EP0335878B1 - Sonde d'echographe avec circuit de connexion perfectionne - Google Patents

Sonde d'echographe avec circuit de connexion perfectionne Download PDF

Info

Publication number
EP0335878B1
EP0335878B1 EP87907780A EP87907780A EP0335878B1 EP 0335878 B1 EP0335878 B1 EP 0335878B1 EP 87907780 A EP87907780 A EP 87907780A EP 87907780 A EP87907780 A EP 87907780A EP 0335878 B1 EP0335878 B1 EP 0335878B1
Authority
EP
European Patent Office
Prior art keywords
elements
units
probe according
support
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87907780A
Other languages
German (de)
English (en)
Other versions
EP0335878A1 (fr
Inventor
Jean-François Gelly
Jacques Elziere
Patrick Dubut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Priority to AT87907780T priority Critical patent/ATE85450T1/de
Publication of EP0335878A1 publication Critical patent/EP0335878A1/fr
Application granted granted Critical
Publication of EP0335878B1 publication Critical patent/EP0335878B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the subject of the present invention is an ultrasound probe with an improved connection circuit. It finds more particularly its application in the medical field where such probes are used for ultrasound examinations capable of allowing the revelation of the internal structures of the tissues of a human body examined. It can nevertheless find its application in all other areas of the industry where ultrasound scanners are used whose frequency of the acoustic signal is high. Indeed the increase in this frequency leads to a corresponding reduction in the size of the probes. This results in specific connection problems due to miniaturization.
  • the present invention provides a solution.
  • An ultrasound system in principle comprises means for emitting an electric signal vibrating at an acoustic frequency, a transducer probe receiving this electric signal and transforming it into a mechanical excitation, this probe being applied against a medium to be insonified.
  • the backscatter signal which results from the insonification of the medium is generally received by the same probe, during emission stoppages.
  • the reversible probe thus transforms the acoustic signal which reaches it into an electrical signal. This is applied to reception bodies.
  • the means which effect the transformation of an electrical signal into an acoustic signal and / or vice versa comprise in a known manner elements of a piezoelectric crystal.
  • the connection device object of the invention relates to the electrical connection of all the elements of the probe.
  • the piezoelectric elements are generally aligned against each other to form a strip.
  • a front face is distinguished on this bar, on the side on which the useful acoustic signal propagates, and a rear face opposite the front face.
  • the process of electrical-acoustic transformation occurs most effectively when the front and rear faces of the elements of the strip are provided with electrodes.
  • the electric signal is applied to these electrodes, it causes the existence of an alternating electric field in the piezoelectric crystal. It vibrates and emits an acoustic signal. The opposite occurs at the reception.
  • the dimensions of the piezoelectric elements are preferably calculated as a function of the acoustic working frequency of the probe and as a function of the speed of propagation of the waves in the crystal. These two quantities determine the wavelength ⁇ of the acoustic vibration in the crystal.
  • the piezoelectric elements are aligned side by side, parallel to their length, and their height is the distance between the two electrodes.
  • the length of the elements must be greater than ten times ⁇ , that the height must be substantially equal to ⁇ / 2, and that the width, measured orthogonally to these first two dimensions, must be less than or equal to ⁇ / 6.
  • the elements of the bar must have a width and therefore a connection pitch less than or equal to about 30 micrometers.
  • connection wires In these a sheet of connection wires is applied against each face of the bar. In these two layers, individual connections are assigned to each of the electrodes separated from the piezoelectric elements. During manufacture, the two plies extend on either side of the bar as two wings. To reduce the size of such a probe, these two wings are later folded back. Now the evolution of the technique has now consecrated the use of curved bar probes. In these bars the alignment of the elements to a convex curved shape, adapted on the one hand to direct contact with the bodies to be examined, and having the other effect of limiting the number and the complexity of the electronic circuits for controlling these bars during their use in sector scanning. For obvious reasons of simplicity, the bars are first made flat on a flexible support and then later bent. We then realized that the recommended connection technique was unusable. You cannot bend the sheets twice in orthogonal directions.
  • GB-A-2,079,102 there is also provided a curved strip for an ultrasound imaging probe.
  • this document does not teach how to make the connection of the piezoelectric elements to the electrical excitation device of the bar.
  • a relay is used, next to each element, which is in the form of a parallelepipedal block having the particularity of being metallized on at least two adjacent faces.
  • This relay therefore includes in itself the desired fold. Indeed by one of its faces it can be connected, in the same plane, with an electrode of the element. By its other face, electrically connected to the first, it can be connected to a connection circuit presented orthogonally.
  • This solution which is particularly useful in the context of the use of curved bars, convex as well as concave, can of course also be used with straight bars, in a broken line, etc ...: it replaces the folding of the sheets.
  • the invention relates to an ultrasound probe of the type described in claim 1.
  • FIG. 1 represents a strip of an ultrasound probe according to the invention.
  • the strip 1 comprises piezoelectric elements: for example the element 2 consisting of two half-elements 2a and 2b. These elements are aligned, and mounted between a support 3, common to all the elements, and acoustic transition blades such as 4, divided into two half-blades 4a and 4b, assigned to each of these elements.
  • An element 2 is thus composed of two half-elements, this division serving to solve crosstalk problems which may appear between two adjacent elements, for example elements 2 and 5.
  • the front 6 and rear 7 faces of each element are respectively provided with a metallization 8, 9, which is used to induce an electric field in the element when an electrical signal is applied to them.
  • the metallizations of the front and rear faces make it possible to apply an electric field parallel to the direction of propagation of the acoustic waves. This arrangement is advantageous because it improves the coupling coefficient between the electric field and the acoustic field.
  • the piezoelectric elements comprise for example plastic elements such as, for example, PVF2, or PVT PVF copolymer; a ceramic such as for example PZT, PZT polymer composite or PBTi03 or a crystal.
  • What characterizes the invention is essentially the presence, on at least one side of the alignment A of the elements, here for example on the right, of blocks 10 of generally parallelepipedal shape, assigned to each of the elements (block 10 is assigned to element 2), and which have the distinction of being metallized on at least two of their adjacent faces.
  • the faces 11 to 14 of the block 10 are even all metallized.
  • the metallizations 8 and 9 of the elements, produced in planes parallel to the plane of the bar can be simply connected, in parallel planes, to metallized faces of the block.
