EP0335480A2 - Elektrische Modulareinheiten mit Druckentlastung - Google Patents

Elektrische Modulareinheiten mit Druckentlastung Download PDF

Info

Publication number
EP0335480A2
EP0335480A2 EP89300653A EP89300653A EP0335480A2 EP 0335480 A2 EP0335480 A2 EP 0335480A2 EP 89300653 A EP89300653 A EP 89300653A EP 89300653 A EP89300653 A EP 89300653A EP 0335480 A2 EP0335480 A2 EP 0335480A2
Authority
EP
European Patent Office
Prior art keywords
electrical
electrical components
filament winding
varistor blocks
axially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89300653A
Other languages
English (en)
French (fr)
Other versions
EP0335480A3 (en
EP0335480B1 (de
Inventor
John David Sakich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubbell Inc
Original Assignee
Hubbell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22643877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0335480(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hubbell Inc filed Critical Hubbell Inc
Publication of EP0335480A2 publication Critical patent/EP0335480A2/de
Publication of EP0335480A3 publication Critical patent/EP0335480A3/en
Application granted granted Critical
Publication of EP0335480B1 publication Critical patent/EP0335480B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/15Details of spark gaps for protection against excessive pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure

Definitions

  • the present invention relates to polymer housed electrical assemblies which are formed as modules and which can be selectively coupled together to vary the overall electrical rating of the device.
  • Each electrical assembly is formed from electrical components that are wrapped with a non-conductive filament winding in a pattern with lateral openings for relieving gas pressure.
  • the components can be varistors, resistors, capacitors, or any combination thereof.
  • a surge protector or arrester is commonly connected across a comparatively expensive piece of electrical equipment to shunt over-current surges. Such over-current surges occur, for example, when lightning strikes. When this happens, the surge arrester shunts the surge to ground, thereby protecting the piece of electrical equipment and the circuit from damage or destruction.
  • Present day surge arresters commonly include an elongated, hollow cylindrical housing made of porcelain or the like, and the plurality of non-linear resistive blocks within the housing. Some of these structures also include spark gaps, the blocks and gaps being electrically interconnected to handle voltage and current surge conditions arising on a power line.
  • the blocks commonly contain silicone carbide (SIC) or metal oxide varistors (MOV), and are usually in the shape of relatively short cylinders stacked within the arrester housing.
  • the number of blocks employed is a function of the material (SIC or MOV) and the voltage and current ratings of the assembly.
  • Prior art arresters For a surge arrester to function properly, intimate contact must be maintained between the MOV or SIC blocks. This necessitates placing an axial load on the blocks within the housing.
  • Prior art arresters utilize bulky contact springs within the housing to provide this axial load. Typically, these springs can provide only relatively small loads, for example, about sixty pounds.
  • prior art surge arresters experience one or more problems such as poor heat transfer between the MOV or SIC blocks and arrester terminals; non-uniform current distribution; and high contact resistances at joints.
  • units having low contact force sputter and the ionized metal which is produced can cause axial flashover at high currents.
  • surge arresters of the prior art An additional problem with surge arresters of the prior art is that they, on rare occasions, fail in a dangerous fashion. When these arresters fail and experience high fault currents producing high internal gas pressures, the bursting unit may throw parts and cause property damage.
  • an object of this invention is to provide electrical assemblies, particularly for surge arresters, which can vent gases generated upon electrical component failure to minimize damage, are relatively simple and inexpensive to manufacture, have good dielectric design, resist water invasion, and have modular components and housing to simply vary voltage ratings.
  • a further object of this invention is to provide electrical assemblies, such as surge arresters, having high axial loadings, thereby resulting in uniform current distribution, low contact resistances at joints, and excellent heat transfer to the arrester terminals.
  • Another object of this invention is to provide an electrical assembly, such as a surge arrester, having a shatter-proof housing which has a high-impact strength and which does not fail in a dangerous fashion.
  • Still another object of this invention is to provide a MOV block assembly with greatly improved tensile and cantilever strengths.
  • Yet another object of this invention is to provide a surge arrester which is forgiving of dimensional variations in associated parts, thereby reducing the need for expensive close tolerances.
  • a modular electrical assembly including a plurality of conductive electrical components aligned in a row or column and electrically connected through their axially directed ends, and a non-conductive fiber filament winding wrapped about the electrical components.
