EP0349604B1 - Transformator - Google Patents

Transformator Download PDF

Info

Publication number
EP0349604B1
EP0349604B1 EP88909506A EP88909506A EP0349604B1 EP 0349604 B1 EP0349604 B1 EP 0349604B1 EP 88909506 A EP88909506 A EP 88909506A EP 88909506 A EP88909506 A EP 88909506A EP 0349604 B1 EP0349604 B1 EP 0349604B1
Authority
EP
European Patent Office
Prior art keywords
cores
core
transformer
coil
phi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88909506A
Other languages
English (en)
French (fr)
Other versions
EP0349604A1 (de
Inventor
Hanspeter Bitterli
Original Assignee
RIEDI-JOKS Susanne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIEDI-JOKS Susanne filed Critical RIEDI-JOKS Susanne
Publication of EP0349604A1 publication Critical patent/EP0349604A1/de
Application granted granted Critical
Publication of EP0349604B1 publication Critical patent/EP0349604B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances

Definitions

  • the present invention relates to a transformer according to the preamble of claim 1 and is based on US-A-1,662,132.
  • Transformers are used to convert the electrical energy of a certain voltage into that of another voltage. They are therefore used in the entire field of electrical engineering and electronics. The fact that electrical energy is transformed three times, often even more often, on the long way from production to consumption, also shows the importance of transformers for electrical energy supply. The technical and economic quality of the electricity supply is significantly influenced by its operational reliability and efficiency. Under these circumstances, the development of transformer construction was pushed exceptionally far.
  • the transformer is one of the most reliable links in the electrical energy supply systems.
  • the transformer basically consists of an iron core and two windings insulated against each other and against earth.
  • the iron core is on the one hand the mechanical carrier of the windings and on the other hand it carries the magnetic flux which causes the voltage to be transferred from one winding to the other.
  • the winding to which the energy is supplied is called the primary winding and that from which the energy, less the transformer's own consumption, is drawn is called the secondary winding.
  • the relative secondary voltage fluctuation is exactly the same as the relative primary voltage fluctuation.
  • the secondary open circuit voltage drops around the inner one Voltage drop caused by the short circuit impedance and the load current.
  • the secondary voltage of the transformer is dependent on the primary voltage fluctuation and load current. This means that due to the constantly occurring alternating loads in the electrical energy distribution networks, the consumer voltage must be constantly adjusted to a specific consumer voltage level of 400/231 volts. This balancing takes place with on-load switches on the overvoltage side in the substation transformers under load. This operating mode inevitably results in enormous wear and tear on the switching contacts of the on-load tap-changers, so that they have to be periodically subjected to an expensive revision.
  • the number of on-load tap-changers possible is limited for constructional and economic reasons, so that there is nevertheless a relatively rough regulation of the consumer voltage and, on the other hand, the change in load occurs in relatively fine stages.
  • These facts mean that the consumer operating voltage is set at 400/231 volts, is on average approx. 5% above the nominal consumer voltage of 380/220 volts, and fluctuates continuously within certain limits. Due to the dimensioning of the electrical devices, they have a fixed internal ohmic resistance or a fixed internal impedance. These events mean that when connected to an approx. 5% overvoltage, these devices also draw an approx. 5% higher operating current from the consumer network and thereby cause an approx. 10% higher electrical energy consumption.
  • the object of the present invention to provide a transformer which solves the problems mentioned.
  • the on-load tap-changers in the substation transformers for electrical power distribution and the step switching in the other transformers for the same or similar application are to become superfluous.
  • Another object of the invention is to provide a transformer by means of which the unstable secondary voltage can be kept constant over a certain primary voltage fluctuation range, regardless of load, from idling to full load, or up to a certain overload, within certain limits, independent of the power factor and within certain limits, regardless of the frequency.
  • the invention is intended to create a transformer by means of which any secondary voltage behavior which can be determined as desired can be generated within a certain primary voltage range, independently of the load and / or depending on the load.
  • the invention solves this problem with a transformer that has the features of claim 1.
  • a transformer with four separate cores, one winding comprising all four cores together, is disclosed in US 1,662,132. There is one additional winding on each of the cores, which are all designed without an air gap. The number of turns of the windings are such that the voltage per ampere winding induced in the winding comprising all cores is twice as large as the voltage per ampere winding in each of the further windings.
  • the transformer is used as an step-up or step-down transformer for voltages.