  • the continuity of the metallization, at the location of the adjacent faces of the blocks brings a possibility of electrical connection to these elements in planes which are now perpendicular to the plane of the bar.
  • Relay blocks can have any shape. With the parallelepipedal characteristic, it is understood that these blocks have at least two metallized faces located in two substantially perpendicular planes.
  • FIGS. 2a to 2c we will examine a general method of manufacturing a bar according to the invention.
  • a thin support 3 for example made of polyurethane, and in the general shape of an inverted T, metallization is carried out by a known process. For example by evaporation-spraying under vacuum or even by electrolysis.
  • a bar of a piezoelectric crystal 15 is fixed in which the elements will be cut later.
  • ceramic strips (FIG. 2a) are produced, the length L of which is equal to the length of the crystal 15, that is to say the length necessary to make the bar.
  • the strip 16 is then metallized on all its faces 11-14 so as to ensure electrical continuity at its periphery.
  • the metallization is separated into two electrically independent metallizations 21 and 22.
  • grooves 17, 18 are produced through the metallization as far as the ceramic body of the strip.
  • two strips are produced for each bar in this way.
  • Each strip 16 and 19 is then fixed on either side of the crystal 15 above the branches 23 and 24 of the support 3.
  • the general shape of the inverted T of the support is used to wedge on either side of this support strips 16 and 19.
  • a so-called transition blade 20 is then produced, the thickness of which, in a known manner, is equal to a quarter of the future working acoustic wavelength of the probe.
  • This blade 20 is metallized by its lower face.
  • the blade is then fixed to the crystal 15 and to the strips 16 and 19.
  • One of the two metallizations of each strip, the metallization 21 can then come into contact with the metallization of the support 3, on a vertical blank and on a horizontal blank of this support; while the other metallization, metallization 22, can come into contact under the metallization of the blade 20.
  • the two metallizations 21 and 22 open onto the lateral face 13 of the strip 16, it has thus been possible to present electrically, on a lateral face perpendicular to the plane of crystal 15, the metallizations of the upper and lower faces of this crystal.
  • the electrical continuity between the metallization 8 on one side of the crystal, the metallization of the blade 20, and the metallizations 22 on the one hand, and between the metallization 9, the metallization of the support, and the metallizations 21 on the other hand is ensured by pressing and gluing with possibly conductive glues.
  • the strips, the blade, and the support one obtains a perfect assembly by playing if necessary on the flexibility of the blade 20. For this purpose one can even provide an elastic space e between the limit of the edge of the crystal and the edge of the strips so as to allow the blade to flex.
  • the strips can be metallized as shown in Figure 2d.
  • the strip 16 comprises a single metallization extending from one face 26 to a face 27.
  • the metallization of the face 26 would be in contact with the metallization of the branch 23 of the support 3, and the vertical, lateral metallization 27 would be assigned to its connection by the right of the bar.
  • the metallization 26 would be in contact with the metallization of the blade 20 while the vertical, lateral metallization 27 presented on the left this time would ensure continuity. In this way, the other electrode of crystal 15 could be accessed electrically from the left.
  • the strip of piezoelectric elements is cut in the composite bar thus constituted.
  • cuts are made, for example with a saw, along this bar with a chosen pitch.
  • cutouts 27 (FIG. 1) between elements are deeper than cutouts 28 inside the same element.
  • dashes 29 of the base of the cutouts 27 shows that these cutouts extend into the support 3, that is to say below the base of the strips. Therefore the strips are cut into series of blocks (such as 10) assigned ipso-facto each to a piezoelectric element.
  • the intermediate cuts 28 are made in the middle of each element to a depth recalled by a dotted line 30 whose plane is underlying the altitude of the groove 17 which, in the preferred version, separates the metallizations from the strips 16 in two electrically independent metallizations. It follows from this way of doing that it is possible, for the same element, to access its lower electrode by a connection applied to a lateral face 31 of the relay block of this element. Access to the upper electrodes of each of the two half-elements which constitutes this element by metallizations 32 and 33, belonging to the same block, and having been electrically separated from each other by the cutout 28. It is noted that the connections 31 to 33 are effectively located in a plane now perpendicular to the plane of the bar 1.
  • FIG. 3a shows embodiments of the rest of the connection means, the realization of which is simplified due to the invention.
  • the invention is more particularly advantageous in the case of production of curved bars.
  • the curvature is obtained after performing the separations 27 and 28 by applying the deformable support 3 to an adequate curved shape.
  • the microassembly solution represented in FIG. 3a comprises, with the preferred variant with grooving 17,18 of fully metallized strips, two printed circuits 35,36 (obtained for example by etching) each comprising a flared part whose head has a rounded shape to nest under, or near the support curved 3.
  • Each printed circuit has a number of tracks 37.38 flaring in a corolla in the head of the circuit.
  • the number of tracks is equal to the number of piezoelectric elements of the probe.
  • these printed circuits include a track 39 which crowns the circuit.
  • the track 39 is intended to be connected, by electrical connection wires 40 and 42, to the connections 32 and 33 of each of the parallelepipedic blocks.
  • the ends of each of the tracks 37, 38 are intended to be connected by connecting wires 41 to the connections 32 of the parallelepipedic blocks. Similar connections are made for circuit 36.
  • connections 40 to 42 provide, compared to the mounting of the cited prior art, an additional advantage of symmetry of the connection.
  • a connection relating to one of the faces of the elements was organized on one side of the bar, while the other connection (to the other face of the elements) was organized on the other. side of the bar. This resulted in a harmful modification of the operation of the piezoelectric crystal.
  • the supply by the same side of the strip, or better still in a preferred manner by the two sides of the strip at the same time, of the two electrodes of each element has the effect of avoiding this drawback.
  • the technique used to make connections 40 to 42 is derived from a connection technique of the type used in semiconductor technology.
  • circuit 35 is approached on each side of the curved bar.
  • Circuit 35 comprises, at the ends of the tracks and facing the crowning track, metallized holes 43 to 45. These metallized holes are arranged opposite the faces 31 to 33 respectively of the relay blocks of each of the piezoelectric elements. The metallization of these holes as well as the metallization of these lateral faces is adapted to receive a tiny drop of Indium obtained by growth.
  • the printed circuit is applied against the strip so that the corresponding drops touch. Then by moderate heating (90 °) under vacuum, the reflow takes place.