  • the winding applies an axially directed compressive force on the electrical components to maintain their electrical connection, and defines a pattern with lateral openings therein for venting gases generated upon failures of one of the electrical components.
  • an electrical device 50 in the form of a surge arrester, according to the present invention is formed of a modular electrical assembly 52, enclosed in a polymeric, elastomeric weathershed housing 58.
  • the illustrated electrical assembly can be advantageously substantially identical to and interchangeable with the other electrical assemblies, and is in turn formed from one or a plurality of cylindrical electrical components 60 and 62. These components are aligned in a row, and are in electrical connection with one another through their axially-directed ends and under an axially-directed compressive force developed by a non-conductive filament winding 64, as disclosed in U.S. Patent No. 4,656,555 and Serial No. 033,765.
  • the electrical components can be metal oxide varistors (e.g., zinc oxide varistor blocks), resistors, capacitors, or any combination thereof.
  • voltage ratings can be enlarged merely by serially and selectively coupling the plurality of modular electrical assemblies together mechanically and electrically.
  • the elastomeric weathershed housing 58 receives the electrical assemblies therein via a slight interference fit. This facilitates construction and allows the practice of good dielectric design by reducing radial gaps.
  • Electrical assembly 52 has a substantially cylindrical overall outer surface and comprises first end member, or terminal 72, spring washer 74, contact disc 76, electrical component 60, contact disc 78, electrical component 62, contact disc 80, spring washer 82, and second end member or terminal 84. Additional spring washers can be employed in the electrical assembly against the contact discs at some or all of the intermediate varistor joints, particularly for base mounted assemblies, to maintain contact pressure when the assembly bends under cantilever loading.
  • the non-conductive filament winding 64 is coupled to end members 72 and 84, encloses the electrical components, and maintains them under an axially-directed force, which is augmented by the spring washers.
  • a plastic film barrier 110 laterally surrounding electrical components 60 and 62 is interposed coaxially between the electrical components and filament winding 64.
  • the plastic is polypropylene.
  • the barrier is formed by wrapping a rectangular plastic sheet tightly about the electrical components and the adjacent portions of end members 72 and 84 in two layers 111 and 112 before filament winding 64 is added.
  • the thickness of the plastic sheet and of each layer is about 0.0005 inch.
  • the plastic film barrier extends along the entire length of the electrical components and onto the end members, the plastic film barrier seals the electrical components from the epoxy or resin on the filament forming the winding. For surge arresters, this prevents the wet epoxy or resin on the filament from bonding to the fragile ceramic insulating collars on the metal oxide varistor blocks 60 and 62. Such bonding can be prevented by other adhesion blockers, such as silicone oil or grease.
  • end members 72 and 84 are formed from aluminum. They can also be formed of any other material with suitable conductivity and mechanical strength.
  • End members 72 and 84 form internal terminals, have cylindrical exposed outer surfaces, and have opposite, first and second axially-directed planar ends with internally threaded sockets or bores 86 and 88 formed respectively therein.
  • Socket 86 threadedly receives threaded end stud 90 which can be connected to an electrical power source and is in the form of a metallic, conductive bolt with an internally threaded nut 91.
  • End plate 92 is received on end stud 90, tightly engages an end of the weathershed housing as seen in Figs. 1 and 2 and is held in place via rigid nut 91 on the stud.
  • a base plate with a bolt circle can be attached.
  • a second end plate 96 is similarly positioned at the other end of the housing and is received on end stud 98 which is connected to ground and maintained thereon via internally threaded nut 99 on the stud. Studs 90 and 98 in essence form external terminals for the overall device 50.
  • Weathershed housing 58 has a through passageway in the form of a throughbore with an inwardly facing cylindrical surface 100 which tightly receives therein the outer cylindrical surface of the electrical assembly 52.
  • the reception of the assembly in the throughbore is preferably via an interference fit with the assembly having an outer surface diameter that is about 2% to about 9% greater than the throughbore diameter and is substantially constant along its length. This reduces radial gaps and thus provides advantageous dielectric design.
  • end member 72 comprises an inner section 120 and an outer section 122 separated by a radially extending flange 124.
  • Inner section 120 is oriented adjacent the electrical components 60 and 62 and has a cylindrical lateral surface with a transverse diameter substantially equal to the electrical components.
  • Inner section 120 defines that portion of the end member which receives film barrier 110.
  • Outer section 122 also has a cylindrical lateral surface, but has a transverse diameter substantially less than inner section 120.