  • a secondary voltage curve deviating from normal known transformers in the case of primary voltage fluctuations and / or load changes is not disclosed.
  • transformers according to the invention are shown in various embodiments, for example.
  • the individual types of implementation serve to create certain types of behavior of the secondary voltage, either load-independent and / or load-dependent.
  • the physical background of its mode of action is also illustrated using various magnetization curves.
  • the basic structure and the functional principle of the transformer and the transformer system according to the invention are explained in the following description. Furthermore, the embodiments shown are described and their mode of operation is explained.
  • the transformer according to the invention is called delta-phi transformer in the following.
  • the delta phi transformer Before going into the basic structure and the mode of operation of the delta phi transformer, it should be said that it can be operated in at least three different functional levels, namely in a primary, secondary and tertiary function.
  • the electrical feed-in takes place directly from an unstabilized network. If he works in the secondary function, the electrical feed takes place on at least one primary winding from at least one secondary branch of an upstream Delta-Phi transformer with primary or secondary function or directly from a stabilized network.
  • Several delta phi transformers with a secondary function can also be connected in series.
  • a transformer with a tertiary function can be both a delta phi transformer and a transformer of conventional design. The secondary winding of the transformer with tertiary function goes into series production switched with the main current or secondary winding branch (s) of the delta phi transformer or transformers with primary and / or secondary function.
  • the electrical feed takes place to at least one primary winding from the secondary current or secondary winding branches of the delta-phi transformer or transformers with primary and / or secondary function (s).
  • the secondary windings of several transformers with a tertiary function can be connected in series. Parallel connection or combined connections of the secondary windings of the transformers with tertiary function are also possible.
  • the functionality of the delta phi transformer is based on a special magnetization effect.
  • the no-load current flows in the excitation winding.
  • the cores Because these cores are surrounded by the same field winding with the corresponding number of turns, the cores experience the same magnetic flux, that is, the flux through one core is equal to the flux through the other core. As a result of the different magnetic characteristics, the cores are magnetized differently, ie different magnetic fluxes or induction form in the cores. As seen from the excitation winding, the no-load current acts on a common core, composed of the individual cores, the total cross-section of which consists of the sum of the individual cores. Due to the excitation voltage applied, the frequency, the number of turns of the excitation winding and the entire core cross-section the corresponding total induction can be determined for each excitation voltage applied.
  • Induction as a function of the flow and the individual core cross sections can also determine the total induction.
  • the total induction B is the sum of the individual magnetic fluxes divided by the sum of the individual core cross sections.
  • the total induction B as a function of the flow, determined in this way, must represent a curve.
  • the remodeling of the magnetization curve induction as a function of the flow into the magnetization curve induction as a function of the primary voltage takes place in such a way that the curve of the total induction B in the magnetization curve induction as a function of the flow is to be divided into equal partial induction, which correspond to the associated partial excitation voltages.
  • the induction of the individual cores above or below the division points also correspond to the partial excitation voltages and can be transferred to the new induction curve as a function of the primary voltage.
  • a delta phi transformer according to the invention is shown in principle.
  • the transformer has two cores with different overall magnetic properties, namely the core core SK, which in turn is divided into two cores 1 and 2 with different overall magnetic properties.
  • core 1 has an air gap section LSK.
  • the regulating core RK also has an air gap section LRK.
  • the winding A in the function of the primary winding, wraps around the two cores SK and RK.
  • the winding B is built on the trunk core SK and the winding C is built on the regulating core RK and represent two secondary windings in the open circuit. This type of construction is mainly used for the delta-phi transformer with primary function.
  • the winding 2 shows the basic structure of an expanded delta-phi transformer with the stem core SK, the regulating core RK, the stem balancing core SAK and the regulating balancing core RAK with different overall magnetic properties.
  • the primary winding A wraps around the cores SK, RK and SAK.
  • the winding B is on the trunk core SK
  • the winding C is on the regulating core RK and the regulating compensation core RAK
  • the winding D is on the trunk compensation core SAK
  • the winding E is built on the regulating compensation core RAK.