Description

  • La présente invention a pour objet une sonde d'échographe avec circuit de connexion perfectionné. Elle trouve plus particulièrement son application dans le domaine médical où de telles sondes sont utilisées pour des examens échographiques susceptibles de permettre la révélation des structures internes des tissus d'un corps humain examiné. Elle peut néanmoins trouver son application dans tous les autres domaines de l'industrie où on utilise des échographes dont la fréquence du signal acoustique est élevée. En effet l'élévation de cette fréquence entraine une réduction correspondante de la taille des sondes. Il en résulte des problèmes spécifiques de connexion dûs à la miniaturisation. La présente invention en propose une solution.
  • Un échographe comporte en principe des moyens pour émettre un signal électrique vibrant à une fréquence acoustique, une sonde transductrice recevant ce signal électrique et le transformant en une excitation mécanique, cette sonde étant appliquée contre un milieu à insonifier. Le signal de rétrodiffusion qui résulte de l'insonification du milieu est en général reçu par la même sonde, pendant des arrêts de l'émission. La sonde ainsi réversible retransforme le signal acoustique qui l'atteint en un signal électrique. Celui-ci est appliqué à des organes de réception. Dans la sonde les moyens qui effectuent la transformation d'un signal électrique en un signal acoustique et/ou vice versa, comportent d'une manière connue des éléments d'un cristal piézo-éléctrique. Le dispositif de connexion objet de l'invention concerne le raccordement électrique de tous les éléments de la sonde. Dans une sonde les éléments piézo-électriques sont en général alignés les uns contre les autres pour former une barrette. Par rapport au phénomène acoustique on distingue sur cette barrette une face avant, du coté où se propage le signal acoustique utile, et une face arrière opposée à la face avant.
  • Le processus de transformation électrique-acoustique se produit de manière la plus efficace lorsque les faces avant et arrière des éléments de la barrette sont munies d'électrodes. Lors de l'émission, le signal électrique est appliqué sur ces électrodes, il provoque l'existence d'un champ électrique alternatif dans le cristal piézo-électrique. Celui-ci vibre et émet un signal acoustique. L'inverse se produit à la réception. Les dimensions des éléments piézo-électriques sont de préference calculées en fonction de la fréquence acoustique de travail de la sonde et en fonction de la vitesse de propagation des ondes dans le cristal. Ces deux grandeurs déterminent la longueur d'onde λ de la vibration acoustique dans le cristal. Dans la barrette les éléments piézo-électriques sont alignés côte à côte, parallèlement à leur longueur, et leur hauteur est la distance qui sépare les deux électrodes. Dans ces conditions il est connu que la longueur des éléments doit être supérieure à une dizaine de fois λ, que la hauteur doit être sensiblement égale à λ/2, et que la largeur, mesurée orthogonalement à ces deux premières dimensions, doit être inférieure ou égale à λ/6. En tenant compte d'une vitesse de propagation de l'ordre de 1500 mètres par seconde et d'une fréquence de travail de l'ordre de 7,5 MHz, les éléments de la barrette doivent avoir une largeur et donc un pas de connexion inférieur ou égal à environ 30 micromètres. En outre, pour éviter des phénomènes parasites de diaphonie entre des éléments piézo-électriques adajacents, il est connu de couper au milieu de leur largeur les éléments piézo-électriques. Ceci a pour effet de diviser par deux le pas de connexion. Il devient de l'ordre de 15 micromètres.
  • Pour réaliser les connexions, il a été développé dans l'état de la technique des solutions, inspirées de la technologie des semiconducteurs. Dans celles-ci une nappe de fils de connexion est apliquée contre chaque face de la barrette. Dans ces deux nappes, des connexions individuelles sont affectées à chacune des électrodes séparées des éléments piézo-électriques. Au cours de la fabrication les deux nappes s'étendent de part et d'autre de la barrette comme deux ailes. Pour réduire l'encombrement d'une telle sonde on replie ultérieurement ces deux ailes vers l'arrière. Or l'évolution de la technique a maintenant consacré l'utilisation de sondes à barrette courbe. Dans ces barrettes l'alignement des éléments à une forme courbe convexe, adaptée d'une part à un contact direct avec les corps à examiner, et ayant pour effet d'autre part de limiter le nombre et la complexité des circuits éléctroniques de commande de ces barrettes lors de leur utilisation en balayage sectoriel. Pour des raisons évidentes de simplicité les barrettes sont d'abord fabriquées à plat sur un support flexible puis ultérieurement courbées. On s'est alors aperçu que la technique de connexion préconisée était inexploitable. On ne peut pas courber les nappes deux fois dans des directions orthogonales.
