avale et assurer une dégénérescence des dendrites. Cette invention trouve son application dans l'obtention de produits dont la mise en forme par moulage, filage, etc... s'effectue plus facilement et plus convenablement et cela avec une consommation d'énergie réduite.

Description

  • Cette invention est relative à un procédé de fabrication par coulée continue de produits métalliques thixotropes.
  • Dans ce qui suit, on entend par produits métalliques tout produit de forme allongée ayant une section circulaire ou polyédrique constitué par un métal comme l'aluminium par exemple ou un de ses alliages.
    Par produit métallique thixotrope, on entend toute composition métallique présentant une phase solide primaire non dendritique et plus particulière­ment une phase à dendrites dégénérées à un point tel qu'elle se présente sous forme de particules sensiblement sphéroïdales.
  • Ces produits thixotropes procurent lors de leur mise en forme des avantages importants par rapport aux produits classiques. C'est ainsi que l'énergie nécessaire à cette opération est beaucoup plus faible, la durée de refroidiss­ement plus courte, la retassure formée a des dimensions réduites et l'action érosive du métal vis à vis des filières ou des moules de mise en forme est sensiblement atténuée.
  • De nombreux brevets enseignent des moyens d'obtention de tels produits. On peut citer par exemple, l'US 3948650 et son correspondant français n° 2141979 qui décrit un procédé de coulée consistant à élever la températu­re d'une composition métallique jusqu'à ce qu'elle soit à l'état liquide, à refroidir pour provoquer une certaine solidification du liquide et à agiter énergiquement le mélange liquide-solide jusqu'à ce qu'environ 65% en poids du mélange ainsi formé soit sous forme de solide présentant des dendrites ou nodules dégénérés individuels.
  • Ce procédé a été perfectionné par la suite pour devenir continu dans l'US 3902544.
    Puis, suivant le processus sus-mentionné, on s'est attaché dans l'US 4434837 à réaliser un dispositif d'agitation convenable comprenant un stator à deux pôles qui crée un champ magnétique tournant se déplaçant perpendiculai­rement à l'axe du moule et génère des forces électromagnétiques dirigées tangentiellement au moule et telle qu'elles entraînent un taux de cisail­lement d'au moins 500 sec⁻¹. On a également réalisé dans l'US 4457355 un moule formé de deux parties de conductibilité thermique différente et dans l'EP 71822 un moule formé d'une succession de tôles isolantes et conductrices.
  • Dans des demandes de brevet plus récentes, les améliorations ont consisté dans l'US 4482012 à utiliser un moule formé de deux chambres reliées entre elles par un joint non conducteur, dont la première joue le rôle d'échangeur de chaleur et dans l'US 4565241 on a préconisé des conditions d'agitation telles que le rapport du taux de cisaillement sur le taux de solidification soit compris entre 2.10³ et 8.10³.
  • Certes, cette voie d'obtention de produits thixotropes par coulée sous agitation a conduit à des produits convenables.
    Toutefois, on en est arrivé dans l'art antérieur à des dispositifs mettant en oeuvre des inducteurs électriques à champ tournant chargés d'imprimer au métal en cours de solidification de grandes vitesses de rotation dans un plan perpendiculaire à l'axe du moule de façon à le brasser et casser les dendrites pour donner aux cristaux la forme de particules sphéroïdales, c'est-à-dire que la structure thixotrope est obtenue par un effet mécanique.
  • De plus, comme l'indique l'US 4482012, il est indispensable de pouvoir contrôler étroitement l'extraction de chaleur de la masse en cours de solidification. D'où la réalisation d'échangeurs de chaleur fragiles et compliqués à régler formés par un assemblage savant de parties thermiquement conductrices et isolantes qui amènent le métal à une température la plus proche possible du liquidus tout en évitant la solidification sur les parois du moule.
  • C'est pourquoi la demanderesse s'intéressant à la fabrication de produits thixotropes mais cherchant à s'affranchir des contingences des techniques de l'art antérieur a mis au point un procédé de coulée dans lequel, selon l'invention, on verse le métal liquide dans un moule muni à l'une de ses extrémités d'un fond mobile et constitué de deux parties adjacentes de même axe qui, suivant le sens de la coulée, forment une partie amont dite zone chaude dont la paroi est réalisée en un matériau isolant de la chaleur du moins sur sa face interne et une partie aval dite zone froide dont la paroi est réalisée, au moins partiellement, en un matériau conducteur de la chaleur et où la surface externe est refroidie par un fluide frigopor­ teur de façon à provoquer par solidification au sein du liquide que contient ladite partie, l'apparition de cristaux et la formation au contact de la surface interne d'une croûte solide suffisamment rigide pour permettre l'extraction progressive du produit ainsi formé à l'aide du fond mobile, ce procédé étant caractérisé en ce que l'on imprime au liquide en cours de solidification un mouvement assurant au moins un transfert de la zone froide vers la zone chaude et vice-versa de durée ≦ 1 seconde pour provo­quer une refusion en surface des cristaux qu'il contient et assurer une dégénérescence des dendrites.
