EP0342205A1 - Composition durcissable a base d'un produit d'addition de michael, son procede de production et son utilisation - Google Patents

Composition durcissable a base d'un produit d'addition de michael, son procede de production et son utilisation

Info

Publication number
EP0342205A1
EP0342205A1 EP88902842A EP88902842A EP0342205A1 EP 0342205 A1 EP0342205 A1 EP 0342205A1 EP 88902842 A EP88902842 A EP 88902842A EP 88902842 A EP88902842 A EP 88902842A EP 0342205 A1 EP0342205 A1 EP 0342205A1
Authority
EP
European Patent Office
Prior art keywords
group
acid
composition
compound
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP88902842A
Other languages
German (de)
English (en)
Inventor
Werner Alfons Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Original Assignee
BASF Lacke und Farben AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Lacke und Farben AG filed Critical BASF Lacke und Farben AG
Publication of EP0342205A1 publication Critical patent/EP0342205A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Definitions

  • Curable composition based on a Michael additive.
  • the invention relates to a curable composition, containing as component A) compounds with at least two activated double bonds (I), which are ⁇ , fi-unsaturated carbonyl compounds, a. , (?, - unsaturated carboxylic acid esters or ⁇ , p, -unsaturated nitriles, and compounds B), which contain at least two active hydrogen atoms or at least two groups with active hydrogen atoms or at least one active hydrogen atom and at least one group with an active hydrogen atom, and conventional additives, catalysts, optionally pigments and organic solvents.
  • activated double bonds I
  • I activated double bonds
  • compositions which are obtained by reacting compounds with at least two activated double bonds (I) with compounds containing active hydrogen atoms. These compositions react under the influence of bases to form a Michael addition product.
  • the Michael acceptor component can be derived, for example, from acrylate resins containing hydroxyl groups, epoxy resins, oligomeric polyols or oligomeric polyamines.
  • the Michael donor component can, for example, be derived from polyols, polyamines or polymercaptans.
  • the binders described in DE-OS 35 08 399 can be used as two-component systems for coatings. They pre-harden under catalysis. Bases easily at room temperature and at elevated temperatures. The advantages of the systems described exist in that they do not require free isocyanates for curing. However, the known systems are disadvantageous in terms of solvent resistance, chemical resistance and elasticity of the coatings obtained from them,
  • EP-A-158 161 describes coating compositions which harden at low temperatures and are based on branched acrylate copolymers containing hydroxyl groups and melamine-formaldehyde resins or polyisocyanates as crosslinking agents.
  • acrylate copolymer 3 to 25 wt .-% of monomers are polymerizable with at least two olefinically ungesquestionedtig ⁇ 'double bonds th used.
  • the coating compositions based on the systems described have good gasoline resistance and good resistance to long-term exposure to water or water vapor.
  • the melamine-formaldehyde resins or polyisocyanates used as crosslinkers have a disadvantage for toxicological reasons.
  • the object of the present invention was to provide coating compositions which can cure at low temperatures, therefore can preferably be used in automotive refinishing, are largely free of isocyanate and have improved properties compared with the systems from DE-OS 35 08 399 in relation have solvent resistance, chemical resistance and elasticity.
  • the compounds A) are compounds which contain activated olefinically unsaturated groups and can serve as a Michael acceptor.
  • Compounds of component B) form carbanions under the influence of suitable catalysts, which are added to the activated double bonds of component A).
  • the compounds of component B) are Michael donors.
  • at least one of components A) and B) should be based on a branched, soluble acrylate copolymer (P), i.e. be available from this.
  • component A) can therefore be obtainable by reacting the branched, soluble acrylate copolymer (P) with a compound (1) which contains at least one activated double bond (I).
  • component B) is also possible for component B) to be obtainable by reacting the branched soluble acrylate copolymer (P) with a compound (2) which, in addition to a group which is reactive with the acrylate copolymer (P), has at least one active hydrogen atom or at least one group contains an active hydrogen atom.
  • the soluble branched acrylate copolymer (P) is therefore used in accordance with the invention as a precursor for the compounds A) and / or B).
  • the branched acrylate copolymer can be obtained by copolymerization of 3 to 30% by weight, based on the total weight of the monomers, of monomers having at least two ethylenically unsaturated double bonds.
  • R H or CH 3
  • Examples of such compounds are hexanediol diacrylate, hexanediol dimethacrylate, glycol diacrylate, glycol dimethacrylate, butanediol diacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate and trimethylolpropane trimethacrylate.
  • Mixtures of multifunctional monomers can of course also be used.