  • the windings B, C, D and E are secondary windings and according to the electrical and magnetic design they are assigned certain functions. This type of design is used for a delta phi transformer with a primary function.
  • FIG. 5 shows a core arrangement which is divided into a plurality of cores with different overall magnetic properties.
  • the different overall magnetic properties are achieved in that the core 1 has no air gap and the other cores have different air gaps.
  • the applicable air gap shapes are shown in Fig. 6.
  • the magnetic characteristics in the individual cores 1, ..., n are influenced.
  • the magnetic field lines scatter in the zones of the air gap out. So that the cores do not influence each other magnetically, the individual cores must be spaced at least by the distance of the largest adjacent air gap.
  • the magnetization curve induction as a function of the flooding for curve A must be a straight line for the stem core SK between points D and E.
  • curve B correspondingly for the regulating core RK between points F and G.
  • curve C must also be a straight line for both cores SK and RK between points H and I.
  • Points D, F and H are thus the lower limit values for the specific flow area or primary voltage range and points E, G and I are the upper limit values.
  • Points H and I on curve C must be selected so that the induction at these points corresponds to the lower and upper limit value voltages of the determined primary voltage range according to the transformation law.
  • U 4.44 xfxwx A x B x 10000 always a straight line for B in Tesla.
  • the corresponding induction is to be determined and transferred to curve C of the magnetization curve induction as a function of the flooding according to FIG. 7, which also determines the flooding values present for the corresponding induction of curve C.
  • the associated induction for curves A and B are thus also determined and are to be transferred to the magnetization curves induction as a function of the primary voltage.
  • the total magnetization curves are induction as a function of the flow and 5 to determine induction as a function of the primary voltage for a core arrangement subdivided into cores with different magnetic characteristics.
  • the horizontal line A means a constant
  • the dash-dotted line B a percentage equal
  • the hatched area C a percentage smaller
  • the hatched area D a percentage larger
  • the hatched area E a negative
  • the secondary voltage decreases with increasing primary voltage, respectively.
  • the secondary voltage increases with decreasing primary voltage, the course of the secondary voltage as a function of the primary voltage change from U1 + v% to U1-w%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Transformator gemäss dem Oberbegriff des Patentanspruches 1 und geht aus von der US-A-1'662'132.
  • Transformatoren dienen dazu, die elektrische Energie einer bestimmten Spannung in eine solche einer anderen Spannung umzuwandeln. Sie finden daher auf dem gesamten Gebiet der Elektro-Technik und der Elektronik Anwendung. Die Tatsache, dass die elektrische Energie auf dem langen Weg von der Produktion bis zum Verbrauch meist dreimal, oft sogar noch häufiger, transformiert wird, zeigt auch die Wichtigkeit der Transformatoren für die Elektro-Energie-Versorgung. Von ihrer Betriebssicherheit und ihrem Wirkungsgrad wird die technische und wirtschaftliche Güte der Elektrizitätsversorgung massgeblich beeinflusst. Unter diesen Gegebenheiten wurde die Entwicklung des Transformatorenbaues aussergewöhnlich weit getrieben. Der Transformator ist eines der betriebssichersten Glieder der Elektro-Energie-Versorgungs-Systeme. Der Transformator besteht im Prinzip aus einem Eisenkern und zwei gegeneinander und gegen Erde isolierten Wicklungen. Der Eisenkern ist einerseits der mechanische Träger der Wicklungen und andererseits führt er den magnetischen Fluss, der die Uebertragung der Spannung von der einen Wicklung zur anderen bewirkt. Diejenige Wicklung, welcher die Energie zugeführt wird, heisst Primärwicklung und diejenige, welcher die Energie, vermindert um den Eigenverbrauch des Transformators, entnommen wird, heisst Sekundärwicklung.
  • Aufgrund des Aufbaues der Transformatoren ist die relative Sekundärspannungsschwankung genau gleich der relativen Primärspannungsschwankung. Bei Belastung des Transformators sinkt die Sekundärleerlaufspannung um den inneren Spannungsabfall, hervorgerufen durch die Kurzschlussimpedanz und den Belastungsstrom, ab. Die Sekundärspannung des Transformators ist primärspannungsschwankungs- und belastungsstromabhängig. Dieser Umstand führt dazu, dass durch die dauernd auftretende Wechselbelastung in den Elektro-Energie-Verteilnetzen die Verbraucherspannung ständig auf einen bestimmten Verbraucherspannungspegel von 400/231 Volt ausreguliert werden muss. Diese Ausregulierung erfolgt mit elektromotorisch angetriebenen Laststufenschaltern oberspannungsseitig in den Unterwerkstransformatoren unter Last. Diese Betriebsart hat unweigerlich einen enormen Verschleiss der Schaltkontakte der Laststufenschalter zur Folge, so dass diese periodisch einer kostspieligen Revision unterzogen werden müssen. Einerseits ist die mögliche Stufenzahl der Laststufenschalter aus konstruktiven und wirtschaftlichen Gründen begrenzt, so dass daher doch eine relativ grobe Ausregulierung der Verbraucherspannung erfolgt und andererseits die Belastungsänderung relativ feinstufig auftritt. Diese Tatsachen führen dazu, dass die Verbraucherbetriebsspannung auf 400/231 Volt angesetzt wird, durchschnittlich ca. 5 % über der Verbrauchernennspannung von 380/220 Volt liegt, und dauernd in