  • Dans une demande de brevet européen n° 84 308 373.4 déposée le 03 Décembre 1984, il a été proposé une solution au problème de connexion résultant de la courbure des barrettes. Dans cette solution des groupes d'éléments adjacents sont reliés à des nappes de taille réduite (puisque le nombre des éléments dans un groupe est inférieur au nombre des éléments de la barrette). Lorsque la barrette est courbée ces nappes sont prévues pour occuper dans l'espace des plans superposés les uns aux autres. Cette technique ne donne cependant pas totale satisfaction. On s'est aperçu que les contraintes exercées lors de la courbure par une nappe, même de taille reduite, sur les éléments du groupe auquel elle est connectée avait pour effet de rompre la continuité de la courbure générale de la barrette ; celle-ci pouvant à la limite être considérée comme une succession de segments en ligne brisée approchant la courbe théorique à réaliser. Il en résulte une distortion des images produites par l'échographe qui gène l'interprétation de leur signification. La solution à ce problème qui consisterait à réaliser des nappes avec une seule connexion par nappe, affectée dans ce cas à un seul élément, est inexploitable compte tenu du nombre d'éléments que doit comporter une barrette : le plus possible (typiquement 128). Le nombre de connexions à réaliser pouvant être égal au triple du nombre d'éléments, il faudrait alors manipuler un écheveau important de fils que leur dimension réduite, de l'ordre de 5 micromètres de diamètre, rendent en plus fragiles.
  • Dans un autre document, GB-A-2 079 102, il est également Proposé une barette courbe pour une sonde d'imagerie par ultrasons. Cependant ce document n'enseigne pas comment réaliser la connexion des éléments piezoélectriques au dispositif d'excitation électrique de la barette.
  • L'invention a pour objet une solution réellement industrielle à ce problème de fabrication. Dans l'invention on utilise, à coté de chaque élément, un relais qui se présente sous la forme d'un bloc parallélépipédique présentant la particularité d'être métallisé sur au moins deux faces adjacentes. Ce relais comporte donc en lui-même la pliure recherchée. En effet par une de ses faces il peut être connecté, dans un même plan, avec une électrode de l'élément. Par son autre face, électriquement reliée à la première, il peut être connecté à un circuit de connexion présenté orthogonalement. Cette solution qui est particulièrement utile dans le cadre d'utilisation de barrettes courbes, convexes aussi bien que concaves, peut bien entendu être aussi utilisée avec des barrettes droites, en ligne brisée etc... : elle remplace la pliure des nappes.
  • L'invention concerne une sonde d'échographe du type décrit dans la revendication 1.
  • L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci ne sont données qu'à titre indicatif et nullement limitatif de l'invention. Sur les figures les mêmes repères désignent les mêmes éléments. Les figures montrent :
    • figure 1 : une partie d'une sonde échographe selon l'invention;
    • figures 2a à 2c : des étapes du procédé de montage des circuits de connexion de l'invention;
    • figures 3a et 3b : deux variantes de liaisons électriques des éléments d'une sonde munie du perfectionnement de l'invention.
  • La figure 1 représente une barrette d'une sonde d'échographe selon l'invention. La barrette 1 comporte des éléments piezo-électriques : par exemple l'élément 2 constitué de deux demi-éléments 2a et 2b. Ces éléments sont alignés, et montés entre un support 3, commun à tous les éléments, et des lames de transition acoustique telles que 4, divisées en deux demi-lames 4a et 4b, affectées à chacun de ces éléments. Un élément 2 est ainsi composé de deux demi-éléments, cette division servant à résoudre des problèmes de diaphonie pouvant apparaître entre deux éléments adjacents par exemple les éléments 2 et 5. Les faces avant 6 et arrière 7 de chaque élément sont respectivement munies d'une métallisation 8, 9, qui sert à induire un champ électrique dans l'élément quand un signal électrique leur est appliqué. Les métallisations des faces avant et arrière permettent d'appliquer un champ électrique parallèle à la direction de propagation des ondes acoustiques. Cette disposition est avantageuse car elle améliore le coefficient de couplage entre le champ électrique et le champ acoustique.
  • Les éléments piézo-électriques comportent par exemple des éléments en plastique comme par exemple le PVF₂, ou PVT₂F copolymère ; une céramique comme par exemple le PZT, le PZT composite polymère ou le PBTi0₃ ou un cristal.