  • Flange 124 is generally circular in plan view and extends radially outwardly from the interface between sections 120 and 122. Radially inwardly extending and radially outwardly opening notches 126 are formed in the flange. Eight uniformally dimensioned notches are evenly and circumferentially spaced about flange 124 in the illustrated embodiment. The number of notches will vary depending upon the component diameter. More notches will be used with larger component diameters, and less notches will be used with smaller component diameters.
  • the end members facilitate wrapping a non-conductive filament, e.g., glass in a pattern with diamond shaped lateral openings 128. Openings 128 are filled with a fracturable insulating material 130 having suitable insulating and mechanical characteristics, for example epoxy.
  • suitable insulating materials include polyester, foam, rubber, silicone grease or gas, such as air. If the housing is molded about the electrical assembly wrap, the molded housing material can fill the openings.
  • the crisscross winding pattern illustrated in Fig. 1 is formed by wrapping one filament, or preferably a plurality of filaments simultaneously (typically 9) according to the pattern diagrammatically illustrated in Figs. 7-9 wherein the end member notches 126 are spaced at 45° angles.
  • the wrap plan used for a particular arrester will depend on component diameter, length and mechanical requirements.
  • end members 72 and 84 are denoted by the letters "L” and "R" in Figs. 7 and 9, respectively.
  • the individual notches 126 in each end member are numbered 1 through 8, respectively. In passing from end member to the other, the assembly is rotated through 180° as a filament is moved axially.
  • the pattern is repeated until the filament develops a thickness equal to the lateral peripheral extent of flange 124. Additional fiber filament is wound about the outer sections 122 until the filament surrounding such sections has an outer peripheral surface at least equal to the outermost extension of the flange. The outer surface of the assembly is then abraded to the extent necessary to provide a uniform cylindrical surface along its entire length.
  • the insulating material 130 fills the openings 128 to maintain the desired uniform cylindrical surface of assembly 52.
  • insulating material 130 can readily break or separate upon the development of adequate internal pressure within the winding, which pressure exceeds the threshold level permitted by epoxy or other insulating material against rupture, to permit gas to vent.
  • gas is released developing tremendous gas pressure within the fiber filament winding. This pressure causes the epoxy or other insulating material to fracture and the gas to escape to the inside of weathershed housing 58. Due to the flexible and resilient nature of elastomeric weathershed housing 58, the housing will expand, permitting the gas to flow along the length of the housing inner surface and out its axial ends. The gas can also vent between adjacent housings in a stacked arrangement, or through a split in the elastomeric housing. Once the gas is released, the housing will contract and again tightly bear against assembly 52. Without this venting of the gas, the gas would be entrapped within the winding until the increasing gas pressure causes an explosion of the assembly. After venting, ionized gas causes an external arc bridging the damaged arrester to relieve the internal fault.
  • externally threaded, metallic, and conductive studs can be used.
  • These studs are advantageously substantially identical and interchangeable, as well as substantially rigid and formed of stainless steel.
  • the studs couple the adjacent ends of adjacent assemblies by being threadedly received in the threaded sockets in each assembly's adjacent end member.
  • the adjacent ends of adjacent assemblies are screwed tightly together on the studs to provide a substantially gap-free engagement between the facing planar, axially-directed outer ends of the end members thereon. This provides an advantageous electrical and mechanical interface by reducing possible separation during bending of the device.
  • Plural weathershed housing sections, or a larger, one-piece housing can be used.
  • a gasket 140 is interposed between each end member and the adjacent end plate, and silicone grease is interposed between each adjacent end plate and end member, between adjacent end members, and between the outer surfaces of the electrical assemblies and the inwardly facing surfaces of the throughbore in each weathershed housing section.
  • Use of grease between the weathershed housing section and the electrical assembly aids in construction and assembly by reducing friction and also reduces any radial gaps therebetween.
  • the longitudinal axes of the studs, the electrical components in each assembly, and the weathershed housing 58 are coaxially aligned.
  • the planar ends of the end members are perpendicular to these aligned longitudinal axes.
  • the axial load on the electrical components before winding is about 750 pounds per square inch, and the filament or stranded element of fibers is wet, epoxy coated fiberglass which is wound through about 100 turns and is cured for about two hours at 150°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Thermistors And Varistors (AREA)
  • Multi-Conductor Connections (AREA)
  • Linear Motors (AREA)
  • Coils Or Transformers For Communication (AREA)
EP89300653A 1988-03-31 1989-01-24 Elektrische Modulareinheiten mit Druckentlastung Expired - Lifetime EP0335480B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17631788A 1988-03-31 1988-03-31
US176317 1988-03-31

