EP0333991B1 - Procédé pour transporter un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée - Google Patents

Procédé pour transporter un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée Download PDF

Info

Publication number
EP0333991B1
EP0333991B1 EP89101157A EP89101157A EP0333991B1 EP 0333991 B1 EP0333991 B1 EP 0333991B1 EP 89101157 A EP89101157 A EP 89101157A EP 89101157 A EP89101157 A EP 89101157A EP 0333991 B1 EP0333991 B1 EP 0333991B1
Authority
EP
European Patent Office
Prior art keywords
gas
fuel
vessel
gasification reactor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89101157A
Other languages
German (de)
English (en)
Other versions
EP0333991A1 (fr
Inventor
Hans-Richard Baumann
Michael Dr. Ing. Kühn
Ulrich Dr. Ing. Meisl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0333991A1 publication Critical patent/EP0333991A1/fr
Application granted granted Critical
Publication of EP0333991B1 publication Critical patent/EP0333991B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • the invention relates to a method for conveying a fine-grained to dusty fuel in a gasification reactor under increased pressure, in which the fuel to be gasified is conveyed pneumatically from the processing system into a storage container provided with a filter and from there into the gravity flow into a lock container from which the combustion of the gasification reactor is fed via an allotment container, the lock container being alternately pressurized and relaxed again and a combustible gas being used both for pressurizing the lock container and the allotment container and for supplying the fuel to the burners of the gasification reactor .
  • DE-A-2831208 relates to another variant of this method, in which both the pressurization of the lock container and the distribution container as well as a combustible gas is used for supplying the fuel to the burners of the gasification reactor. In this case too, the fuel is transferred to a fluidized bed in the supply container and is fed to the burners of the gasification reactor in the fluidized state.
  • the invention is therefore based on the object of further developing the method of the type mentioned in such a way that the disadvantages described above are avoided and at the same time a complete return of all the gases displaced from the containers during the filling process is made possible.
  • the method used to achieve this object is characterized in that the volumetric flow of combustible gas supplied to the lock container and distribution container is adapted exclusively to the need for pressure build-up, pressure maintenance and supply of the fuel to the gasification reactor and a fluidized bed-like loosening of the fuel bed in the lock container and distribution container is omitted.
  • the partial oxidation raw gas generated in the gasification reactor is further processed into synthesis gas by the subsequent gas treatment.
  • dust-free and dry carbon dioxide is used as the inert conveying gas, which can possibly also originate from the CO2 scrubbing of the partial oxidation raw gas required for the synthesis gas production.
  • the carbon dioxide used is discharged into the atmosphere after it has left the cyclone filter after appropriate cleaning.
  • the gases displaced from the lock tank and the feed tank during the filling process are returned to the process and added to the partial oxidation raw gas generated before the gas treatment thereof.
  • a partial flow of the already dried and dust-free synthesis gas can preferably be used.
  • a residual gas such as from ammonia synthesis, can also be used for this purpose. If this is a residual gas containing SO2, such as the residual gas containing SO2 and COS from gas treatment, the gas must be kept at a temperature which is significantly above the dew point in order to avoid corrosion. In deviation from the procedure described above, it may be appropriate in this case to add the gas returned to the process directly at the burner in order to safely and completely reduce the SO2 content with the fuel in the reaction zone of the gasification reactor.
  • the partial oxidation gas generated in the gasification reactor is used as fuel gas for the gas turbine of a downstream gas-steam turbine power plant.
  • nitrogen is therefore used as the inert conveying gas.
  • This can preferably be a relatively impure nitrogen with an oxygen content of 3-5% by volume, which is obtained as a by-product in the air separation plant, which supplies the oxygen required for the gasification.
  • the nitrogen used as the inert conveying gas is after the delivery and separation of the fuel in the cyclone filter together with the expansion gas from the lock tank and the feed tank of the gas turbine of the downstream Teten gas-steam turbine power plant supplied.
  • a partial stream of the cleaned partial oxidation gas and / or a residual gas can be used as the combustible gas for the loading of the lock container and the supply container and the supply of the fuel to the burners.
  • the fine-cored to dust-like fuel from the storage bunker 1 of the processing plant is conveyed pneumatically into the cyclone filter 3 at a low pressure of 2-4 bar by means of carbon dioxide as an inert conveying gas.