bestimmten Grenzen schwankt. Aufgrund der Dimensionierung der Elektro-Apparate weisen diese einen festen inneren ohmschen Widerstand oder eine feste innere Impedanz auf. Diese Begebenheiten führen dazu, dass diese Apparate beim Anschluss an eine ca 5 %-ige Ueberspannung auch einen ca. 5 %-igen höheren Betriebsstrom aus dem Verbrauchernetz ziehen und dadurch einen ca. 10 %-igen Elektro-Energie-Mehrverbrauch verursachen. Dieser wird in den Elektro-Apparaten zum grössten Teil nur in eine ungenutzte Mehrverlustwärme umgesetzt, welche sich negativ auf die Betriebstüchtigkeit und die Lebensdauer dieser Apparate auswirkt. Ebenso sind die vorliegenden Spannungsschwankungen und die bei der Stufenumschaltung auftretenden Ueberspannungsspitzen bei hochempfindlichen Anlagen, wie Computer-Anlagen, numerisch gesteuerten Maschinen etc., sehr unerwünscht und können daher schädliche oder gar katastrophale Folgen haben. Die herkömmlichen Transformatoren sind die Verursacher eines ca. 10 %igen Elektro-Energie-Mehrverbrauches und bringen gerade auch im Zusammenhang mit der sich immer mehr ausbreitenden, hochempfindlichen Prozessortechnik eine Vielzahl von Problemen, welche gelöst werden müssen.
  • Es ist die Aufgabe der vorliegenden Erfindung, einen Transformator zu schaffen, der die erwähnten Probleme löst. Mit dem erfindungsgemässen Transformator sollen die Laststufenschalter in den Unterwerkstransformatoren für die Elektro-Energie-Verteilung und die Stufenumschaltung in den übrigen Transformatoren für gleiche oder ähnliche Anwendung überflüssig werden. Eine weitere Aufgabe der Erfindung ist es, einen Transformator zu schaffen, mittels dem die unstabile Sekundärspannung über einen bestimmten Primärspannungsschwankungsbereich belastungsunabhängig von Leerlauf bis Vollast, respektive bis zu einer bestimmten Ueberlast, in bestimmten Grenzen leistungsfaktorunabhängig und in bestimmten Grenzen frequenzunabhängig konstant gehalten werden kann. Im weiteren soll die Erfindung einen Transformator schaffen, mittels dem jedes beliebig bestimmbare Sekundärspannungsverhalten belastungsunabhängig und/oder belastungsabhängig innerhalb eines bestimmten Primärspannungsbereiches erzeugt werden kann.
  • Die Erfindung löst diese Aufgabe mit einem Transformator, der die Merkmale des Patentanspruches 1 aufweist.
  • Ein Transformator mit vier voneinander getrennten Kernen, wobei eine Wicklung alle vier Kerne gemeinsam umfasst, ist in der US 1 662 132 offenbart. Auf jedem der Kerne, die alle ohne Luftspalt ausgeführt sind, ist je eine weitere Wicklung vorhanden. Die Windungszahlen der Wicklungen sind so, dass die in der alle Kerne umfassenden Wicklung induzierte Spannung per Ampèrewindung doppelt so gross ist wie die Spannung pro Ampèrewindung in jeder der weiteren Wicklungen. Der Transformator wird als Aufwärts- oder Abwärts-Transformator für Spannungen eingesetzt. Ein von normalen bekannten Transformatoren abweichender Sekundärspannungsverlauf bei Primärspannungsschwankungen und/oder Laständerungen ist nicht offenbart.
  • In den Zeichnungen sind erfindungsgemässe Transformatoren in verschiedenen Ausführungsarten beispielsweise dargestellt. Die einzelnen Ausführungsarten dienen zur Schaffung bestimmter Verhaltensarten der Sekundärspannung, entweder belastungsunabhängig und/oder belastungsabhängig. Weiter sind die physikalischen Hintergründe seiner Wirkungsweise anhand von verschiedenen Magnetisierungskurven veranschaulicht. In der nachfolgenden Beschreibung ist der grundsätzliche Aufbau und das Funktionsprinzip des erfindungsgemässen Transformators und des erfindungsgemässen Transformatoren-Systems erläutert. Ferner werden die gezeigten Ausführungsarten beschrieben und deren Wirkungsweise erklärt. Der erfindungsgemässe Transformator wird im folgenden Delta-Phi-Trafo genannt.
  • Es zeigen
  • Fig. 1
    den prinzipiellen Aufbau des Delta-Phi-Trafos bestehend aus den Kernen SK und RK und den Wicklungen A, B und C, der Kern SK ist in zwei Kerne 1 und 2 unterteilt, mit der Wicklung A als Primärwicklung, Wicklungen B und C in offener Schaltung;
    Fig. 2
    den prinzipiellen Aufbau des Delta-Phi-Trafos in erweiterter Ausführung, bestehend aus den Kernen SK, RK, SAK und RAK und den Wicklungen A, B, C, D und E, mit der Wicklung A, welche die Kerne SK, RK und SAK umschlingt, als Primärwicklung, die Wicklungen B, C, D und E als Sekundärwicklungen in offener Schaltung;
    Fig. 3
    die Magnetisierungskurven Induktion in Funktion der Feldstärke für zwei verschiedene Materialien;
    Fig. 4
    den Einfluss der Luftspaltstrecken auf die Magnetisierungskurven Induktion in Funktion der Durchflutung:
    • Kurve A: die Magnetisierungskurve für das Kernblech,
    • Kurve B: die Magnetisierungskurve für eine kleine Luftspaltstrecke,
    • Kurve C: die Resultierende aus Kurve A und Kurve B,
    • Kurve D: die Magnetisierungskurve für eine grosse Luftspaltstrecke,
    • Kurve E: die Resultierende aus Kurve A und Kurve D;
    Fig. 5
    eine aus mehreren, teilweise mit Luftspalten versehenen Kernen (1, 2, 3, ..., n-1, n), aufgebaute Kernanordnung
    • Kern 1: ohne Luftspalt
    • Kern 2: mit einem kleinen Luftspalt
    • Kern 3: mit einem grösseren Luftspalt
    • Kern n-1: mit zwei Luftspalten
    • Kern n: mit vier Luftspalten;
    Fig. 6
    mögliche Luftspaltformen, dabei bedeuten:
    • a) paralleler Luftspalt
    • b) Luftspalt keilförmig nach unten
    • c) Luftspalt keilförmig nach oben
    • d) Luftspalt symmetrischkeilförmig
    • e) Luftspalt trapezförmig nach unten
    • f) Luftspalt trapezförmig nach oben
    • g) Luftspalt symmetrisch trapezförmig;