Publications (3)

Publication Number Publication Date
EP0335480A2 true EP0335480A2 (de) 1989-10-04
EP0335480A3 EP0335480A3 (en) 1990-01-31
EP0335480B1 EP0335480B1 (de) 1992-12-23

Family

ID=22643877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89300653A Expired - Lifetime EP0335480B1 (de) 1988-03-31 1989-01-24 Elektrische Modulareinheiten mit Druckentlastung

Country Status (8)

Country Link
EP (1) EP0335480B1 (de)
JP (1) JP2520467B2 (de)
AR (1) AR241834A1 (de)
CA (1) CA1334990C (de)
DE (1) DE68903979T2 (de)
MX (1) MX172867B (de)
YU (1) YU47606B (de)
ZA (1) ZA891167B (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393854A1 (de) * 1989-04-18 1990-10-24 Cooper Industries, Inc. Betriebssicherer Überspannungsableiter
WO1993007630A1 (en) * 1991-10-04 1993-04-15 Asea Brown Boveri Ab Surge arrester
WO1993026017A1 (en) * 1992-06-18 1993-12-23 Raychem Corporation Electrical surge arrester
DE4306691A1 (de) * 1993-03-04 1994-11-03 Abb Management Ag Ueberspannungsableiter
US5608597A (en) * 1994-05-13 1997-03-04 Asea Brown Boveri Ab Surge arrester
WO1997050097A1 (en) * 1996-06-27 1997-12-31 Raychem Corporation Surge arrester having ridged terminals
WO1997050098A1 (en) * 1996-06-27 1997-12-31 Raychem Corporation Surge arrester having grooved and ridged terminals
FR2757693A1 (fr) * 1996-12-23 1998-06-26 Sediver Parafoudre avec une enveloppe ayant une surface exterieure gaufree
EP0872854A1 (de) * 1997-03-26 1998-10-21 Industrias de Aparellaje Electrico, S.A. Überspannungstentlader
CN1044952C (zh) * 1993-05-31 1999-09-01 凤凰接触公司 过电压保护元件
EP1069574A2 (de) * 1999-07-15 2001-01-17 Kabushiki Kaisha Toshiba Spannungsabhängiger, nicht linearer Widerstand und Überspannungsableiter
DE10136617C1 (de) * 2001-07-17 2002-10-10 Siemens Ag Überspannungsableiter zum Einsatz in Energieübertragungsnetzen
CN105097153A (zh) * 2015-09-11 2015-11-25 南阳金冠电气有限公司 一种复合避雷器芯组缠绕结构
CN105895282A (zh) * 2015-02-12 2016-08-24 西门子公司 避雷器
CN113130148A (zh) * 2021-04-02 2021-07-16 句容市凯特电力电器有限公司 一种刚性悬挂耐污伞裙型瓷绝缘子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445079B1 (ko) * 2002-04-16 2004-08-21 한국전기연구원 다축 필라멘트 와인딩에 의한 폴리머 피뢰기의 모듈제조방법
KR100714991B1 (ko) * 2005-04-15 2007-05-09 강영길 폴리머 피뢰기 모듈 튜브 및 튜브를 이용한 폴리머 피뢰기모듈의 제조 방법
JP5301320B2 (ja) * 2009-03-02 2013-09-25 三菱電機株式会社 避雷器
DE102011009124A1 (de) * 2011-01-21 2012-07-26 Tridelta Überspannungsableiter Gmbh Überspannungsableiter mit Käfig-Design
DE102020133830B3 (de) * 2020-12-16 2022-03-31 TRIDELTA Meidensha GmbH Überspannungsableiter mit Wickeldesign und Verfahren zu seiner Herstellung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283196A (en) * 1965-02-04 1966-11-01 Westinghouse Electric Corp Expulsion lightning arrester
DE3001943A1 (de) * 1980-01-21 1981-07-23 Boris Konstantinovič Avdeenko Einrichtung zum ueberspanneungsschutz
US4467387A (en) * 1982-09-30 1984-08-21 General Electric Company Combination strut insulator and lightning arrester
DE3544141A1 (de) * 1984-12-14 1986-06-26 Hubbell Inc Harvey Umwickelte elektrische anordnungen und verfahren zum herstellen solcher