  • Ce qui caractérise l'invention est essentiellement la présence, sur au moins un côté de l'alignement A des éléments, ici par exemple à droite, de blocs 10 de forme générale parallélépipédique, affectés à chacun des éléments (le bloc 10 est affecté à l'élément 2), et qui possèdent la particularité d'être métallisés sur au moins deux de leurs faces adjacentes. Ici les faces 11 à 14 du bloc 10 sont même toutes métallisées. Il en résulte que les métallisations 8 et 9 des éléments, réalisées dans des plans parallèles au plan de la barrette, peuvent être connectées simplement, dans des plans parallèles, à des faces métallisées des bloc. Et la continuité de la métallisation, à l'endroit des faces adjacentes des blocs apporte une possibilité de liaison éléctrique à ces éléments dans des plans qui sont maintenant perpendiculaires au plan de la barrette. On a ainsi réalisé l'opération équivalente à la pliure des nappes. Les blocs relais peuvent avoir des formes quelconques. Avec la caractéristique parallélépipédique il est entendu que ces blocs ont au moins deux faces métallisées situées dans deux plans sensiblement perpendiculaires.
  • A l'examen des figures 2a à 2c on va examiner un procédé général de fabrication d'une barrette selon l'invention. Sur un support mince 3, par exemple en polyuréthane, et en forme générale de T inversé, on réalise une métallisation par un procédé connu. Par exemple par évaporation-projection sous vide ou encore par électrolyse. Puis on fixe, au dessus de la partie centrale de ce support, une barre d'un cristal piézo-électrique 15 dans lequel seront taillés ultérieurement les éléments. On réalise de plus des règlettes (figure 2a) en céramique dont la longeur L est égale à la longueur du cristal 15 c'est à dire à la longueur nécessaire pour réaliser la barrette. La règlette 16 est ensuite métallisée sur toutes ses faces 11-14 de manière à assurer une continuité électrique à sa périphérie. Puis, par une opération simple de rainurage (figure 2c), on sépare la métallisation en deux métallisations 21 et 22 électriquement indépendantes. Par exemple on réalise des rainures 17, 18 au travers de la métallisation jusque dans le corps en céramique de la règlette. Dans une réalisation préférée on réalise pour chaque barrette deux règlettes de cette façon. Chaque règlette 16 et 19 est alors fixé de part et d'autre du cristal 15 au dessus des branches 23 et 24 du support 3. La forme générale de T inversé du support est mise à profit pour caler de part et d'autre de ce support les règlettes 16 et 19.
  • Selon des techniques similaires on réalise ensuite une lame 20 dite de transition dont l'épaisseur d'une manière connue, est égale au quart de la future longueur d'onde acoustique de travail de la sonde. Cette lame 20 est métallisée par sa face inférieure. La lame est ensuite fixée au cristal 15 et aux règlettes 16 et 19. Une des deux métallisations de chaque règlette, la métallisation 21 peut alors venir au contact de la métallisation du support 3, sur un flan vertical et sur un flan horizontal de ce support ; tandis que l'autre métallisationn, la métallisation 22, peut venir prendre contact sous la métallisation de la lame 20. Comme les deux métallisations 21 et 22 débouchent sur la face latérale 13 de la règlette 16 on a ainsi réussi à présenter électriquement, sur une face latérale perpendiculaire au plan du cristal 15, les métallisations des faces supérieures et inférieures de ce cristal. La continuité électrique entre la métallisation 8 d'une face du cristal, la métallisation de la lame 20, et les métallisations 22 d'une part, et entre la métallisation 9, la métallisation du support, et les métallisations 21 d'autre part est assurée par pressage et collage avec des colles éventuellement conductrices. Compte tenu de la précision de réalisation nécessaire pour fabriquer le cristal, les règlettes, la lame, et le support, on obtient un assemblage parfait en jouant au besoin sur la souplesse de la lame 20. Dans ce but on peut même ménager un espace élastique e entre la limite du bord du cristal et le bord des règlettes de manière à permettre le fléchissement de cette lame.
  • En variante, les règlettes peuvent être métallisées comme l'indique la figure 2d. Sur celle ci la règlette 16 comporte une seule métallisation s'étendant d'une face 26 à une face 27. On peut de cette manière remplacer les reglettes 16 et 19 par deux règlettes 25, mais tournées d'un demi tour, d'un coté à l'autre du cristal 15. Par exemple sur la partie droite du cristal la métallisation de la face 26 serait au contact de la métallisation de la branche 23 du support 3, et la métallisation 27 verticale, latérale, serait affectée à sa connexion par la droite de la barrette. Sur la gauche de la barrette la métallisation 26 serait au contact de la métallisation de la lame 20 tandis que la métallisation 27 verticale, latérale présentée à gauche cette fois en assurerait la continuité. De cette manière on pourrait accéder électriquement par la gauche à l'autre électrode du cristal 15.