    Fig. 7
    die Magnetisierungskurven für zwei Kerne mit verschiedenen magnetischen Charakteristika Induktion in Funktion der Durchflutung und der daraus resultierenden Gesamtinduktion:
    • Kurve A: die Magnetisierungskurve für den Kern SK
    • Kurve B: die Magnetisierungskurve für den Kern RK
    • Kurve C: die Gesamtmagnetisierungskurve für beide Kerne SK und RK;
    Fig. 8
    die Magnetisierungskurven für zwei Kerne mit verschiedenen magnetischen Charakteristika Induktion in Funktion der Primärspannung und der daraus resultierenden Gesamtinduktion mit gleicher Steigung der drei Kurven innerhalb des bestimmten Primärspannungsbereiches:
    • Kurve A: die Magnetisierungskurve für den Kern SK
    • Kurve B: die Magnetisierungskurve für den Kern RK
    • Kurve C: die Gesamtmagnetisierungskurve für beide Kerne SK und RK;
    Fig. 9
    die Magnetisierungskurven für zwei Kerne mit verschiedenen magnetischen Charakteristika Induktion in Funktion der Primärspannung und der daraus resultierenden Gesamtinduktion mit ungleicher Steigung der drei Kurven innerhalb des bestimmten Primärspannungsbereiches:
    • Kurve A: die Magnetisierungskurve für den Kern SK
    • Kurve B: die Magnetisierungskurve für den Kern RK
    • Kurve C: die Gesamtmagnetisierungskurve für beide Kerne SK und RK,
    die Kurve B hat die grössere Steigung als die Kurve A;
    Fig. 10
    die Magnetisierungskurven für zwei Kerne mit verschiedenen magnetischen Charakteristika Induktion in Funktion der Primärspannung und der daraus resultierenden Gesamtinduktion mit ungleicher Steigung der drei Kurven innerhalb des bestimmten Primärspannungsbereiches:
    • Kurve A: die Magnetisierungskurve für den Kern SK
    • Kurve B: die Magnetisierungskurve für den Kern RK
    • Kurve C: die Gesamtmagnetisierungskurve für beide Kerne SK und RK,
    die Kurve B hat die kleinere Steigung als die Kurve A;
    Fig. 11
    den Bereich des Verhaltens der Sekundärspannung.
  • Bevor im einzelnen auf den prinzipiellen Aufbau und die Wirkungsweise des Delta-Phi-Trafos eingegangen wird, sei vorausgeschickt, dass er sinnvollerweise in mindestens drei verschiedenen Funktionsstufen betrieben werden kann, nämlich in einer Primär-, Sekundär- und Tertiärfunktion.
  • Arbeitet der Delta-Phi-Trafo in der Primärfunktion, so erfolgt die elektrische Einspeisung direkt aus einem unstabilisierten Netz. Arbeitet er in der Sekundärfunktion, so erfolgt die elektrische Einspeisung auf mindestens eine Primärwicklung von mindestens einem Sekundärzweig eines vorgeschalteten Delta-Phi-Trafos mit Primär- oder Sekundärfunktion oder direkt aus einem stabilisierten Netz. Es können also auch mehrere Delta-Phi-Trafos mit Sekundärfunktion hintereinander geschaltet werden. Ein Transformator mit Tertiärfunktion kann sowohl ein Delta-Phi-Trafo als auch Transformator herkömmlicher Bauart sein. Die Sekundärwicklung des Transformators mit Tertiärfunktion wird in Serie mit dem oder den Hauptstrom-Sekundärwicklungszweig(en) des oder der Delta-Phi-Trafos mit Primär- und/oder Sekundärfunktion geschaltet. Beim Transformator mit Tertiärfunktion erfolgt die elektrische Einspeisung auf mindestens eine Primärwicklung aus dem oder den Nebenstrom-Sekundärwicklungszweigen des oder der Delta-Phi-Trafos mit Primär- und/oder Sekundärfunktion(en). Die Sekundärwicklungen mehrerer Transformatoren mit Tertiärfunktion können in Serie geschaltet werden. Auch die Parallelschaltung oder kombinierte Schaltungen der Sekundärwicklungen der Transformatoren mit Tertiärfunktion sind möglich.
  • Die Funktionsweise des Delta-Phi-Trafos liegt einem speziellen Magnetisierungseffekt zugrunde.
  • Werden mindestens zwei getrennte Kerne mit unterschiedlichen magnetischen Charakteristika von einer gemeinsamen Erregerwicklung umschlossen, die Erregerwicklung an eine ansteigende Spannung gelegt, so fliesst in der Erregerwicklung der Leerlaufstrom.
  • Dadurch, dass diese Kerne von der gleichen Erregerwicklung mit der entsprechenden Windungszahl umschlossen sind, erfahren die Kerne die gleiche magnetische Durchflutung, d.h., die Durchflutung des einen Kernes ist gleich der Durchflutung des anderen Kernes. Infolge der unterschiedlichen magnetischen Charakteristika werden die Kerne unterschiedlich magnetisiert, d.h., es bilden sich in den Kernen unterschiedliche magnetische Flüsse respektive Induktionen. Da von der Erregerwicklung aus gesehen, der Leerlaufstrom auf einen gemeinsamen Kern, zusammengesetzt aus den einzelnen Kernen, deren Gesamtquerschnitt aus der Summe der einzelnen Kerne besteht, wirkt, kann aufgrund der angelegten Erregerspannung, der Frequenz, der Windungszahl der Erregerwicklung und des gesamten Kernquerschnittes bei jeder angelegten Erregerspannung die entsprechende Gesamtinduktion bestimmt werden. Anhand der vorliegenden Magnetisierungskurven Induktionen in Funktion der Durchflutung und den einzelnen Kernquerschnitten kann ebenfalls die Gesamtinduktion bestimmt werden. Die Gesamtinduktion B ist die Summe der einzelnen magnetischen Flüsse geteilt durch die Summe der einzelnen Kernquerschnitte. Die, auf diese Art, bestimmte Gesamtinduktion B in Funktion der Durchflutung muss eine Kurve darstellen. Die Umgestaltung der Magnetisierungskurve Induktion in Funktion der Durchflutung in die Magnetisierungskurve Induktion in Funktion der Primärspannung geschieht so, dass die Kurve der Gesamtinduktion B in der Magnetisierungskurve Induktion in Funktion der Durchflutung in gleiche Teilinduktionen einzuteilen ist, welche den zugehörigen Teilerregerspannungen entsprechen. Die über respektive unter den Teilungspunkten liegenden Induktionen der einzelnen Kerne entsprechen ebenfalls den Teilerregerspannungen und können in die neue Kurve Induktion in Funktion der Primärspannung übertragen werden.