  • Component a) can also be a reaction product of a carboxylic acid with a polymerizable, olefinically unsaturated double bond and glycidyl acrylate and / or glycidyl methacrylate.
  • Component a) can furthermore be a polycarboxylic acid or unsaturated mononecarboxylic acid esterified with an unsaturated alcohol containing a polymerizable double bond.
  • reaction products of a polyisocyanate with unsaturated, polymerizable double bonds containing alcohols or amines are advantageously used. An example of this is the reaction product of one mole of hexamethylene diisocyanate and two moles of allyl alcohol. .
  • Another advantageous component a) is a diester of polyethylene glycol and / or polypropylene glycol with an average molecular weight of less than 1500, preferably less than 1000, and acrylic acid and / or methacrylic acid.
  • Monomers with a functional group are used as component b), the selection of this functional group being based on the type of compounds (1) and (2); by reacting the soluble branched acrylate copolymers with the compound (1) or (2), the compounds (A) and (B) are obtained.
  • the monomers b) which can be used according to the invention will be discussed at a later point.
  • the further polymerizable monomers ' of component c) can advantageously be selected from the group styrene, vinyl toluene, alkyl esters of acrylic acid and methacrylic acid, alkoxyethyl acrylates and aryloxyethyl acrylates and the corresponding methacrylates, esters of maleic and fumaric acid.
  • methyl acrylate ethyl acrylate, propyl acrylate, butyl acrylate, isopropyl acrylate, isobutyl acrylate, pentyl acrylate, isoamyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate,
  • component c) depends largely on the desired properties of the acrylate copolymer in relation to elasticity, hardness, compatibility and polarity. These properties can be controlled in part using the known glass transition temperatures of the monomers.
  • Component b) of the acrylate copolymer can advantageously be a hydroxyl-containing ethylenically unsaturated monomer. Examples of these are hydroxyalkyl esters of acrylic acid and / or methacrylic acid with a primary hydroxyl group. Component b) can also be at least partially a reaction product of one mole of hydroxyethyl acrylate and / or hydroxyethyl methacrylate and an average of two moles of caprolactone. However, hydroxyl group-containing esters of acrylic acid and / or methacrylic acid with a secondary hydroxyl group can also be used as monomers containing hydroxyl groups.
  • these are reaction products of acrylic acid and / or methacrylic acid with the glycidyl ester of a carboxylic acid with a tertiary carbon atom.
  • hydroxyl-containing ethylenically unsaturated monomers are hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyamylacrylate, hydroxyhexyl acrylate, hydroxyoctyl acrylate and the corresponding methacrylates.
  • Examples of OH monomers with a secondary OH group are 2-hydroxypropyl acrylate, 2-hydroxibutyl acrylate, 3-hydroxibutyl acrylate and the corresponding methacrylates.
  • compositions according to the invention are advantageous in which component A) is based on a soluble crosslinked acrylate copolymer, component b) the Acrylatcopoly erisats a hydroxyl group-containing
  • Is monomer, and compound (1) is a monoester ⁇ , j3-unsaturated carboxylic acids.
  • the branched, hydroxyl-containing copolymer is reacted with monoesters ⁇ . ⁇ - unsaturated carboxylic acids in a transesterification reaction so that a branched polyacrylate with free olefinically unsaturated double bonds is obtained.
  • the compound A obtained ) can then be combined with the compounds B) to form a Michael addition product.
  • esters of & ( ⁇ - unsaturated carboxylic acids in questions whose ester groups have no more than 4 to 6 carbon atoms such as, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isopropyl acrylate, isobutyl acrylate, pentyl acrylate, the corresponding methacrylates and the corresponding esters of fumaric acid, maleic acid, crotonic acid, dimethylacrylic acid.
  • the compounds (1) are reacted in known transesterification reactions with the OH groups of the branched acrylate copolymer (P). '
  • Component A) is advantageously based on a soluble pre-crosslinked acrylate copolymer (P), the
  • Component b) is a monomer containing hydroxyl groups, and the hydroxyl-containing acrylate copolymer is reacted with a ", ⁇ > - unsaturated carboxylic acid (compound (1)).
  • component A) is obtained by esterification of a hydroxyl-containing branched acrylate copolymer with an unsaturated carboxylic acid.
  • component A) can advantageously be prepared by reacting the above-described hydroxyl-containing acrylate copolymer (P) with a compound which, in addition to group (I), contains an isocyanate group.
  • the reaction between this connection (1) and the branched acrylate copolymer takes place in this case with the formation of a urethane bond.
  • Compound (1), which contains an isocyanate function in addition to group (I) is advantageously an isocyanatoalkyl ester of an unsaturated carboxylic acid of the general type
  • component A the branched hydroxyl group-containing acrylate copolymer is reacted with a compound (1) which is an amide of alkoxy-methyl groups of a ⁇ , ( ⁇ - unsaturated carboxylic acid or the general formula