  • Une fois que ces opérations d'assemblage sont effectuées, on taille la barrette d'éléments piézo-électriques dans le barreau composite ainsi constitué. On effectue comme il est connu des découpes, par exemple à la scie, le long de ce barreau avec un pas choisi. D'une manière préférée des découpes 27 (figure 1) entre éléments sont plus profondes que des découpes 28 à l'intérieur d'un même élément. Le rappel en tirets 29 de la base des découpes 27 montre que ces découpes s'étendent jusque dans le support 3 c'est à dire en dessous de la base des règlettes. De ce fait les règlettes sont tronçonnées en des séries de blocs (tels que 10) affectés ipso-facto chacun à un élément piézo-électrique. Les découpes intermédiaires 28 sont pratiquées au milieu de chaque élément jusqu'à une profondeur rappelée par une ligne en pointillés 30 dont le plan est sousjacent à l'altitude de la rainure 17 qui, dans la version préférée, sépare les métallisations des règlettes 16 en deux métallisations électriquement indépendantes. Il résulte de cette manière de faire qu'il est possible, pour un même élément, d'accéder à son éléctrode inférieure par une connexion appliquée sur une face latérale 31 du bloc relais de cet élément. On accède aux électrodes supérieures de chacun des deux demi-éléments qui constitue cet élément par les métallisations 32 et 33, appartenant à un même bloc, et ayant été électriquement séparées l'une de l'autre par la découpe 28. On remarque que les connexions 31 à 33 sont effectivement situées dans un plan maintenant perpendiculaire au plan de la barrette 1.
  • Les figures 3a et 3b montrent des exemples de réalisation du reste des moyens de connexion dont la réalisation se trouve simplifiée du fait de l'invention. D'une part, ainsi qu'il a été annoncé, l'invention est plus particulièrement intéressante dans les cas de réalisation de barrettes courbes. La courbure est obtenue après exécution des séparations 27 et 28 en appliquant le support 3 déformable sur une forme courbe adéquate. La solution de microassemblage représentée sur la figure 3a comporte, avec la variante préférée avec rainurage 17,18 de règlettes totalement métallisés, deux circuits imprimés 35,36 (obtenus par exemple par gravure) comportant chacun une partie évasée dont la tête a une forme arrondie pour venir s'imbriquer sous, ou à proximité du support courbé 3. Chaque circuit imprimé comporte un nombre de pistes 37,38 s'évasant en corolle dans la tête du circuit.' Le nombre des pistes est égal au nombre des éléments piézo-électriques de la sonde. En plus des pistes 37, 38 ces circuits imprimés comportent une piste 39 qui couronne le circuit. La piste 39 est destinée à être reliée, par des fils de liaison électrique 40 et 42, aux connexions 32 et 33 de chacun des blocs parallélépipédiques. Les extrémités de chacune des pistes 37, 38 sont destinées à être raccordées par des fils de liaison 41 aux connexions 32 des blocs parallélépipédiques. Des liaisons semblables sont réalisées pour le circuit 36.
  • Ces liaisons assurent, par rapport au montage de l'état de la technique cité, un avantage supplémentaire de symétrie de la connexion. En effet dans l'état de la technique cité une connexion relative à une des faces des éléments était organisée sur un seul côté de la barrette, tandis que l'autre connexion (à l'autre face des éléments) étaient organisée de l'autre côté de la barrette. Il en résultait une modification néfaste du fonctionnement du cristal piézo-électrique. Dans l'invention l'alimentation par un même coté de la barrette, ou mieux encore d'une manière préférée par les deux côtés de la barrette en même temps, des deux électrodes de chaque élément a pour effet d'éviter cet inconvénient. La technique utilisée pour réaliser les connexions 40 à 42 est dérivée d'une technique de liaison du type de celle pratiquée dans la technologie des semiconducteurs. Elle est parfaitement industrialisable du fait des pas réguliers de répartition des connexions 40 et 42 d'une part et des connexions 41 d'autre part. Cette opération, qui est très précise, peut donc être automatisée à condition de faire subir devant la machine qui l'effectue un déplacement circulaire de l'ensemble barrette-circuits imprimés.
  • Dans une variante représentée dans la figure 3b, la technique de connexion utilisée et une technique dite de refusion. Dans celle ci un circuit imprimé tel que le circuit 35 est approché de chaque côté de la barrette courbée. Le circuit 35 comporte à l'endroit des extrémités des pistes et en regard de la piste de couronnement des trous métallisés 43 à 45. Ces trous métallisés sont disposés en regard des faces 31 à 33 respectivement des blocs relais de chacun des éléments piézo-électriques. La métallisation de ces trous ainsi que la métallisation de ces faces latérales est adaptée pour recevoir une minuscule goutte d'Indium obtenue par croissance. Avant l'opération de refusion le circuit imprimé est appliqué contre la barrette de manière à ce que les gouttes correspondantes se touchent. Puis par chauffage modéré (90°) sous vide on opère la refusion. Dans ces conditions les gouttes se fondent l'une dans l'autre ainsi que dans les métallisations qui les portent. L'avantage de cette solution est de réaliser la connexion simultanée de tous les blocs, et donc de tous les éléments. D'autres opérations sont ensuite effectuées d'une manière classique. En particulier on réalise un connecteur pour relier la sonde à ses circuits électroniques (non représentés) ainsi qu'une enveloppe de protection de la sonde ainsi préparée.