  • Ainsi, l'invention consiste à introduire un métal liquide dans un moule composé d'une partie amont constituée par un matériau ayant des propriétés calorifuges du moins en ce qui concerne sa paroi en contact avec le métal. Ce matériau peut être, par exemple, du type de ceux qui sont utilisés couramment en fonderie pour la confection de goulottes ou de busettes. En raison des échanges thermiques réduits qui ont lieu dans cette partie, le métal se maintient normalement, c'est-à-dire sans aucune perturbation extérieure, a une température suffisante pour qu'aucune cristallisation ne se produise. D'où la désignation de cette partie par l'expression "zone chaude".
    Cette partie amont est reliée par l'intermédiaire d'un joint convenable à une partie aval laquelle, au contraire de la précédente, est très bonne conductrice de la chaleur au moins sur une portion de sa hauteur située la plus en aval et qui du fait de son aptitude à évacuer facilement les calories du métal qu'elle contient vers l'extérieur est désigné sous l'appel­lation de "zone froide". Cette partie est l'analogue de la lingotière dans une coulée classique continue et c'est en son sein que se déclenche le processus de cristallisation et que se développe à partir de la paroi refroidie extérieurement par un fluide frigoporteur une enveloppe cristalli­ne suffisamment rigide pour permettre l'extraction progressive à l'aide du fond mobile du produit coulé, tandis qu'à l'intérieur de cette enveloppe délimitée par le "front de solidification", surface ayant le profil général d'un ménisque dont le sommet est orienté vers l'aval, se forme "un marais" constitué par un mélange de liquide et de particules solides généralement dendritiques, particules qui vont s'intégrer progressivement au front de solidification et permettront à la partie solide de se développer et à la coulée de progresser.
    On a ainsi un ensemble zone chaude-zone froide contenant respectivement un liquide et un liquide chargé en particules dendritiques et c'est à ce liquide que l'on imprime un mouvement tel que les particules soient entraînées vers la zone chaude. Dans ces conditions, on constate que les particules perdent au moins une partie de leurs ramifications et ont tendan­ce à se sphéroïdiser. Toutefois, pour que ce phénomène soit suffisamment important, il faut que le transfert d'une zone à l'autre se fasse rapidement et en tout cas pendant une durée inférieure ou égale à une seconde. Plus petite est cette durée, meilleur est le taux de dégénérescence des dendri­tes. Il est évident que ce mouvement de la zone froide vers la zone chaude s'accompagne d'un mouvement inverse de sorte que les particules reviennent dans la zone d'origine et peuvent alors effectuer un nouveau cycle. Au cours de ces cycles, les particules sont amenées à entrer en contact avec le front de solidification et certaines à s'y accrocher de sorte que le produit obtenu se trouve formé au moins en partie de particules dégénérées qui vont lui conférer au moins partiellement des propriétés thixotropes.
  • De préférence, le mouvement des particules s'effectue suivant au moins des boucles dont l'ensemble génère un tore d'axe sensiblement confondu avec l'axe du moule. Ces boucles sont situées dans des plans méridiens du moule, c'est-à-dire passant par son axe, et chacune est entièrement contenue dans le demi plan limité par ledit axe. De préférence, la portion de boucle suivant laquelle le liquide passe de la zone froide vers la zone chaude est la plus proche de l'axe, la portion correspondant au retour étant voisine de la paroi du moule.
  • A partir de cette description, on peut constater deux différences fondamen­tales entre le procédé de l'art antérieur et celui de l'invention. Dans le premier, la circulation du liquide s'effectue par rotation autour de l'axe du moule, c'est-à-dire dans un plan perpendiculaire audit axe et la dégénérescence est obtenue par cassage des cristaux maintenus à une température sensiblement constante. Dans le deuxième, la circulation princi­pale du liquide s'effectue parallèlement à l'axe du moule et la dégénéres­cence résulte d'un phénomène thermique et non mécanique. Cela permet de s'affranchir de la contingence du maintien des cristaux à une température toujours voisine du liquidus et donc de l'utilisation d'échangeurs de chaleur sophistiqués d'un réglage délicat et également de recourir à des moyens de production de mouvement beaucoup plus simples que les généra­teurs à champ tournant.
  • De préférence, on utilise deux types de moyens :
    L'un d'eux consiste à faire passer un courant électrique monophasé de fréquence inférieure ou égale à la fréquence industrielle au sein de la partie avale du moule dont on sait qu'elle est constituée au moins partiel­lement par un matériau conducteur de l'électricité. Toutefois, la paroi de cette partie doit présenter sur toute son épaisseur et suivant au moins une génératrice un insert en matériau isolant de l'électricité de part et d'autre duquel sont fixées des amenées de courant. Ainsi, cette partie joue le rôle de spire et le courant qui la traverse génère un champ magnéti­que qui développe des forces électromagnétiques engendrant le mouvement souhaité. De plus, la paroi interne de cette partie doit être recouverte d'un film isolant de l'électricité afin qu'il n'y ait pas continuité électri­que entre ladite partie métallique et le métal coulé car si c'était le cas cela entraînerait un court-circuit et empêcherait le développement du champ magnétique propice au mouvement.