  • Examples of such compounds are methoxymethyl acrylamide, methoxymethyl methacrylamide, butoxymethylacrylamide, butoxymethyl methacrylamide, isobutoxymethylacrylamide, isobutoximethyl methacrylamide, analogous ide of fumaric acid, crotonic acid and dimethylacryl acid, glycolic acid methyl amide, such as methyl acrylate, such as kolatbutylether, methyl acrylamidoglycolate and butylacrylamidoglycolate.
  • Component A which is based on a branched, soluble acrylate copolymer and contains at least two activated double bonds, can also be prepared by reacting an acrylate copolymer containing epoxy groups and a compound (1) which contains a carboxyl or amino group.
  • a monomer containing epoxide groups such as e.g. Glycidyl esters of unsaturated carboxylic acids or glycidyl ethers of unsaturated compounds are used.
  • component b) include: glycidyl acrylate, glycidyl methacrylate, glycidyl ester
  • the epoxy groups of the acrylate copolymer are then reacted with the carboxyl or amino groups of the compound (1).
  • ⁇ - unsaturated acids such as adducts of hexahydrophthalic anhydride, phthalic anhydride, phthalic anhydride
  • the compound (1) can furthermore be t-butylaminoethyl (meth) acrylate, bisacrylaidioacetic acid or bis (acrylamidoethyamin). Particularly preferred are compounds with several acti ⁇
  • the branched soluble acrylate copolymer (P) can function as a functional monomer b) monomers with ester functions __. contain.
  • the esterification alcohol should advantageously not contain more than 6 carbon atoms.
  • the acrylate copolymer prepared in this way is reacted with a compound (1) which in addition to group (I) has an OH, NH or SH group.
  • Possible components b) are alkyl esters of acrylic acid, methacrylic acid, crotonic acid, maleic and fumaric acid, such as, for example, the corresponding methyl, ethyl, propyl, isopropyl, butyl, isobutyl and pentyl esters.
  • Branched acrylate copolymers containing isocyanate groups can also be used to prepare component A).
  • monomers containing NCO groups are used as monomer b).
  • the acrylate copolymer having isocyanate groups is then reacted with Q compounds (1), which in addition to the group (I) OH, NH, SH or COOH groups.
  • the monomers b) can be selected from the group of vinyl isocyanates, such as, for example, vinyl isocyanate and m-isopropenyl - ⁇ t., C ⁇ .- dimethylbenzyl isocyanate, isocyanato alkyl ester 5 cA, (i-unsaturated carboxylic acids of the general formula
  • Adducts of, for example, isophorone diisocyanate with hydroxyalkyl (meth) acrylates, such as, for example, hydroxyethyl methacrylate, can also be used as component b).
  • hydroxyalkyl (meth) acrylates such as, for example, hydroxyethyl methacrylate
  • urethane or urea groups are formed, which generally greatly increase the viscosity of the binders, which is not always desirable.
  • examples of this are the reaction products of acrylic acid or methacrylic acid or another o, (-ethylenically 10 unsaturated carboxylic acid and glycidyl acrylate or glycidyl methacrylate. This reaction produces a free hydroxyl group which then attaches to the NCO groups of the acrylate copolymer lymerisats is added.
  • the monomer component b) can advantageously contain an alkoxymethyl group-containing amide of a -, unsaturated carboxylic acid or a compound of the general formula
  • R 1 H, alkyl, aryl
  • R 2 alkyl
  • compounds are used as compound (1) which, in addition to group (I), contain OH, NH or SH groups.
  • monomers b) are N-alkoxymethyl (meth) acrylamides, such as methoxymethylacrylamide, methoxymethylmethacrylamide, isobutoxymethylacrylamide,
  • Michael donor serves and has active hydrogen atoms, based on the soluble branched acrylate copolymer.
  • component B which is obtained from an acrylate copolymer having a functional group and the compound (2), are shown below.
  • the soluble branched acrylate copolymer preferably contains hydroxyl groups which react in a subsequent reaction with the compounds (2).
  • the compounds (2) contain an ester or acid group.
  • the monomers b) are preferably selected from the group of the hydroxyalkyl esters, J-unsaturated carboxylic acids.
  • the compounds (2) are preferably selected from the group of acetoacetic acid, cyanoacetic acid, malonic acid, cyclopentanone carboxylic acid, cyclohexanone carboxylic acid and the respective alkyl ester.
  • the monomers b) can also be monomers with glycidyl groups.
  • the branched acrylate copolymer containing epoxy groups is reacted with (2), these compounds having carboxyl or amino groups in addition to group (I).
  • Monomers with glycidyl groups have already been mentioned.
  • Suitable compounds (2) are acetoacetic acid, cyanoacetic acid, malonic acid, cyclopentanone carboxylic acid, cyclohexanone carboxylic acid.
  • Component B) is preferably obtained by reacting an acrylate copolymer containing carboxyl groups with compounds (2), the reaction products of a polyepoxide with n mol of epoxy groups and (n-1) mol of a compound with carboxyl or amino-carboxyl or amino groups and the like Represent group with active hydrogen.
  • An example of this is the reaction product of one mole of trimethylolpropane triglycidyl ether and two moles of cyanoacetic acid or two moles of acetoacetic acid.
  • the monomer component b) Ethylene-unsaturated monomers containing carboxyl groups, for example acrylic acid or methacrylic acid, are used.
  • a curable composition in which the soluble branched acrylate copolymer is obtainable by copolymerization of is particularly preferred