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773084B2 (ja) * 1986-06-06 1995-08-02 音羽電機工業株式会社 避雷器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283196A (en) * 1965-02-04 1966-11-01 Westinghouse Electric Corp Expulsion lightning arrester
DE3001943A1 (de) * 1980-01-21 1981-07-23 Boris Konstantinovič Avdeenko Einrichtung zum ueberspanneungsschutz
US4467387A (en) * 1982-09-30 1984-08-21 General Electric Company Combination strut insulator and lightning arrester
DE3544141A1 (de) * 1984-12-14 1986-06-26 Hubbell Inc Harvey Umwickelte elektrische anordnungen und verfahren zum herstellen solcher

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595376A3 (de) * 1989-04-18 1995-05-24 Cooper Ind Inc Betriebssicherer Überspannungsableiter.
US5113306A (en) * 1989-04-18 1992-05-12 Cooper Power Systems, Inc. Non-fragmenting arrester with staged pressure relief mechanism
EP0393854A1 (de) * 1989-04-18 1990-10-24 Cooper Industries, Inc. Betriebssicherer Überspannungsableiter
EP0595376A2 (de) * 1989-04-18 1994-05-04 Cooper Industries, Inc. Betriebssicherer Überspannungsableiter
WO1993007630A1 (en) * 1991-10-04 1993-04-15 Asea Brown Boveri Ab Surge arrester
US5363266A (en) * 1992-06-18 1994-11-08 Raychem Corporation Electrical surge arrester
WO1993026017A1 (en) * 1992-06-18 1993-12-23 Raychem Corporation Electrical surge arrester
DE4306691A1 (de) * 1993-03-04 1994-11-03 Abb Management Ag Ueberspannungsableiter
US5517382A (en) * 1993-03-04 1996-05-14 Abb Management Ag Surge suppressor having looped clamping elements
CN1044952C (zh) * 1993-05-31 1999-09-01 凤凰接触公司 过电压保护元件
US5608597A (en) * 1994-05-13 1997-03-04 Asea Brown Boveri Ab Surge arrester
US5818677A (en) * 1996-06-27 1998-10-06 Raychem Corporation Surge arrester having ridged terminals
WO1997050097A1 (en) * 1996-06-27 1997-12-31 Raychem Corporation Surge arrester having ridged terminals
WO1997050098A1 (en) * 1996-06-27 1997-12-31 Raychem Corporation Surge arrester having grooved and ridged terminals
US5757604A (en) * 1996-06-27 1998-05-26 Raychem Corporation Surge arrester having grooved and ridged terminals
EP0851549A1 (de) * 1996-12-23 1998-07-01 Sediver, Société Européenne d'Isolateurs en Verre et Composite Überspannungsableiter mit einem aus thermoplastischen Material hergestellten Gehäuse mit einer auswendigen geprägten Oberfläche
US5875090A (en) * 1996-12-23 1999-02-23 Sediver, Societe Europene D/Isolateurs En Verre Et Composite Lightning arrestor with a thermoplastic envelope having an embossed outside surface
FR2757693A1 (fr) * 1996-12-23 1998-06-26 Sediver Parafoudre avec une enveloppe ayant une surface exterieure gaufree
EP0872854A1 (de) * 1997-03-26 1998-10-21 Industrias de Aparellaje Electrico, S.A. Überspannungstentlader
EP1069574A2 (de) * 1999-07-15 2001-01-17 Kabushiki Kaisha Toshiba Spannungsabhängiger, nicht linearer Widerstand und Überspannungsableiter
WO2003009310A3 (de) * 2001-07-17 2003-08-07 Siemens Ag Überspannungsableiter zum einsatz in energieübertragungsnetzen
WO2003009310A2 (de) * 2001-07-17 2003-01-30 Siemens Aktiengesellschaft Überspannungsableiter zum einsatz in energieübertragungsnetzen
DE10136617C1 (de) * 2001-07-17 2002-10-10 Siemens Ag Überspannungsableiter zum Einsatz in Energieübertragungsnetzen
US7120001B2 (en) 2001-07-17 2006-10-10 Siemens Aktiengesellschaft Surge voltage protector for use in power transmission networks
CN1326161C (zh) * 2001-07-17 2007-07-11 西门子公司 用于电能传输网络中的过电压防护放电器
CN105895282A (zh) * 2015-02-12 2016-08-24 西门子公司 避雷器
CN105097153A (zh) * 2015-09-11 2015-11-25 南阳金冠电气有限公司 一种复合避雷器芯组缠绕结构
CN105097153B (zh) * 2015-09-11 2018-04-13 南阳金冠电气有限公司 一种复合避雷器芯组缠绕结构
CN113130148A (zh) * 2021-04-02 2021-07-16 句容市凯特电力电器有限公司 一种刚性悬挂耐污伞裙型瓷绝缘子