  • the cyclone filter 3 has an expanded separation space 4.
  • the carbon dioxide required for the production is introduced into the system via line 5 and leaves the almost pressure-free cyclone filter 3 via line 6. After passing through a filter 7 or a molecular seal, it can enter the system Atmosphere.
  • the fuel which is collected in the separating chamber 4 almost without pressure and supplemented by constant subsequent delivery, reaches the almost pressure-less lock container 9 by gravity flow via the line 8.
  • the fuel supply is interrupted by closing the valve 14 in the line 8 and at the same time the valve 15 in the line 11 is also closed.
  • the lock container 9 is now brought to the same pressure as the supply container 16. This is done by supplying a combustible gas via lines 17 and 18.
  • the combustible gas which has been involved has already been explained above. As can be seen from the illustration, this gas is simultaneously into the lock tank from above and below 9 blown in.
  • the line 17 has a plurality of outlet openings which, in the region of the funnel-shaped taper, open into the lock container 9 and are distributed uniformly over the circumference.
  • the gas supply via lines 17 and 18 can be regulated by valves 19 and 20.
  • the gas mixture present in the lock container 9 after the end of the unpressurized filling process which can still contain a maximum of 25 vol.% CO2, is diluted so much by the combustible gas supplied that the inert gas portion (CO2 portion) finally at the for Process usual operating pressures is not more than 1 vol .-%.
  • the valve 19 in the line 17 is closed and the fine adjustment of the pressure control takes place via the valve 20 in the line 18 for the gas supply and the valve 21 in the line 22 for the Gas removal.
  • the valve 23 in the line 24 is opened.
  • valve 25 in the pressure compensation line 26 is opened, so that gas can flow into the lock container 9 in accordance with the fuel outlet.
  • the valve 64 in the line 63 is also opened, so that additional flammable gas can flow through this line to avoid bridging when the fuel flows out of the lock container 9.
  • This gas reduces the bulk density of the fuel-gas mixture by 10-20%. Basically, the gas supply is limited so that a fluidized bed-like loosening of the fuel is avoided.
  • the fuel flowing under the influence of gravity into the distribution container 16 displaces the combustible gas located there above the fuel residue, which can escape from the distribution container 16 via the line 27.
  • the majority of the displaced gas is introduced into the lock container 9 via the pressure compensation line 26, while a small part can get into the line 22 with the valve 28 open and from there into the buffer container 29.
  • the proportion of inert gas (CO2 content) in the combustible gas located above the fuel bed in the distribution container 16 decreases after the filling process of the distribution container so far that it only is still about 0.5% by volume.
  • the valves 20, 23, 25 and 64 are closed, while at the same time the valve 21 is opened in the buffer container 29 to relieve the lock container 9.
  • a pressure prevails in the buffer container 29 which corresponds to approximately 15% of the pressure in the lock container 9.
  • the pressure in the lock container 9 is reduced by approximately 66% to, for example, 9 bar.
  • the majority of the combustible gas from the lock container 9 is therefore recovered at a high pressure level and can be withdrawn from the buffer container 29 via the line 30.
  • the gas is added via line 32 to the partial oxidation raw gas generated before the gas treatment 33.
  • the valve 15 in the line 11 is opened and the remaining gas with predominantly combustible constituents via the filter 65 and the line 12 passed into the gasometer 13.
  • the fuel dust separated in the filter 65 is returned to the lock container 9 by a partial flow of the carbon dioxide from the line 5, which is supplied via the line 34.
  • the valve 37 in the line 36 is temporarily opened when the lock container 9 is just depressurized before filling.
  • the gas collected in the gasometer 13 can be drawn off via the line 38 and fed to the compressor 39, which runs on the same shaft as the compressor 31. This gas is then added via line 40 to the gas stream in line 30. If necessary, all or part of the gas drawn off via line 38 can also be fed via line 66 to another use, for example as fuel gas.
  • the fuel in the supply container 16 is metered via line 41 to the burners of the gasification reactor 42.
  • This metering does not take place under the influence of gravity, but rather through the pressure difference between the feed tank 16 and the gasification reactor 42 which determines the mass flow.
  • This pressure difference is generated by supplying combustible gas to the feed tank 16 via the lines 43, 44 and 45, the valves 46, 47 and 48 are opened accordingly.
  • the gas flow that is supplied via line 44 covers approximately two thirds of the requirement.