    Les forces électromagnétiques étant fonction de l'intensité du courant qui circule dans la spire, on utilise de préférence pour la confection de la partie aval des métaux de faible résistivité électrique mais de tenue mécanique néanmoins compatibles avec le métal coulé. Ce peut être, par exemple, le cuivre ou l'aluminium et leurs alliages dans le cas où on coule de l'aluminium.
  • Mais on a aussi constaté qu'on pouvait utiliser des assemblages constitués de différents matériaux dans lesquels la portion la plus proche de la partie amont est faite sinon avec un matériau isolant du moins en un maté­riau moins bon conducteur de l'électricité tel qu'un acier inoxydable, par exemple. Dans ces conditions, le mouvement du liquide peut être amplifié.
  • Quant au film isolant, il peut être constitué par une couche d'oxyde obtenue par anodisation dans le cas de l'aluminium ou un émail, ou encore une résine fluorocarbonée par exemple. L'épaisseur de ce film est fonction de la tension électrique sous laquelle se trouve la paroi par rapport au métal coulé. On peut se baser sur une épaisseur d'oxyde de 1 µm pour une tension de 100 volts.
  • Les parties aval ainsi constituées peuvent être équipées sur leur face interne d'une bague de graphite de quelques millimètres d'épaisseur qui joue le rôle de lubrifiant vis à vis du métal coulé et peut amplifier le rôle d'un agent de lubrification dont il s'avère parfois nécessaire de revêtir paroi interne de la partie avale pour faciliter la coulée de certains métaux.
  • Cette bague peut être partagée suivant ses génératrices en au moins deux secteurs pour éviter non seulement tout effet Joule dans la zone où au contraire on souhaite refroidir, mais aussi une réduction de l'énergie qui limiterait le mouvement du métal.
  • D'une manière tout à fait particulière, on peut utiliser une bague présen­tant un insert placé en regard de l'insert de la partie aval ; dans ce cas, on évite également l'effet Joule mais, on peut alors fretter directe­ment la bague sur la paroi interne de ladite partie sans avoir besoin d'un film isolant intermédiaire.
  • L'autre moyen de production du mouvement du liquide au sein du moule consis­te à placer à l'extérieur de la partie aval du moule au moins une spire métallique d'axe sensiblement parallèle à l'axe du moule et à la faire parcourir par un courant monophasé de fréquence inférieure ou égale à la fréquence industrielle. Cette spire isolée électriquement de la paroi de ladite partie crée en effet un champ magnétique parallèle à l'axe du moule qui développe des forces électromagnétiques engendrant le mouvement souhaité. Certes, ce mouvement est plus ou moins ample et fonction de l'intensité admise dans la spire mais il dépend également d'autres facteurs tels que la composition du matériau constituant la paroi de la zone froide ou la structure de ladite paroi.
  • Selon le premier facteur, il est préférable d'utiliser un matériau ayant une résistivité supérieure à 5 µΩ.cm. Ce peut être par exemple un acier inoxydable amagnétique ou du titane ou encore une céramique pour autant qu'elle ait une conductibilité thermique suffisante. Dans le cas de la coulée de l'aluminium, la meilleure solution pour ne pas rompre avec les habitudes de la profession est d'utiliser, de l'aluminium mais sous forme d'un alliage contenant en poids environ 1,8% Mn; 0,25% Cr; 0,2% Ti et 0,1% V dont la résistivité est égale à 9,3 µΩ.cm au lieu de moins de 3 µΩ.cm pour les alliages classiques. Cette résistivité peut cependant être augmentée par ajout de Mg jusqu'à 5% auquelcas, on atteint des valeurs de 11 à 12 µΩ.cm. L'ajout de Li jusqu'à 1% ou de Zr jusqu'à 0,15% est également favorable.
  • D'autres solutions consistent à utiliser des matériaux composites tels que par exemple un acier inoxydable revêtu intérieurement par une mince couche d'aluminium.
  • Suivant le deuxième facteur, pour réduire l'intensité nécessaire au mouve­ment, on partage la paroi de la zone froide suivant ses génératrices en au moins deux secteurs séparés l'un de l'autre par un isolant électrique tel que le mica, lesdits secteurs étant maintenus assemblés entre eux au moyen de goupilles en acier inox et de chevilles en matière isolante.
  • Tous ces types de réalisation de la partie aval peuvent également être garnis sur leur paroi interne et au voisinage de la zone chaude d'une bague en graphite coaxiale de préférence partagée suivant ses génératrices en au moins deux sections, toutes ces particularités ayant toujours pour but d'améliorer l'efficacité du courant électrique dans sa transformation en forces électromagnétiques génératrices de mouvement.
  • Toutes les spires qui entourent la partie aval du moule sont conçues et montées de manière à pouvoir s'adapter à n'importe quelle forme de partie aval et à répondre au mieux à l'obtention à la fois d'un rendement courant-force optimum et d'une distribution de la force au sein du métal qui assure un mouvement du liquide sur toute la section et toute la hauteur du moule afin de provoquer la plus grande dégénérescence possible des dendrites sur le plus grand nombre possible de cristaux.
  • C'est ainsi que ces spires peuvent être déplacées parallèlement à l'axe du moule ou encore formées par un assemblage d'éléments démontables capables de circonscrire des moules de toute section de façon équidistante, ou à des distances différentes. Ces assemblages conviennent parfaitement dans le cas de produits de section rectangulaire.