  • component d) examples include N, N'-dimethylaminoethyl methacrylate, N, N'-diethylaminoethyl methacrylate, 2-vinylpyridine and 4-vinylpyridine, vinylpyrroline, vinylquinoline,
  • components A) and / or B) contain tertiary amino groups which catalyze the crosslinking reaction. Furthermore, these tertiary amino groups catalyze, for example, transesterification reactions with acrylic acid esters or methacrylic acid esters, which may be desirable.
  • the invention also relates to a process for the preparation of a curable composition
  • a curable composition comprising, as component A), compounds having at least two activated double bonds (I), which are d, / 3-unsaturated carbonyl compounds,; , 3-unsaturated carboxylic acid esters or ⁇ .
  • ⁇ - Unsaturated nitriles, and compounds B) which have at least two active hydrogen atoms or at least 2 groups contain active hydrogen atoms or at least one active hydrogen atom and at least one group with an active hydrogen atom, and conventional additives, catalysts, optionally pigments and organic solvents, characterized in that we first produce the soluble branched acrylate copolymer (P) by Copolymerization of
  • a), b) and c) being 100% by weight in an organic solvent at 70 to 130 ° C, preferably at 90 to 120 ° C, using at least 0.5% by weight , preferably at least 2.5 wt .-%, based on the total weight of the monomers a), b) and c), of a polymerization regulator and using tion initiators "of Polymerisa ⁇ , wherein a pre-crosslinked, non-gelled product is obtained, and then
  • Compound (1) is implemented, in addition to a group reactive with (P) at least one active double bond
  • (I) contains, whereby the component (A) is obtained, and / or
  • the branched soluble acrylate copolymer (P) is reacted with a compound (2) which, in addition to a group which is reactive with (P), contains at least one active hydrogen atom or at least one group with an active hydrogen atom, giving (B),
  • the monomer component b) contains alkyl ester groups and is then to be transesterified or amamidated with alcohols or amines, it makes sense to use little or no mercaptoalcohols as regulators, since otherwise there is a risk of premature gelation during the transesterification or transamidation consists.
  • the monomer component b) is an OH monomer and the resulting hydroxyl group-containing acrylate copolymer is to be reacted with a compound containing carboxyl groups in an esterification reaction, it makes sense to use little or no mercaptocarboxylic acids as regulators, otherwise there is a risk of gelling. It should be mentioned at this point that, for example, 2-mercapropionic acid can still be used in these cases, since this compound has a carboxyl group on a secondary, saturated carbon atom and is therefore less reactive than an o, ⁇ -unsaturated carboxylic acid.
  • the selection of the polymerization initiator depends on the proportion of the polyethylenically unsaturated monomers used. If the proportion is low, the initiators customary for such temperatures, e.g. Peroxyester, use. If the proportion of the polyethylenically unsaturated monomers is higher, initiators such as e.g. Azo compounds used.
  • catalysts can largely be dispensed with if tertiary amino groups are present in component A) and / or in component B). In this case, it is advisable to mix components A) and B) with KU réelleZ before processing.
  • Suitable Michael catalysts are, for example, catalysts from the group of diazabicyclo-octane, halides of quaternary ammonium compounds, alone or in a mixture with silicic acid alkyl esters, amidines, organic phosphonium salts, tertiary phosphines, quaternary ammonium compounds or alkali metal alcoholates.
  • the amount of the catalyst is generally 0.01 to 5, preferably 0.02 to 2,% by weight, based on the total solids content of the starting product.
  • the curable compositions according to the invention cure in the temperature range from room temperature to about 100 ° C., but can also be used at higher temperatures
  • the low curing temperatures make them particularly suitable for automotive refinishing.
  • the coatings obtained from the curable compositions have very good resistance to solvents and chemicals.
  • the content of the monomer tank is metered in in 3 hours, the content of the initiator tank is metered in 3.5 hours.
  • the feeds are started simultaneously and the temperature is kept at 110 ° C. during the polymerization.
  • the clear acrylic resin solution thus obtained has a viscosity of 2.9 dPas and a solids content of 51%.
  • component AI thus obtained is 54.7%, the viscosity is 1.3 dPas.
  • the clear acrylic resin solution P2 thus obtained has a viscosity of 4.6 dPas and a solids content of 50.2%.
  • Component B2 thus produced has a viscosity of 2.2 dPas and a solids content of 54.8%.
  • Pendulum hardness after oven 175 seconds; resistant to petrol after 3 hours.
  • Pendulum hardness after 6 hours 160 seconds; Super gasoline resistant after 6 hours. Clear coat 2:
  • reaction product from one mole of trimerized hexamethylene diisocyanate and three moles of hydroxybutyl acrylate and 60.11 parts of component B1 and
  • Pendulum hardness after oven 175 seconds; resistant to petrol after 3 hours.
  • Pendulum hardness after 6 hours 81 seconds; resistant to petrol after 6 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