Also Published As

Publication number Publication date
JPH01255437A (ja) 1989-10-12
EP0335480A3 (en) 1990-01-31
AR241834A1 (es) 1992-12-30
JP2520467B2 (ja) 1996-07-31
YU29289A (sh) 1993-05-28
YU47606B (sh) 1995-10-24
DE68903979D1 (de) 1993-02-04
ZA891167B (en) 1990-04-25
DE68903979T2 (de) 1993-05-13
CA1334990C (en) 1995-03-28
MX172867B (es) 1994-01-18
EP0335480B1 (de) 1992-12-23

Similar Documents

Publication Publication Date Title
US5043838A (en) Modular electrical assemblies with pressure relief
CA1331784C (en) Modular electrical assemblies with plastic film barriers
EP0335480A2 (de) Elektrische Modulareinheiten mit Druckentlastung
US4905118A (en) Base mounted electrical assembly
US4656555A (en) Filament wrapped electrical assemblies and method of making same
CA2149200C (en) Surge arrester
US6008975A (en) Self-compressive surge arrester module and method of making same
US5138517A (en) Polymer housed electrical assemblies using modular construction
JP2628664B2 (ja) 避雷器の製造方法
AU727154B2 (en) Self-compressive surge arrester module and method of making same
US6008977A (en) Electrical surge arrester
US5926356A (en) End terminals for modular electrical assemblies with pressure relief
RU2427049C2 (ru) Ограничитель перенапряжения
US5684665A (en) Modular electrical assembly with conductive strips
EP0606409B1 (de) Überspannungsschutz
CA1339484C (en) Modular electrical assemblies with pressure relief
AU2005223259B2 (en) Station class surge arrester
CA1334300C (en) Polymer housed electrical assemblies using modular construction
CA2247928C (en) Self-compressive surge arrester module and method of making same
CA2030740A1 (en) Non-fragmenting arrester with staged pressure relief mechanism

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19900714

EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19920123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 68903979

Country of ref document: DE

Date of ref document: 19930204

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89300653.6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071129

Year of fee payment: 20

Ref country code: CH

Payment date: 20080114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080123

Year of fee payment: 20

Ref country code: SE

Payment date: 20080117

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080108

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090123

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090123