  • D'autres particularités peuvent être incluses dans l'invention ayant tou­jours pour but d'améliorer l'efficacité du mouvement du métal tels que l'adjonction autour de la zone chaude d'au moins une spire métallique parcourue par un courant électrique, cette ou ces spires étant reliées soit à celle(s) de la zone froide, soit à un générateur de courant d'intensi­té, de fréquence et/ou de phase différente du courant alimentant la (ou les) spire(s) de la zone froide.
  • En vue de canaliser le champ magnétique créé par la (ou les) spire(s), la zone froide peut être entourée d'éléments de culasse magnétique formés de feuilles métalliques isolées électriquement les unes des autres et situées dans des plans passant par l'axe du moule.
  • Le refroidissement de la zone froide est obtenu comme il est connu soit par l'intermédiaire de boîtes à fluide intégrées à la paroi externe de ladite zone ou par application directe d'une lame de fluide périphérique sur ladite paroi.
  • En fonction du degré de refroidissement souhaité et de sa localisation pour développer plus ou moins rapidement en un endroit donné la formation de cristaux et leur envoi dans la zone chaude à un stade d'évolution plus ou moins grand, on règle le fluide en débit et/ou en température tout en modifiant dans le cas du refroidissement direct les surfaces d'impact de la lame de fluide.
  • La zone chaude ou du moins sa partie la plus voisine de la zone froide peut être entourée d'une gaine dans laquelle circule un gaz sous pression et inerte chimiquement vis à vis du métal coulé car dans ces conditions on constate que le produit coulé présente alors un meilleur aspect de surface.
  • L'invention sera mieux comprise à l'aide de la figure 1 qui représente une demi- coupe verticale passant par l'axe d'un moule applicable à l'inven­tion.
    On y distingue : une partie amont 1 réalisée en un matériau isolant de la chaleur qui renferme le métal liquide 2 et forme la zone chaude, une partie aval 3 en matériau conducteur de la chaleur équipée intérieurement d'un anneau en graphite 4 et refroidie extérieurement par un film 5 d'eau issue d'une boîte 6 d'alimentation qui forme la zone froide.
    Sous l'effet du refroidissement dû à l'eau le métal se solidifie suivant le front 7 pour donner le produit 8 coulé.
    Une bobine 9 alimentée en courant alternatif entoure la zone froide et crée un champ magnétique qui induit des forces électromagnétiques de sorte que le métal liquide se déplace suivant la flèche 10 parallèlement à l'axe du moule vers la zone chaude et revient à la zone froide le long de la paroi du moule suivant la flèche 11 entraînant dans son mouvement les particules 12.
    L'invention peut être illustrée à l'aide des exemples d'application suivants:
  • Exemple 1
  • Une billette de diamètre 70 mm en alliage d'aluminium du type AS7GO,3 (c'est-à-dire contenant en poids % : Si=7 et Mg=0,3) a été réalisée selon le procédé décrit ci-dessus :
    - la partie amont était formée d'un anneau en MONALITE de hauteur 50 mm
    - la partie aval en aluminium était revêtue intérieurement d'une fine couche anodisée (5 µm) et d'une bague graphite sectorisée en 12 morceaux, et était fendue sur toute sa hauteur. Le courant circulait directement à travers la partie aval , à laquelle d'ailleurs deux amenées avaient été fixées de part et d'autre de la fente. La tension aux bornes de ces amenées était alors de 1,05V. La vitesse de coulée était de 200 mm/min, ce qui est classiquement utilisé pour ce diamètre de billette. Un exemple de structure obtenue à coeur de la billette examinée par micrographie (voir fig. 2 sous grossissement 50) permet de se rendre compte de l'efficacité du procédé à obtenir une structure à dendrites dégénérées.
  • Exemple 2
  • Un alliage 2124 (suivant les normes de l'Aluminium Association) a été coulé sous forme de billette de diamètre 400 mm selon le procédé décrit. La conception globale de l'outillage était voisine de celle décrite dans l'exemple précédent, à l'exception du passage du courant; dans ce cas, il s'opérait à travers une spire indépendante de la partie avale. La vitesse de coulée était de 40 mm/min, ce qui est classiquement utilisé pour ce diamètre de billette.
    Après examen micrographique, on s'est aperçu qu'à l'exception d'une zone périphérique de l'ordre de 15 mm, la structure des grains était particulière­ment arrondie, sans pratiquement de bras de dendrites et de taille très fine, de l'ordre de 70 µm.
  • Example 3
  • Une coulée de plaques en format 800 x 300 mm en un alliage 7075 (suivant les normes de l'Aluminium Association) a été réalisée suivant le procédé décrit. Comme dans le cas de la billette ⌀ 400 mm, une spire entourait la face externe de la partie aval , à faible distance (10 mm). Cette spire était constituée en fait de 4 éléments de barre de cuivre, refroidis intérieu­rement par de l'eau, ces éléments étant reliés entre eux dans 3 des coins et reliés aux amenées de courant dans le 4ème. La vitesse de coulée était de 60 mm/min.
    L'examen macrographique du produit coulé a révélé une structure homogène et fine, à l'exception des coins, qui présentaient une structure encore plus fine. Par examen micrographique, on a pu constater une modification notable de la morphologie des grains qui prenaient des formes en "patates" au lieu des formes classiques "en choux-fleur". Une attaque sélective destinée à révéler les bras des dendrites a montré que ceux-ci avaient presque complètement disparu.