Une composition durcissable contient comme constituants A) des composés avec au moins deux liaisons doubles (I) activées, qui sont des composés carbonyle alpha,beta-insaturés, des esters d'acide carboxylique alpha,beta-insaturés ou des groupes nitrile alpha,beta-insaturés, et des constituants (B) qui contiennent au moins deux atomes actifs d'hydrogène ou au moins deux groupes avec des atomes actifs d'hydrogène ou au moins un atome actif d'hydrogène ou au moins un groupe avec un atome actif d'hydrogène, des additifs usuels, des catalyseurs, le cas échéant des pigments et un solvant organique. Les constituants A) ou les constituants B) ou les constituants A) et B) se basent sur un copolymère d'acrylate soluble à chaînes ramifiées (P) obtenu par copolymérisation de a) entre 3 et 30 % en poids d'un monomère avec au moins deux liaisons doubles polymérisables éthyléniquement insaturées, b) entre 5 et 60 % en poids d'un monomère avec un groupe fonctionnel et c) entre 5 et 92 % en poids d'un monomère additionnel éthyléniquement insaturé, la somme de a), b) et c) étant égale à 100 % en poids. L'invention concerne également un procédé de production de la composition durcissable.
EP88902842A 1987-03-28 1988-03-25 Composition durcissable a base d'un produit d'addition de michael, son procede de production et son utilisation Pending EP0342205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3710431 1987-03-28
DE19873710431 DE3710431A1 (de) 1987-03-28 1987-03-28 Haertbare zusammensetzung auf basis eines michael-additionsproduktes, verfahren zu seiner herstellung sowie seine verwendung