Claims (12)

  1. Sonde d'échographe du type comportant des éléments (2) piézoélectriques alignés (A), chaque élément comprenant un ou des transducteurs piézoélectriques, montés sur un support (3) commun à tous les éléments et des moyens (35, 36) de connexion électrique pour relier des circuits électriques à ces éléments, les moyens de connexion électrique comportant, adjacent à au moins un côté de l'alignement et au droit de chacun des éléments, au moins un bloc relais (10), caractérisée en ce que
    - ledit support est déformable, de façon que ledit alignement puisse être courbé si besoin est,
    - il y a un bloc relais par élément,
    - lesdits blocs relais sont de forme générale parallélépipédique,
    - lesdits blocs relais sont des blocs en matériau isolant métallisés sur au moins deux faces adjacentes et fixés sur le support de façon à ramener les connexions de chaque élément piézoélectrique dans un ou deux plans perpendiculaires au plan de la barrette, l'isolation électrique entre éléments étant assurée par une séparation (27) pratiquée entre chaque bloc.
  2. Sonde selon la revendication 1, caractérisée en ce que les éléments sont chacun recouverts d'une lame (4) de transition acoustique et en ce que les blocs sont insérés entre le support et ces lames.
  3. Sonde selon la revendication 1 ou la revendication 2 caractérisée en ce que l'alignement est courbe (Fig. 3a, 3b).
  4. Sonde selon la revendication 3, caractérisée en ce que l'alignement est convexe.
  5. Sonde selon la revendication 3, caractérisée en ce que l'alignement est concave.
  6. Sonde selon l'une quelconque des revendications 2 à 5, caractérisée en ce que les moyens de connexion électrique comportent au droit de chaque élément deux blocs (16,19) insérés respectivement de part et d'autre de cet élément, entre le support et la lame de transition.
  7. Sonde selon l'une quelconque des revendications 2 à 6 caractérisée en ce que les blocs sont métallisés sur au moins trois faces contigües, et en ce que la métallisation forme deux surfaces (21,22) de contact, électriquement indépendantes, destinées à relier les faces (7, 6) des éléments appliquées respectivement contre le support et contre la lame.
  8. Sonde selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les moyens de connexion comportent un circuit imprimé (35) et un jeu de fils (40-42) de liaison reliant les métallisations (31-33) des blocs à des liaisons imprimées (37-39) sur le circuit.
  9. Sonde selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les moyens de connexion comportent un circuit imprimé et des gouttes d'un métal à refusioner déposées sur les faces latérales (31-33) des blocs et sur des liaisons (43-45) réalisées sur le circuit.
  10. Sonde selon l'une quelconque des revendications 1 à 9, caractérisée en ce que les blocs comportent au moins une rainure (17) intermédiaire pour séparer les métallisations.
  11. Sonde selon l'une quelconque des revendications 1 à 10, caractérisée en ce que les blocs comportent une séparation (28) intermédiaire pour pouvoir être reliés à des demi-éléments adjacents.
  12. Sonde selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle comporte un espace d'élasticité (e) entre les bords latéraux des éléments et des blocs correspondant à ces éléments.
EP87907780A 1986-11-28 1987-11-24 Sonde d'echographe avec circuit de connexion perfectionne Expired - Lifetime EP0335878B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87907780T ATE85450T1 (de) 1986-11-28 1987-11-24 Echographie-wandler mit verbindungsschaltung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8616660 1986-11-28
FR8616660A FR2607590B1 (fr) 1986-11-28 1986-11-28 Sonde d'echographe avec circuit de connexion perfectionne

Publications (2)

Publication Number Publication Date
EP0335878A1 EP0335878A1 (fr) 1989-10-11
EP0335878B1 true EP0335878B1 (fr) 1993-02-03

Family

ID=9341353

Family Applications (2)

Application Number Title Priority Date Filing Date
EP87907780A Expired - Lifetime EP0335878B1 (fr) 1986-11-28 1987-11-24 Sonde d'echographe avec circuit de connexion perfectionne
EP87402634A Withdrawn EP0271394A1 (fr) 1986-11-28 1987-11-24 Sonde d'échographe avec circuit de connexion perfectionné

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP87402634A Withdrawn EP0271394A1 (fr) 1986-11-28 1987-11-24 Sonde d'échographe avec circuit de connexion perfectionné

Country Status (7)