Claims (21)

1. Procédé de fabrication par coulée continue de produits métalliques, thixotropes et, notamment, de produits en alliages d'aluminium ayant au moins partiellement une structure à dendrites dégénérées, dans lequel on verse le métal (2) liquide dans un moule muni à l'une de ses extrémités d'un fond mobile et constitué de deux parties adjacentes de même axe, qui, suivant le sens de la coulée, forment une partie amont (1) dite zone chaude dont la paroi est réalisée en un matériau isolant de la chaleur du moins sur sa face interne et une partie aval (3) dite zone froide dont la paroi est réalisée, au moins partiellement, en un matériau conduc­teur de la chaleur et où la surface externe est refroidie par un fluide caloporteur (5) de façon à provoquer, par solidification au sein du liquide que contient ladite partie, l'apparition de cristaux et la formation au contact de la surface interne d'une croûte solide suffisamment rigide pour permettre l'extraction progressive du produit (8) ainsi formé à l'aide du fond mobile, caractérisé en ce que l'on imprime au liquide en cours de solidification un mouvement assurant au moins un transfert de la zone froide vers la zone chaude (10) et vice-versa (11) de durée ≦ 1 seconde pour provoquer une refusion en surface des cristaux (12) qu'il contient et assurer une dégénérescence des dendrites.
2. Procédé selon la revendication 1, caractérisé en ce que le mouvement effectue suivant des boucles situées dans des plans méridiens dont l'en­semble génère un tore d'axe sensiblement confondu avec l'axe du moule.
3. Procédé selon la revendication 1 caractérisé en ce que la paroi interne de la zone froide est recouverte d'un agent de lubrification.
4. Procédé selon la revendication 1, caractérisé en ce que le mouvement est obtenu par passage d'un courant électrique monophasé de fréquence inférieure ou égale à la fréquence industrielle au sein de la partie aval du moule dont la paroi présente sur toute son épaisseur et suivant au moins une génératrice un insert en matériau isolant de l'électricité de part et d'autre duquel sont fixées des amenées de courant, ladite partie étant revêtue intérieurement d'un film isolant de l'électricité.
5. Procédé selon la revendication 4, caractérisé en ce que la paroi interne de la zone froide est recouverte sur toute sa périphérie et au moins au voisinage de la zone chaude d'une bague en graphite de même axe que lesdites zones.
6. Procédé selon la revendication 5 caractérisé en ce que la bague en graphite est partagée suivant ses génératrices en au moins deux secteurs.
7. Procédé selon la revendication 1, caractérisé en ce que le mouvement est obtenu au moyen d'au moins une spire métallique placée à l'extérieur de la zone froide du moule dont l'axe est sensiblement parallèle à l'axe dudit moule et parcourue par un courant monophasé de fréquence inférieure ou égale à la fréquence industrielle.
8. Procédé selon la renvendication 7, caratérisé en ce que la zone froide est constituée par un matériau solide ayant une résistivité supérieure à 5 µΩx cm.
9. Procédé selon la revendication 7, caractérisé en ce que la zone froide est partagée suivant ses génératrices en au moins deux secteurs séparés l'un de l'autre par un isolant électrique.
10. Procédé selon la revendication 7, caractérisé en ce que la zone froide est constituée par un assemblage de différents matériaux.
11. Procédé selon la revendication 7, caractérsé en ce que la paroi interne de la zone froide est recouverte sur toute sa périphérie et au moins au voisinage de la zone chaude d'une bague en graphite de même axe que lesdites zones.
12. Procédé selon la revendication 11 caractérisé en ce que la bague en graphite est partagée suivant ses génératrices en au moins deux secteurs.
13. Procédé selon la revendication 7, caractérisé en ce que l'on déplace la (ou les) spire(s) parallèlement à l'axe du moule.
14. Procédé selon la revendication 7 caractérisé en ce que l'on règle la distance de la (ou des) spire(s) par rapport à la paroi externe de la zone froide.
15. Procédé selon la revendication 1, caractérisé en ce que la zone chaude renferme au moins une spire métallique alimentée en courant électrique.
16. Procédé selon les revendications 4 et 15, caractérisé en ce que la spire est reliée à la zone froide.
17. Procédé selon la revendication 4, caractérisé en ce que la zone froide est entourée d'éléments de culasse magnétique feuilletés dont les feuilles sont situées dans des plans passant par l'axe des zones.
18. Procédé selon la revendication 1, caractérisé en ce que le refroidisse­ment de la zone froide est obtenu à l'aide d'un fluide frigoporteur de débit variable.
19. Procédé selon la revendication 1, caractérisé en ce que le refroidisse­ment de la zone froide est obtenu à l'aide d'un fluide frigoporteur de température variable.
20. Procédé selon la revendication 1, caractérisé en ce que le refroidisse­ment de la zone froide est obtenu à l'aide d'un fluide frigoporteur qui refroidit localement ladite zone.
21. Procédé selon la revendication 1 caractérisé en ce que l'on injecte un gaz sous pression au niveau de la zone froide.
EP89420240A 1988-07-07 1989-07-05 Procédé de fabrication par coulée continue de produits métalliques thixotropes Expired - Lifetime EP0351327B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420240T ATE72527T1 (de) 1988-07-07 1989-07-05 Verfahren zur herstellung von thixotropen metallischen produkten mittels strangguss.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8809616 1988-07-07
FR8809616A FR2634677B1 (fr) 1988-07-07 1988-07-07 Procede de fabrication par coulee continue de produits metalliques thixotropes