  • the introduction into the allotment container 16 takes place via a plurality of outlet openings which, in the region of the funnel-shaped taper, open out into the allotment container 16 evenly distributed over the circumference.
  • the gas flow in line 45 is used primarily to avoid bridging when the fuel flows out of the supply container 16 this gas flow also achieves a reduction in the bulk density, but a fluidized bed-like loosening of the fuel is to be avoided.
  • the amount of gas supplied through line 43 primarily serves to compensate for the volume when fuel is removed from the supply container 16, unless a corresponding amount of fuel flows in from the lock container 9 at the same time. However, if this is the case, then valve 46 in line 43 generally remains closed.
  • the valve 49 in the connector 50 which connects the supply container 16 to the line 41, is of course open during the removal of fuel from the supply container 16.
  • the partial oxidation crude gas generated in the gasification reactor 42 is cooled in the waste heat boiler 51, which forms a structural unit with the gasification reactor 42, and then passes via line 52 into the individual stages of the gas treatment 33, in which the partial oxidation gas is converted into synthesis gas. Since these are process steps which are known per se and are generally customary in technology and which are not the subject of the present invention, there is no need to go into them in greater detail.
  • the synthesis gas generated is withdrawn via line 53 and used for further use. A partial stream of this gas can be branched off via line 54. This partial flow is brought to the required pressure by gradual compression in the compressors 55 and 56 and then passes via line 57 to line 58, from which lines 17, 18, 63, 43, 44 and 45 depart.
  • the SO2- and COS-containing residual gas from the gas treatment 33 can be fed via line 59 to the compressors 55 and 56 and then returned to the process in the manner described above.
  • the heat exchanger 60 is used to set the temperature of the recirculated gas flow.
  • the oxygen or an oxygen-water vapor mixture required for the gasification is introduced into the gasification reactor 42 through the line 61.
  • the burners of the gasification reactor 42 are designed so that they do not allow the oxygen or the oxygen-water vapor mixture to flow back into the line 41. There is no need to go into details of the gasification reactor 42 here, since this can also be a known construction. It is preferable to choose a reactor type in which the gasification takes place in a cloud of airborne dust.
  • the flow diagram in FIG. 1 does not show that a filter can be arranged in the gas path between the lock container 9 and the buffer container 29, through which the expansion gases are freed of entrained fuel particles.
  • the filter is then flushed again at the next pressure build-up by the combustible gas flowing into the lock container 9.
  • two or more lock tanks 9 can optionally be provided, which are filled and emptied at different times. As a result, the fuel supply is evened out to the supply container 16, which in this case, like the gasometer 13 and the buffer container 29, is only provided once.
  • FIG. 2 shows the flow diagram for the process variant in which the partial oxidation raw gas generated is to be used as fuel gas for the gas turbine of a gas-steam turbine power station connected downstream.
  • This flowchart is essentially the same as the flowchart in FIG. 1, and the same reference numbers naturally have the same meaning in both flowcharts. Therefore, a detailed explanation of this flow diagram with reference to the above explanations can be dispensed with. In this case, since the focus is not on relieving the gasification process of inert fiber, but rather on reducing the compressor output, nitrogen is fed into the system as an inert conveying gas via line 5.
  • the fuel is pneumatically transported from the storage bunker 1 via the line 2 to the cyclone filter 3, in which the fuel is separated from the nitrogen.
  • the nitrogen withdrawn via line 6 is in this The trap is not discharged into the atmosphere, but goes into the gasometer 13.
  • the combustible gas which is displaced via line 11 when filling the lock container 9 reaches the cyclone filter 3 and is introduced together with the nitrogen via line 6 into the gasometer 13 . From this, the gas mixture is withdrawn via line 38.
  • the compressors 31 and 39 After appropriate compression in the compressors 31 and 39, it is fed together with the gas withdrawn from the buffer tank 29 via line 32 to the combustion chamber of the gas turbine of the gas-steam turbine power station connected downstream.
  • the partial oxidation gas generated also gets there, which is drawn off via line 53 following gas treatment 33.
  • the steam generated in the waste heat boiler 51 can be used in the steam turbine of the gas-steam turbine power plant, if appropriate after corresponding overheating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Industrial Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Claims (3)