  • In Fig. 1 ist ein erfindungsgemässer Delta-Phi-Trafo prinzipiell dargestellt. Der Trafo weist zwei Kerne mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften auf, nämlich dem Stammkern SK, welcher seinerseits in zwei Kerne 1 und 2 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften aufgeteilt ist. Der Kern 1 weist im Gegensatz zum Kern 2 eine Luftspaltstrecke LSK auf. Der Regulierkern RK weist ebenfalls eine Luftspaltstrecke LRK auf. Die Wicklung A, in der Funktion der Primärwicklung, umschlingt gemeinsam die beiden Kerne SK und RK. Die Wicklung B ist auf dem Stammkern SK und die Wicklung C ist auf dem Regulierkern RK aufgebaut und stellen zwei Sekundärwicklungen in offener Schaltung dar. Diese Ausführungsart wird hauptsächlich für den Delta-Phi-Trafo mit Primärfunktion verwendet. Durch die entsprechende Schaltung der Sekundärwicklungen, entweder additive Serieschaltung, d.h., die in den Wicklungen B und C induzierten Spannungen werden addiert, subtraktive Serieschaltung, d.h., die in der Wicklung C induzierte Spannung wird von der in der Wicklung B induzierten Spannung subtrahiert oder offene Schaltung, können alle bestimmbaren Sekundärspannungsverhalten erzeugt werden. Die in den Wicklungen B und C induzierten Spannungen resp. die für diese Wicklungen benötigten Windungszahlen lassen sich nach dem Transformationsgesetz berechnen, wobei die Berechnung für beide Kerne, sowohl an der oberen, wie an der unteren Grenze des Primärspannungsbereiches durchzuführen ist.
  • Fig. 2 zeigt den prinzipiellen Aufbau eines erweiterten Delta-Phi-Trafos mit dem Stammkern SK, dem Regulierkern RK, dem Stammausgleichskern SAK und dem Regulierausgleichskern RAK mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften. Die Primärwicklung A umschlingt die Kerne SK, RK und SAK. Die Wicklung B ist auf dem Stammkern SK, die Wicklung C ist auf dem Regulierkern RK und dem Regulierausgleichskern RAK, die Wicklung D ist auf dem Stammausgleichskern SAK und die Wicklung E ist auf dem Regulierausgleichskern RAK aufgebaut. Die Wicklungen B, C, D und E sind Sekundärwicklungen und entsprechend der elektrischen und magnetischen Auslegung sind ihnen bestimmte Funktionen zugeteilt. Diese Ausführungsart wird für einen Delta-Phi-Trafo mit Primärfunktion verwendet.
  • Fig. 5 zeigt eine in mehrere Kerne, mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften aufgeteilte Kernanordnung. Die unterschiedlichen magnetischen Gesamtwirkungseigenschaften werden dadurch erreicht, dass der Kern 1 keine Luftspaltstrecke und die übrigen Kerne unterschiedliche Luftspaltstrecken aufweisen. Die anwendbaren Luftspaltformen sind in Fig. 6 dargestellt. Entsprechend den Figuren 3 und 4 werden die magnetischen Charakteristika in den einzelnen Kernen 1, ..., n beeinflusst. In den Zonen der Luftspaltstrecken streuen die magnetischen Feldlinien aus. Damit die Kerne sich nicht magnetisch gegenseitig beeinflussen, sind die einzelnen Kerne um mindestens die Distanz der grössten benachbarten Luftspaltstrecke, zu distanzieren.
  • Wie aus der Fig. 7 ersichtlich ist, muss die Magnetisierungskurve Induktion in Funktion der Durchflutung für die Kurve A entsprechend für den Stammkern SK zwischen den Punkten D und E eine Gerade sein. Dasselbe gilt auch für die Kurve B entsprechend für den Regulierkern RK zwischen den Punkten F und G. Ebenso muss auch die Kurve C entsprechend gemeinsam für beide Kerne SK und RK zwischen den Punkten H und I auch eine Gerade sein. Die Punkte D, F und H sind somit die unteren Grenzwerte für den bestimmten Durchflutungsbereich respektive Primärspannungsbereich und die Punkte E, G und I die oberen Grenzwerte. Die Punkte H und I auf der Kurve C müssen so gewählt werden, dass die Induktionen bei diesen Punkten gemäss dem Transformationsgesetz den unteren und oberen Grenzenwertspannungen des bestimmten Primärspannungsbereiches entsprechen.
  • Gemäss den Fig. 8 bis 10 ist die Gesamtmagnetisierungskurve C entsprechend gemeinsam für die beiden Kerne SK und RK gemäss dem Transformationsgesetz U = 4,44 x f x w x A x B x 10000
    Figure imgb0001
    für B in Tesla immer eine Gerade. Diese ist in gleiche Teile einzuteilen, die entsprechenden Induktionen sind zu bestimmen und in die Kurve C der Magnetisierungskurve Induktion in Funktion der Durchflutung gemäss Fig. 7 zu übertragen, womit auch die vorhandenen Durchflutungswerte bei den entsprechenden Induktionen der Kurve C bestimmt sind. Die zugehörigen Induktionen für die Kurven A und B sind somit auch bestimmt und sind in die Magnetisierungskurven Induktion in Funktion der Primärspannung zu übertragen.
  • Nach der gleichen Methode sind auch die Gesamtmagnetisierungskurven Induktion in Funktion der Durchflutung und Induktion in Funktion der Primärspannung für eine in Kerne mit unterschiedlichen magnetischen Charakteristiken unterteilte Kernanordnung nach Fig. 5 zu bestimmen.
  • Fig. 11 zeigt die Bereiche der Verhaltensarten der Sekundärspannung. So bedeutet die horizontale Linie A einen konstanten, die strichpunktierte Linie B einen prozentual gleichen, die schraffierte Fläche C einen prozentual kleineren, die schraffierte Fläche D einen prozentual grösseren und die schraffierte Fläche E einen negativen, die Sekundärspannung nimmt bei zunehmender Primärspannung ab resp. die Sekundärspannung nimmt bei abnehmender Primärspannung zu, Verlauf der Sekundärspannung in Funktion der Primärspannungsänderung von U1+v% bis U1-w%.