Publications (2)

Publication Number Publication Date
EP0351327A1 true EP0351327A1 (fr) 1990-01-17
EP0351327B1 EP0351327B1 (fr) 1992-02-12

Family

ID=9368462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420240A Expired - Lifetime EP0351327B1 (fr) 1988-07-07 1989-07-05 Procédé de fabrication par coulée continue de produits métalliques thixotropes

Country Status (12)

Country Link
US (1) US4964455A (fr)
EP (1) EP0351327B1 (fr)
JP (1) JPH0255650A (fr)
AT (1) ATE72527T1 (fr)
AU (1) AU609690B2 (fr)
CA (1) CA1334474C (fr)
DE (1) DE68900825D1 (fr)
ES (1) ES2029382T3 (fr)
FR (1) FR2634677B1 (fr)
GR (1) GR3003797T3 (fr)
NO (1) NO170796C (fr)
NZ (1) NZ229804A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656552A1 (fr) * 1990-01-04 1991-07-05 Pechiney Aluminium Procede de fabrication de produits metalliques thixotropes par coulee continue avec brassage electromagnetique en courant polyphase.
FR2758101A1 (fr) * 1997-01-09 1998-07-10 Charles Vives Procede d'affinage par effet de cavitation electromagnetique de la microstructure des metaux et alliages coules en charge par la technique "hot top"
FR2761624A1 (fr) * 1997-04-07 1998-10-09 Charles Vives Procede magnetomecanique d'affinage par effet de cavitation de la structure cristalline des metaux et alliages coules en charge par la technique "hot-top"
AU715447B2 (en) * 1996-03-20 2000-02-03 Aluminium Pechiney Thixotropic aluminium-silicon-copper alloy for forming in the semisolid state