Publications (1)

Publication Number Publication Date
EP0342205A1 true EP0342205A1 (fr) 1989-11-23

Family

ID=6324317

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88902842A Pending EP0342205A1 (fr) 1987-03-28 1988-03-25 Composition durcissable a base d'un produit d'addition de michael, son procede de production et son utilisation
EP88104876A Expired - Lifetime EP0287842B1 (fr) 1987-03-28 1988-03-25 Compositions durcissables à base d'un produit d'addition de Michael, leur préparation et leur utilisation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP88104876A Expired - Lifetime EP0287842B1 (fr) 1987-03-28 1988-03-25 Compositions durcissables à base d'un produit d'addition de Michael, leur préparation et leur utilisation

Country Status (10)

Country Link
EP (2) EP0342205A1 (fr)
JP (1) JPH0762047B2 (fr)
AT (1) ATE64400T1 (fr)
AU (1) AU616886B2 (fr)
BR (1) BR8807437A (fr)
CA (1) CA1338911C (fr)
DE (2) DE3710431A1 (fr)
ES (1) ES2023455B3 (fr)
WO (1) WO1988007556A1 (fr)
ZA (1) ZA882144B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3710343A1 (de) * 1987-03-28 1988-10-06 Basf Lacke & Farben Verzweigtes acrylatcopolymerisat mit polisierbaren doppelbindungen und verfahren zur herstellung des acrylatcopolymerisats
DE3832958A1 (de) * 1988-09-28 1990-04-12 Basf Lacke & Farben Haertbare zusammensetzung auf basis eines michael-additionsproduktes, verfahren zu seiner herstellung sowie seine verwendung
ES2073016T5 (es) * 1988-10-17 2004-02-01 Guertin Bros. Coatings And Sealants, Ltd. Resinas exentas de nco utiles como un sustituto de poliuretanos.
CA2000803C (fr) * 1988-10-21 1997-04-01 Hisao Furukawa Composition de resine
DE3942592A1 (de) * 1989-12-22 1991-06-27 Basf Lacke & Farben Loesliche vernetzbare copolymerisate auf der basis von vinylester-, vinyaromat- und acrylatmonomeren, verfahren zu ihrer herstellung sowie ihre verwendung in beschichtungsmitteln
DE4016999A1 (de) * 1990-05-26 1991-11-28 Basf Lacke & Farben Verfahren zur herstellung einer haertbaren zusammensetzung, die nach diesem verfahren hergestellten haertbaren zusammensetzungen und ihre verwendung
DE4137613A1 (de) * 1991-11-15 1993-05-19 Herberts Gmbh Bindemittelzusammensetzung, diese enthaltende ueberzugsmittel und deren verwendung
DE9216813U1 (fr) * 1992-12-10 1993-02-11 Roehm Gmbh, 6100 Darmstadt, De
US5567761A (en) * 1993-05-10 1996-10-22 Guertin Bros. Coatings And Sealants Ltd. Aqueous two-part isocyanate-free curable, polyurethane resin systems
GB2323599A (en) * 1997-03-18 1998-09-30 Courtaulds Plc Compositions curable by a Michael reaction
JP3984488B2 (ja) 2001-03-27 2007-10-03 日本ペイント株式会社 硬化性塗料組成物および塗膜形成方法
US8013068B2 (en) * 2003-01-02 2011-09-06 Rohm And Haas Company Michael addition compositions
JP5249095B2 (ja) * 2009-03-12 2013-07-31 新日鉄住金化学株式会社 末端変性可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及び硬化物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408018A (en) * 1982-10-29 1983-10-04 Rohm And Haas Company Acetoacetate functionalized polymers and monomers useful for crosslinking formulations
ATE46178T1 (de) * 1984-04-04 1989-09-15 Hoechst Ag Umsetzungsprodukt von olefinisch ungesaettigten verbindungen mit wasserstoffaktiven verbindungen, verfahren zu dessen herstellung und darauf basierende 2-komponentenlacke.
DE3412534A1 (de) * 1984-04-04 1985-10-17 Basf Farben + Fasern Ag, 2000 Hamburg Durch saeure haertbare ueberzugsmittel und verfahren zu ihrer herstellung
DE3879669T2 (de) * 1988-02-01 1993-10-14 Rohm & Haas Verfahren zum Reagieren von zwei Komponenten, Zusammensetzungen, Beschichtungszusammensetzungen und Verwendung davon.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8807556A1 *