Claims (5)

  1. Transformator mit mindestens drei voneinander getrennten Kernen (SK, SK1, SK2, SAK, RK, RAK), die je einen magnetischen Kreis bilden, mit einer ersten Wicklung (A), die mindestens zwei der genannten Kerne umschlingt, und mindestens einer zweiten Wicklung (B), wobei mindestens einer der Kerne sowohl von der ersten als auch von der zweiten Wicklung umschlungen ist, dadurch gekennzeichnet, dass mindestens einer der Kerne, die von der ersten Wicklung (A) umschlungen sind, einen Luftspalt aufweist, dass mindestens zwei der von der ersten Wicklung umschlossenen Kerne (SK1, SK2, SK, SAK, RK) unterschiedliche magnetische Kennlinien aufweisen, wobei die resultierende magnetische Kennlinie dieser beiden Kerne unterschiedlich ist zur magnetischen Kennlinie von mindestens dem dritten Kern und dass die zweite Wicklung (B, Fig. 1; C, Fig. 2) ebenfalls mindestens zwei Kerne umschlingt.
  2. Transformator nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine dritte Wicklung (C, Fig. 1; D, E, Fig. 2), vorhanden ist, welche mindestens einen der Kerne umschlingt.
  3. Transformator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass einander benachbarte Kerne, wovon einer den mindestens einen Luftspalt aufweist, um mindestens die Distanz des Luftspaltes oder des grösseren Luftspaltes, wenn jeder der einander benachbarten Kerne einen Luftspalt aufweist, voneinander getrennt sind.
  4. Transformator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens zwei Wicklungen (B, C, Fig. 1), miteinander derart in Serie geschaltet sind, dass sich darin induzierte Spannungen subtrahieren.
  5. Transformator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass höchstens einer der Kerne (SK2, Fig. 1), der von der ersten Wicklung (a) umschlungen ist, keinen Luftspalt aufweist.
EP88909506A 1988-01-14 1988-11-17 Transformator Expired - Lifetime EP0349604B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH119/88 1988-01-14
CH119/88A CH676763A5 (de) 1988-01-14 1988-01-14
PCT/CH1988/000213 WO1989006860A1 (en) 1988-01-14 1988-11-17 Transformer