1. Procédé pour le transport d'un combustible finement granulé à pulvérulent à un réacteur de gazéification à haute pression, dans lequel le combustible à gazéifier est transporté pneumatiquement depuis l'installation de préparation jusqu'à un silo de stockage pourvu d'un filtre et parvient de celui-ci, par écoulement gravitaire, à un réservoir à sas à partir duquel il est envoyé aux brûleurs du réacteur de gazéification via un réservoir de dosage, le réservoir à sas étant alternativement mis sous pression et à nouveau détendu et un gaz combustible étant utilisé aussi bien pour la mise sous pression du réservoir à sas et du réservoir de dosage que pour la fourniture du combustible aux brûleurs du réacteur de gazéification, caractérisé en ce que le courant volumique de gaz combustible fourni au réservoir à sas et au réservoir de dosage est adapté exclusivement aux besoins de l'établissement de la pression, du maintien de la pression et de la fourniture du combustible au réacteur de gazéification et en ce qu'il ne se produit pas de désagrégation du genre d'un lit fluidisé du talus de combustible dans le réservoir à sas et dans le réservoir de dosage.
2. Procédé suivant la revendication 1, caractérisé en ce que, lors de la transformation du gaz brut partiellement oxydé produit en gaz de synthèse, on utilise pour le transport pneumatique du combustible depuis l'installation de préparation jusqu'au silo de stockage constitué par un filtre à cyclone avec une chambre de précipitation agrandie, du dioxyde de carbone sec et sans poussières, qui a été séparé du gaz brut partiellement oxydé produit, et en ce que pour la mise sous pression du réservoir à sas ainsi que du réservoir de dosage et pour la fourniture du combustible aux brûleurs du réacteur de gazéification, on utilise un courant partiel du gaz de synthèse produit, le gaz expulsé hors du réservoir à sas et hors du réservoir de dosage pendant l'opération de remplissage étant recyclé dans le processus et étant ajouté au gaz brut partiellement oxydé avant le traitement gazeux de celui-ci
3. Procédé suivant la revendication 1, caractérisé en ce que, lors de l'utilisation du gaz brut partiellement oxydé produit comme gaz combustible dans une turbine à gaz, on utilise pour le transport pneumatique du combustible depuis l'installation de préparation jusqu'au silo de stockage constitué par un filtre à cyclone avec une chambre de précipitation agrandie l'azote obtenu comme sous-produit dans l'installation de décomposition de l'air du réacteur de gazéification et en ce que, pour la mise sous pression du réservoir à sas et du réservoir de dosage ainsi que pour la fourniture du combustible aux brûleurs du réacteur de gazéification, on utilise un courant partiel du gaz partiellement oxydé épuré et/ou un gaz résiduel, le gaz expulsé hors du réservoir à sas et hors du réservoir de dosage pendant l'opération de remplissage étant envoyé dans la chambre de combustion de la turbine à gaz en même temps que l'azote obtenu après la séparation du combustible dans le filtre à cyclone.
EP89101157A 1988-03-24 1989-01-24 Procédé pour transporter un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée Expired - Lifetime EP0333991B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3809851A DE3809851A1 (de) 1988-03-24 1988-03-24 Verfahren zum foerdern eines feinkoernigen bis staubfoermigen brennstoffes in einen unter erhoehtem druck stehenden vergasungsreaktor
DE3809851 1988-03-24