Also Published As

Publication number Publication date
AU1542588A (en) 1988-11-02
JPH02500282A (ja) 1990-02-01
EP0287842B1 (fr) 1991-06-12
ES2023455B3 (es) 1992-01-16
ZA882144B (en) 1988-09-13
DE3863224D1 (de) 1991-07-18
WO1988007556A1 (fr) 1988-10-06
CA1338911C (fr) 1997-02-11
EP0287842A1 (fr) 1988-10-26
JPH0762047B2 (ja) 1995-07-05
AU616886B2 (en) 1991-11-14
ATE64400T1 (de) 1991-06-15
BR8807437A (pt) 1990-04-10
DE3710431A1 (de) 1988-10-06

Similar Documents

Publication Publication Date Title
EP0291662B1 (fr) Procédé de préparation de copolymères acryliques ramifiés contenant des doubles liaisons polymérisables et leur utilisation
EP0506703B1 (fr) Copolymerisats solubles reticulables a base de monomeres d'esters vinyliques, aromatiques-vinyliques et d'acrylate, leur procede de fabrication et leur utilisation dans les agents de revetement
EP0158161A1 (fr) Copolymères acryliques contenant des groupes hydroxyles, procédé de leur préparation et compositions de revêtement à base de ces copolymères acryliques
EP0484356A1 (fr) Enduit a base de polymeres contenant des groupes carboxyles et d'agents de reticulation contenant des groupes epoxydes, son procede de fabrication ainsi que son application.
EP0287842B1 (fr) Compositions durcissables à base d'un produit d'addition de Michael, leur préparation et leur utilisation
DE2422043C3 (de) Verfahren zur Herstellung von (^polymerisaten
EP0856533A1 (fr) Polymères contenant des groupes hydroxyl et un procédé pour leur préparation
EP0995780B1 (fr) Dispersions aqueuses de copolymères autodurcissables, leur procédé de préparation et leur utilisation comme liant de peintures
EP0324747B1 (fr) Polymere ramifie contenant des groupes silyle, procede pour sa fabrication, agents de revetement a base de ce polymere ainsi que leur utilisation
EP0382749A1 (fr) Enduit a base d'un copolymere d'acrylate avec des groupes de production et son utilisation
EP0361048B1 (fr) Compositions durcissables à base d'un produit d'addition de "Michael", leur préparation et leur utilisation
EP0254722B1 (fr) Composition durcissable
EP0242513A1 (fr) Revêtement à base d'un copolymère d'acrylate à groupes hydroxyles, carboxyliques et amino tertiaires, procédé de préparation du revêtement et son utilisation
DE4442769A1 (de) Niedermolekulare funktionelle Copolymerisate, Verfahen zu ihrer Herstellung und ihre Verwendung
EP0285034B1 (fr) Composition durcissable à base d'acrylates ramifiés ayant des groupes carboxyliques et/ou d'acrylates ramifiés ayant des groupes époxy et de résines aminées
WO1990015086A1 (fr) Copolymeres contenant des groupes carboxyle et eventuellement des groupes tertiaires amino, leur procede de production et leur utilisation comme matieres d'enduction
DE2460785C2 (de) Bindemittel für Einbrennlacke
EP0355408B1 (fr) Copolymères contenant de groupes amino, leur procédé de préparation et leur application aux revêtements
EP0275255B1 (fr) Copolymere acrylique soluble contenant des groupes carboxyles, son procede de production et agent de revetement a base de ce copolymere acrylique
DE2615101C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19890809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 88104876.3/0287842 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 12.07.90.