Publications (2)

Publication Number Publication Date
EP0349604A1 EP0349604A1 (de) 1990-01-10
EP0349604B1 true EP0349604B1 (de) 1994-05-18

Family

ID=4179683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909506A Expired - Lifetime EP0349604B1 (de) 1988-01-14 1988-11-17 Transformator

Country Status (7)

Country Link
US (1) US5422620A (de)
EP (1) EP0349604B1 (de)
JP (1) JPH02502955A (de)
AT (1) ATE105969T1 (de)
CH (1) CH676763A5 (de)
DE (1) DE3889658D1 (de)
WO (1) WO1989006860A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557249A (en) * 1994-08-16 1996-09-17 Reynal; Thomas J. Load balancing transformer
US7720911B2 (en) * 2003-02-20 2010-05-18 Strongmail Systems, Inc. Email using queues in non-persistent memory
JP4244150B2 (ja) * 2003-03-14 2009-03-25 富士通株式会社 双方向線路切替えリングネットワーク
ATE550670T1 (de) * 2008-07-11 2012-04-15 Lem Liaisons Electron Mec Sensor für eine hochspannungsumgebung
DE102010049668A1 (de) * 2010-10-26 2012-04-26 Minebea Co., Ltd. Transformator
US8791782B2 (en) * 2011-01-28 2014-07-29 Uses, Inc. AC power conditioning circuit
US8866575B2 (en) 2011-01-28 2014-10-21 Uses, Inc. AC power conditioning circuit
DE102011089574B4 (de) * 2011-12-22 2015-10-01 Continental Automotive Gmbh Elektrische Vorrichtung mit Filter zum Unterdrücken von Störsignalen
US10163562B2 (en) 2012-12-05 2018-12-25 Futurewei Technologies, Inc. Coupled inductor structure
JP2015233033A (ja) * 2014-06-09 2015-12-24 パナソニックIpマネジメント株式会社 コイル構造体及び電源装置
CN109671552B (zh) * 2017-10-17 2021-04-09 台达电子工业股份有限公司 整合型磁性元件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662132A (en) * 1925-11-16 1928-03-13 Simmons Bert Joseph Inductance apparatus
DE735778C (de) * 1941-05-04 1943-05-25 Siemens Ag Schaltanordnung, bestehend aus Transformator und Schaltdrossel
FR912527A (fr) * 1944-11-09 1946-08-12 Cfcmug Transformateur à deux ou plusieurs circuits magnétiques
US2780786A (en) * 1953-11-20 1957-02-05 Gen Electric Four leg magnetic core
US3268843A (en) * 1964-07-14 1966-08-23 Westinghouse Air Brake Co Electric induction apparatus for use in railway signal systems
GB1162093A (en) * 1965-08-30 1969-08-20 Sylvania Electric Prod Electromagnetic Devices such as Lamp Ballasts
US3360753A (en) * 1966-08-24 1967-12-26 Sylvania Electric Prod Ballast transformers having bridged air gap
FR1588871A (de) * 1968-08-26 1970-03-16
US3673491A (en) * 1970-12-21 1972-06-27 Orestes M Baycura Magnetic square wave voltage generator
US3708744A (en) * 1971-08-18 1973-01-02 Westinghouse Electric Corp Regulating and filtering transformer
US4075547A (en) * 1975-07-23 1978-02-21 Frequency Technology, Inc. Voltage regulating transformer
JPS60183963A (ja) * 1984-02-29 1985-09-19 Yashima Denki Kk 三脚トランスを用いた交流電力の位相制御回路

Also Published As

Publication number Publication date
DE3889658D1 (de) 1994-06-23
ATE105969T1 (de) 1994-06-15
JPH02502955A (ja) 1990-09-13
EP0349604A1 (de) 1990-01-10
WO1989006860A1 (en) 1989-07-27
US5422620A (en) 1995-06-06
CH676763A5 (de) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0349604B1 (de) Transformator
DE2306917A1 (de) Induktive stromkreiskomponente
DE3225285A1 (de) Verfahren zum betrieb einer hochspannungs-gleichstromuebertragungsanlage mit beliebig vielen umformerstationen
EP3179492B1 (de) Schutzeinrichtung für einen transformator vor geomagnetically induced currents
AT411938B (de) Verfahren und vorrichtung zur regelung der elektrischen spannung in elektrischen versorgungsnetzen und/oder verbraucheranlagen
DE2456895A1 (de) Phasenkompensationsanordnung
DE60206985T2 (de) Spannungsstabilisator für elektrische Energieübertragungs und Verteilungsanwendung
EP1446708A2 (de) Verfahren und einrichtung zur regelung der elektrischen spannung
DE112022002486T5 (de) Einstellung der umrichterklemmenspannung in leistungssystem
DE19829424A1 (de) Gleichpoliges Filter
CH309305A (de) Anordnung zur stufenweisen Regelung der Blindleistungsabgabe einer Kondensatorbatterie an ein Elektrizitätsversorgungsnetz.
DE2931358C2 (de) Schaltungsanordnung zur Versorgung von Stromabnehmern
DE112019004490T5 (de) Leckreaktanzplatte für einen leistungstransformator
EP3336650A1 (de) Längsspannungsregler
DE2247773A1 (de) Saettigungsdrossel
DE907435C (de) Schutzwandler fuer Regeltransformatoren in ortsfesten Anlagen und Wechselstromtriebfahrzeugen
DE2609707A1 (de) Transformator
DE210509C (de)
DE622447C (de) Transformator zur Regelung der Spannungen in Dreiphasenanlagen unter Beibehaltung der Symmetrie
DE171800C (de)
DE102014116846A1 (de) Elektromagnetische Netzspannungsregelung und Smart Grid Anwendung
DE7308392U (de) Ankopplungstransformator
DE971695C (de) Anordnung zum Anschluss von Kondensatoren an ein Wechselstromnetz
AT79744B (de) Sicherheitssystem zum selbttätigen Abschalten fehlerhafter Teilstrecken elektrischer Leitungsnetze.
CH165545A (de) Einrichtung zur Änderung der Spannung von Wechselstrom.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19891220

17Q First examination report despatched

Effective date: 19920107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 105969

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3889658

Country of ref document: DE

Date of ref document: 19940623

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940720

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 7

Ref country code: AT

Payment date: 19941130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19941201

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941222

Year of fee payment: 7

EAL Se: european patent in force in sweden

Ref document number: 88909506.3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951117

Ref country code: GB

Effective date: 19951117

Ref country code: AT

Effective date: 19951117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951130

BERE Be: lapsed

Owner name: RIEDI-JOKS SUSANNE

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

EUG Se: european patent has lapsed

Ref document number: 88909506.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051117