Country Link
US (1) US5027822A (fr)
EP (2) EP0335878B1 (fr)
JP (1) JPH02503753A (fr)
AT (1) ATE85450T1 (fr)
DE (1) DE3784078T2 (fr)
FR (1) FR2607590B1 (fr)
WO (1) WO1988004090A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281887A (en) * 1992-06-15 1994-01-25 Engle Craig D Two independent spatial variable degree of freedom wavefront modulator
FR2702309B1 (fr) * 1993-03-05 1995-04-07 Thomson Csf Procédé de fabrication d'une sonde acoustique multiéléments, notamment d'une sonde d'échographie.
JP3487981B2 (ja) * 1994-10-20 2004-01-19 オリンパス株式会社 超音波プローブ
JP4323487B2 (ja) * 2003-04-01 2009-09-02 オリンパス株式会社 超音波振動子及びその製造方法
US10347818B2 (en) * 2016-03-31 2019-07-09 General Electric Company Method for manufacturing ultrasound transducers
US10596598B2 (en) * 2016-12-20 2020-03-24 General Electric Company Ultrasound transducer and method for wafer level front face attachment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217684A (en) * 1979-04-16 1980-08-19 General Electric Company Fabrication of front surface matched ultrasonic transducer array
JPS5920240B2 (ja) * 1979-11-02 1984-05-11 横河電機株式会社 超音波探触子及び該超音波探触子の製造方法
JPS5711648A (en) * 1980-06-27 1982-01-21 Matsushita Electric Ind Co Ltd Ultrasonic probe
JPS5990498A (ja) * 1982-11-15 1984-05-24 Toshiba Corp 超音波探触子
US4773140A (en) * 1983-10-31 1988-09-27 Advanced Technology Laboratories, Inc. Phased array transducer construction
EP0145429B1 (fr) * 1983-12-08 1992-02-26 Kabushiki Kaisha Toshiba Ensemble linéaire courbé de transducteurs ultrasonores
JPS60140153A (ja) * 1983-12-28 1985-07-25 Toshiba Corp 超音波探触子の製造方法
JPS63207300A (ja) * 1987-02-24 1988-08-26 Toshiba Corp 超音波プロ−ブ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, volume 5, no. 129 (E-70)(801), 19 August 1981 *
Patent Abstracts of Japan, volume 8, no. 206 (E-267)(1643), 20 septembre 1984 *

Also Published As

Publication number Publication date
US5027822A (en) 1991-07-02
WO1988004090A1 (fr) 1988-06-02
FR2607590A1 (fr) 1988-06-03
EP0271394A1 (fr) 1988-06-15
EP0335878A1 (fr) 1989-10-11
JPH02503753A (ja) 1990-11-08
DE3784078T2 (de) 1993-06-09
DE3784078D1 (de) 1993-03-18
FR2607590B1 (fr) 1989-09-08
ATE85450T1 (de) 1993-02-15

Similar Documents

Publication Publication Date Title
EP1568129B1 (fr) Support pour resonateur acoustique, resonateur acoustique et circuit integre correspondant
EP0354117B1 (fr) Transducteur piézoélectrique pour générer des ondes de volume
FR2847492A1 (fr) Procede pour etablir une connexion electrique avec un transducteur ultrasonore a travers un materiau d'isolation acoustique
EP1261030A1 (fr) Plot de connexion d'un circuit intégré
FR2917841A1 (fr) Systeme ultrasonore a structure d'interconnexion par traversees
CH631855B5 (fr) Resonateur pour instrument horometrique, procede de fabrication de celui-ci.
FR2911968A1 (fr) Sonde a ultrasons.
EP0976101A1 (fr) Dispositif hybride a contacts affleurants et a production de signaux acoustiques, et procede de fabrication
FR2862161A1 (fr) Procede de fabrication d'un transducteur acoustique en ceramique multicouche
EP0335878B1 (fr) Sonde d'echographe avec circuit de connexion perfectionne
JP3450430B2 (ja) 超音波トランスジューサ
CA1298395C (fr) Sonde d'appareil a ultrasons a barrette d'elements piezo-electriques
FR2610767A1 (fr) Connecteur miniature et son procede de fabrication
WO1988004088A1 (fr) Sonde a barrette courbe pour echographe
FR2552937A1 (fr) Dispositif rayonnant a structure microruban avec element parasite
EP0778666A1 (fr) Résonateur piézoélectrique
FR2828056A1 (fr) Transducteur multi-element fonctionnant a des hautes frequences
EP0828413B1 (fr) Dispositif d'affichage électro-optique et support flexible pour de tels dispositifs servant à l'alimentation de ces dispositifs
FR2638894A1 (fr) Dispositif et procede de connexion et de fixation de composants
WO2001068273A1 (fr) Sonde acoustique unidirectionnelle et procede de fabrication
EP0385888A1 (fr) Capsule piézoélectrique à organes de maintien élastiques conducteurs
FR2655484A1 (fr) Ensemble connecteur pour puces a circuits integres et modules de contact pour cet ensemble.
WO1988004091A1 (fr) Sonde d'echographe a arrangement d'elements piezo-electriques
EP0085599A2 (fr) Procédé de fabrication collective de transducteurs piézoélectriques, transducteurs obtenus par ce procédé, et utilisation d'un tel procédé
FR2669426A1 (fr) Transducteur de force a poutre vibrante piezoelectrique pour capteur accelerometrique.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE GB IT NL

17Q First examination report despatched

Effective date: 19910313

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930203

Ref country code: AT

Effective date: 19930203

REF Corresponds to:

Ref document number: 85450

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3784078

Country of ref document: DE

Date of ref document: 19930318

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951124

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801