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772765B2 (ja) * 1994-10-14 1998-07-09 本田技研工業株式会社 チクソキャスティング用鋳造材料の加熱方法
US5968292A (en) * 1995-04-14 1999-10-19 Northwest Aluminum Casting thermal transforming and semi-solid forming aluminum alloys
US5571346A (en) * 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
US5911843A (en) * 1995-04-14 1999-06-15 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
US5887640A (en) 1996-10-04 1999-03-30 Semi-Solid Technologies Inc. Apparatus and method for semi-solid material production
US5881796A (en) * 1996-10-04 1999-03-16 Semi-Solid Technologies Inc. Apparatus and method for integrated semi-solid material production and casting
US6470955B1 (en) 1998-07-24 2002-10-29 Gibbs Die Casting Aluminum Co. Semi-solid casting apparatus and method
US6428636B2 (en) 1999-07-26 2002-08-06 Alcan International, Ltd. Semi-solid concentration processing of metallic alloys
US6269537B1 (en) 1999-07-28 2001-08-07 Methode Electronics, Inc. Method of assembling a peripheral device printed circuit board package
US6964199B2 (en) * 2001-11-02 2005-11-15 Cantocor, Inc. Methods and compositions for enhanced protein expression and/or growth of cultured cells using co-transcription of a Bcl2 encoding nucleic acid
US20050126737A1 (en) * 2003-12-04 2005-06-16 Yurko James A. Process for casting a semi-solid metal alloy
US20070227688A1 (en) * 2004-06-15 2007-10-04 Tosoh Smd, Inc. Continuous Casting of Copper to Form Sputter Targets
US7822522B2 (en) * 2006-05-31 2010-10-26 Techno-Sciences, Inc. (corporation) Adaptive energy absorption system for a vehicle seat
JP4907248B2 (ja) * 2006-07-14 2012-03-28 三協マテリアル株式会社 Al−Si系アルミニウム合金の連続鋳造方法
US8139364B2 (en) 2007-01-31 2012-03-20 Robert Bosch Gmbh Electronic control module assembly
JP5360591B2 (ja) * 2009-01-08 2013-12-04 日本軽金属株式会社 アルミニウム合金鋳塊およびその製造方法
JP6105312B2 (ja) * 2013-02-13 2017-03-29 リンテック株式会社 支持装置及びデータ管理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2707774A1 (de) * 1976-02-24 1977-09-01 Alusuisse Verfahren und vorrichtung zum kontinuierlichen giessen einer metallschmelze in giessformen
DE3006618A1 (de) * 1979-02-26 1980-09-04 Itt Ind Gmbh Deutsche Vorrichtung zur bildung eines halbfesten thixotropen legierungsbreis
EP0095596A1 (fr) * 1982-06-01 1983-12-07 Alumax Inc. Procédé et appareil pour la coulée continue de coulis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB705762A (en) * 1951-10-15 1954-03-17 Skf Svenska Kullagerfab Ab Improvements relating to the continuous casting of metals
JPS6143146A (ja) * 1984-07-30 1986-03-01 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー 1,2‐アミノアルコール類の製造法
JPS6143137A (ja) * 1984-08-08 1986-03-01 Nippon Oil Co Ltd ノルボルネン類のカルボニル化方法
US4577676A (en) * 1984-12-17 1986-03-25 Olin Corporation Method and apparatus for casting ingot with refined grain structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2707774A1 (de) * 1976-02-24 1977-09-01 Alusuisse Verfahren und vorrichtung zum kontinuierlichen giessen einer metallschmelze in giessformen
DE3006618A1 (de) * 1979-02-26 1980-09-04 Itt Ind Gmbh Deutsche Vorrichtung zur bildung eines halbfesten thixotropen legierungsbreis
EP0095596A1 (fr) * 1982-06-01 1983-12-07 Alumax Inc. Procédé et appareil pour la coulée continue de coulis
US4482012A (en) * 1982-06-01 1984-11-13 International Telephone And Telegraph Corporation Process and apparatus for continuous slurry casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656552A1 (fr) * 1990-01-04 1991-07-05 Pechiney Aluminium Procede de fabrication de produits metalliques thixotropes par coulee continue avec brassage electromagnetique en courant polyphase.
EP0439981A1 (fr) * 1990-01-04 1991-08-07 Aluminium Pechiney Procédé et dispositif de fabrication de produits métalliques thixotropes par coulée continue avec brassage électromagnétique
AU715447B2 (en) * 1996-03-20 2000-02-03 Aluminium Pechiney Thixotropic aluminium-silicon-copper alloy for forming in the semisolid state
FR2758101A1 (fr) * 1997-01-09 1998-07-10 Charles Vives Procede d'affinage par effet de cavitation electromagnetique de la microstructure des metaux et alliages coules en charge par la technique "hot top"
FR2761624A1 (fr) * 1997-04-07 1998-10-09 Charles Vives Procede magnetomecanique d'affinage par effet de cavitation de la structure cristalline des metaux et alliages coules en charge par la technique "hot-top"