Publications (2)

Publication Number Publication Date
EP0333991A1 EP0333991A1 (fr) 1989-09-27
EP0333991B1 true EP0333991B1 (fr) 1992-01-02

Family

ID=6350520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89101157A Expired - Lifetime EP0333991B1 (fr) 1988-03-24 1989-01-24 Procédé pour transporter un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée

Country Status (9)

Country Link
EP (1) EP0333991B1 (fr)
JP (1) JP2633678B2 (fr)
DE (2) DE3809851A1 (fr)
ES (1) ES2029535T3 (fr)
GR (1) GR3003625T3 (fr)
IN (1) IN171212B (fr)
PL (1) PL156480B1 (fr)
TR (1) TR24010A (fr)
ZA (1) ZA889518B (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450901C (zh) * 2005-07-11 2009-01-14 西安热工研究院有限公司 一种多支路出料的干煤粉加压密相输送装置
DE102007020294A1 (de) * 2007-04-30 2008-11-13 Siemens Ag Gemeinsamer Einsatz von Kohlendioxid und Stickstoff in einer Komponente eines Staubeintragsystems für die Kohlenstaubdruckvergasung
DE102007020333A1 (de) * 2007-04-30 2008-11-06 Siemens Ag Einsatz von reinem Kohlendioxid als Inertisierungs- und Fördermedium in Staubeintragsystemen für die Kohlenstaubdruckvergasung
DE102007020332A1 (de) * 2007-04-30 2008-11-06 Siemens Ag Einsatz einer Mischung von Kohlendoxid und Stickstoff als Inertisierungs- und Fördermedium in Staubeintragsystemen für die Kohlenstaubdruckvergasung
JP2009007474A (ja) * 2007-06-28 2009-01-15 Shimizu Corp バイオマスのガス化装置及びバイオマスのガス化方法
DE102008009679A1 (de) * 2008-02-18 2009-08-20 Siemens Aktiengesellschaft Staubeintragsystem
DE102008060893A1 (de) * 2008-12-09 2010-06-17 Uhde Gmbh Verfahren und Vorrichtung zur Versorgung eines Reaktors zur Erzeugung von Rohsynthesegas
DE102009006384A1 (de) * 2009-01-28 2010-08-19 Uhde Gmbh Verfahren zur Versorgung eines Flugstromvergasungsreaktors mit Brennstoff aus einem Vorratsbehälter
DE102009036973A1 (de) * 2009-08-12 2011-02-17 Uhde Gmbh Verfahren zur Versorgung eines Flugstromvergasungsreaktors mit kohlenstoffhaltigen Brennstoffen
JP5675297B2 (ja) * 2010-11-22 2015-02-25 三菱重工業株式会社 ガス化設備および石炭ガス化複合発電設備
WO2012073300A1 (fr) * 2010-11-29 2012-06-07 三菱重工業株式会社 Dispositif de gazéification
JP2012162660A (ja) * 2011-02-08 2012-08-30 Babcock Hitachi Kk 石炭ガス化石炭搬送システム及び石炭ガス化複合発電プラント
DE102012104866B4 (de) * 2012-06-05 2014-10-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zum Betrieb einer Schüttgutschleuseneinrichtung
DE102013018332A1 (de) * 2013-10-31 2015-04-30 Linde Aktiengesellschaft Vorrichtung zur Einbringung von festem organischen Einsatzmaterial in eine Vergasungsanlage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1767453A1 (de) * 1968-05-11 1971-09-16 Petrocarb Inc Verfahren und Vorrichtung zur pneumatischen Injektion fester Teilchen in eine Hochdruckzone
DD147188A3 (de) * 1977-09-19 1981-03-25 Lutz Barchmann Verfahren und vorrichtung zur druckvergasung staubfoermiger brennstoffe
DE3103655A1 (de) * 1981-02-04 1982-11-25 Saarberg + Dr. C. Otto Gesellschaft für Kohledruckvergasung mbH, 6620 Völklingen Absperrarmatur
GB2156843A (en) * 1984-02-10 1985-10-16 Hitachi Ltd Method and apparatus for feeding coal in an integrated power and coal gasification plant

Also Published As

Publication number Publication date
ZA889518B (en) 1989-09-27
IN171212B (fr) 1992-08-15
ES2029535T3 (es) 1992-08-16
PL278446A1 (en) 1989-11-13
TR24010A (tr) 1991-01-28
EP0333991A1 (fr) 1989-09-27
JPH01278597A (ja) 1989-11-08
GR3003625T3 (fr) 1993-03-16
DE58900646D1 (de) 1992-02-13
PL156480B1 (en) 1992-03-31
JP2633678B2 (ja) 1997-07-23
DE3809851A1 (de) 1989-10-05

Similar Documents

Publication Publication Date Title
EP0333991B1 (fr) Procédé pour transporter un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée
EP0335071B1 (fr) Procédé et installation de transport pneumatique d'un combustible finement granulé jusqu'à pulvérulent dans un réacteur de gazéification sous pression élevée
EP0215857B1 (fr) Procede d'evacution de particules de residus d'un reacteur de gaseification sous pression
DE2434526C2 (de) Verfahren und Einrichtung zum Einführen feinzerteilten festen Brennstoffes in einen unter erhöhtem Druck stehenden Vergasungsraum
DE2529802A1 (de) Vorrichtung zum vergasen von kohle u.dgl.
EP2242707A1 (fr) Procédé et dispositif pour la réception et le transfert de matières solides en grains fins à grossiers d'un récipient vers un système à pression plus élevée
DE3204589A1 (de) Anlage zur verbrennung von unreinem festem brennstoff in einer brennkammer mit einem wirbelbett
DE102008052673A1 (de) Nachfördersystem in einen Kohlevergasungsreaktor
EP1201731A1 (fr) Procédé de gazéification en lit fluidisé de solides contenant du carbone et installation de gazéification
EP3548587B1 (fr) Procédé et appareil de réduction de carbone dans le produit inférieur d'un gazéificateur à lit fluidisé
DE2718539A1 (de) Verfahren zur vergasung feinverteilter, asche enthaltender brennstoffe
EP2364348A2 (fr) Processus et installation pour alimenter un réacteur servant à produire un gaz de synthèse brut
DE2659752A1 (de) Verfahren zur reduzierung des schwefelgehaltes von zu staub aufbereiteter kohle
DE102010026792B4 (de) Verfahren zum Betreiben eines Oxyfuel-Kraftwerks
EP2478072A2 (fr) Procédé de gazéification de résidu combinée de combustibles liquides et solides
EP0497088A1 (fr) Appareil et procédé pour transporter un combustible finement granulé à poudreux dans un réacteur de gazéification sous pression élevée
DE3714749C2 (fr)
DE3038281A1 (de) Verfahren zum beschicken einer batterie von verkokungsoefen mit vorerhitzter kohle
EP2313478A2 (fr) Dispositif et procédé de dégazage de cendres
EP0370201B1 (fr) Procédé pour faire fonctionner une installation de gazéification de combustibles solides et installation ainsi aménogée
DE3719549A1 (de) Verfahren und einrichtung zur entstaubung und entschwefelung von gasen
DE102008012733A1 (de) Nachfördersystem in einen Kohlevergasungsreaktor
EP0108234A2 (fr) Procédé et installation pour gazéifier des résidus de liquéfaction hydrogénante de charbon et/ou des résidus d'hydrogénation d'huiles lourdes dans un réacteur à lit fluidisé ou entraîné
WO2013045266A2 (fr) Amenée pneumatique de combustible provenant d'un réservoir doseur à un réacteur de gazéification à pression différentielle élevée
DE1189226B (de) Verfahren zum UEberfuehren eines feinzerteilten festen Brennstoffes aus einem Raum gewoehnlichen Druckes in einen unter erhoehtem Druck stehenden Raum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GR

17P Request for examination filed

Effective date: 19890925

17Q First examination report despatched

Effective date: 19901002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GR

REF Corresponds to:

Ref document number: 58900646

Country of ref document: DE

Date of ref document: 19920213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029535

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003625

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19961223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970129

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503