Also Published As

Publication number Publication date
NO892807D0 (no) 1989-07-06
GR3003797T3 (fr) 1993-03-16
ES2029382T3 (es) 1992-08-01
JPH0255650A (ja) 1990-02-26
NZ229804A (en) 1992-04-28
ATE72527T1 (de) 1992-02-15
US4964455A (en) 1990-10-23
NO892807L (no) 1990-01-08
AU3783589A (en) 1990-01-11
NO170796C (no) 1992-12-09
NO170796B (no) 1992-08-31
EP0351327B1 (fr) 1992-02-12
DE68900825D1 (de) 1992-03-26
FR2634677A1 (fr) 1990-02-02
JPH0338019B2 (fr) 1991-06-07
CA1334474C (fr) 1995-02-21
FR2634677B1 (fr) 1990-09-21
AU609690B2 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
EP0351327B1 (fr) Procédé de fabrication par coulée continue de produits métalliques thixotropes
CA2033233C (fr) Procede de fabrication de produits metalliques thixotropes par coulee continue avec brassage electromagnetique en courant polyphase
US20110089030A1 (en) CIG sputtering target and methods of making and using thereof
EP0275228B1 (fr) Dispositif de fusion et coulée continue de métaux, son procédé de mise en oeuvre et son utilisation
CA1179022A (fr) Dispositif de fusion par induction directe en cage froide avec confinement electromagnetique supplementaire de la charge
US8342229B1 (en) Method of making a CIG target by die casting
FR2472039A1 (fr) Procedes et dispositifs de solidification directionnelle
CN1156350C (zh) 球状初晶半固态金属浆料或连铸坯料的制备方法和装置
FR2688516A1 (fr) Dispositif pour la fabrication de metaux et d'alliages de metaux de grande purete.
WO2014057222A2 (fr) Procédé de fabrication d'au moins une pièce métallique de turbomachine
FR2671992A1 (fr) Procede de coulee sous pression, a chambre froide.
EP3700695B1 (fr) Dispositif et méthode pour le moulage d'un alliage de verre métallique massif
JP6456810B2 (ja) In−Cu合金スパッタリングターゲット及びその製造方法
FR2874340A1 (fr) Procede de fonderie de pieces en carapace, grappe et carapace pour sa mise en oeuvre, aube de turboreacteur obtenue par un tel procede, et moteur d'aeronef comportant de telles aubes
KR100900142B1 (ko) 급속응고법에 의한 기능성 합금스트립 제조방법
FR3090430A1 (fr) Installation et procédé d’obtention d’un produit en alliage de titane ou en intermétallique de titane
EP0241387B1 (fr) Lingotière permettant de régler le niveau suivant lequel elle est en contact avec la surface libre du métal dans une coulée verticale
CA2033232A1 (fr) Procede et dispositif pour la coulee continue de composites a matrice metallique renforcee par des particules d'un materiau ceramique refractaire
JPS5933161B2 (ja) 活性金属又は活性合金粉末製造法及びその製造装置
BE505612A (fr)
FR2477462A1 (fr) Procede pour mouler par injection des pieces en matiere plastique presentant des formes creuses ou gauches en contre-depouille, et outillage utilise
FR3117050A1 (fr) Procédé d’obtention d’un produit en alliage de titane ou en intermétallique TiAl
WO2021038163A1 (fr) Four a induction comprenant un circuit resonant additionnel
WO2000048771A1 (fr) Procede et dispositif de moulage de pieces en titane
FR2623210A1 (fr) Procede de production de gelees metalliques thixotropes par rotation electromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900124

17Q First examination report despatched

Effective date: 19910724

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 72527

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 68900825

Country of ref document: DE

Date of ref document: 19920326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029382

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALUSUISSE-LONZA SERVICES AG

Effective date: 19920901

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003797

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALUSUISSE-LONZA SERVICES AG

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89420240.7

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19950403

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070726

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070731

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070831

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070730

Year of fee payment: 19

Ref country code: AT

Payment date: 20070620

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070727

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070727

Year of fee payment: 19

Ref country code: NL

Payment date: 20070724

Year of fee payment: 19

Ref country code: BE

Payment date: 20070816

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070730

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080705

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080705

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090204

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070730

Year of fee payment: 19

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080706

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201