EP0332227B1 - Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes - Google Patents

Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes Download PDF

Info

Publication number
EP0332227B1
EP0332227B1 EP89107696A EP89107696A EP0332227B1 EP 0332227 B1 EP0332227 B1 EP 0332227B1 EP 89107696 A EP89107696 A EP 89107696A EP 89107696 A EP89107696 A EP 89107696A EP 0332227 B1 EP0332227 B1 EP 0332227B1
Authority
EP
European Patent Office
Prior art keywords
heater
yarn
temperature
touch type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89107696A
Other languages
English (en)
French (fr)
Other versions
EP0332227A2 (de
EP0332227A3 (en
Inventor
Toshimasa Kuroda
Yoshihiko Maezawa
Terukuni Ikuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27232372&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0332227(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP58203678A external-priority patent/JPS6099026A/ja
Priority claimed from JP59135257A external-priority patent/JPS6119825A/ja
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to EP89107696A priority Critical patent/EP0332227B1/de
Publication of EP0332227A2 publication Critical patent/EP0332227A2/de
Publication of EP0332227A3 publication Critical patent/EP0332227A3/en
Application granted granted Critical
Publication of EP0332227B1 publication Critical patent/EP0332227B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass

Definitions

  • the present invention relates to a non-touch type heater for heating a synthetic filament yarn, in a false-twist texturing process while keeping the running yarn apart from a heater surface.
  • this invention relates to a heater for a so-called in-draw system for producing a textured yarn of polyester filament, wherein a polyester filament yarn substantially composed of polyethylene terephthalate and partially oriented is processed in an in-draw texturing system, in which said filament yarn is continuously false-twisted by means of a twister and a portion of said filament yarn in a region upstream of said twister is continuously heat-set by means of a non-touch type heater maintained at an elevated temperature for a predetermined processing time, wherein the heat-set portion of the yarn is then cooled prior to being introduced into said twister so that the twisted form thereof is fixed and wherein said filament yarn is then detwisted in a region downstream of said twister to form a textured yarn, such system being generally known from US-A-4 028 875.
  • FR-A-1 204 634 discloses a false-twisting process for a polyamide filament yarn, in which a non-touch type heater is adopted to overcome various drawbacks of the conventional contact type heaters, especially the considerable length thereof at elevated processing speeds and the risk that a yarn is melt-broken when the heater temperature is elevated.
  • the non-touch type heater is employed as a pre-heating means and comprises a central opening being connected by means of a narrow slot to the outside of the heater, so that the yarn after having reached its intended running speed may be introduced through said slot into said central opening by guide means radially displacable with respect to the heater, so that relative movement of the guide means and of the heater has to be precisely controlled in order to avoid any contact of the yarn with the hot heater walls.
  • a primary heater is utilized for heat-setting a truly twisted portion of the yarn.
  • Most such heaters are of a contact type comprising a heater plate energized by a heating medium such as Dowtherm® or by a wire embedded therein.
  • the heater plate has a curved surface and groove provided thereon for retaining the yarn on the heater surface and preventing the yarn from leaving the yarn path due to the torque imparted by the twist.
  • a heater temperature less than 250°C and a processing time more than 0.17 second are set.
  • the conventional texturing system utilizing a contact-type heater suffers from some problems, however.
  • the graph of Fig. 1a shows the crimpability and dyeability of the conventional textured yarn relative to the heater temperature.
  • the crimpability appears to have a peak for a specific heater temperature X, while the dyeability has a valley for another heater temperature Y.
  • the differential coefficients of these parameters relative to the heater temperature are almost zero in the vicinity of the peak or valley. Therefore, even if the heater temperature fluctuates somewhat around that point, the value of the parameter remains almost the same.
  • an even yarn quality can be expected from a process carried out under such a peak or valley temperature.
  • the differential coefficient of the parameter becomes larger as the temperature is farther from the peak or valley, when the process is carried out under a temperature in a region away from the peak or valley, the parameter tends to vary largely even with subtle temperature fluctuations.
  • the temperature Y under which the dyeability of the yarn becomes minimum is lower than the temperature X for the maximum crimpability. Since yarn processed under such a lower temperature Y is liable to lack bulkiness and fabric obtained therefrom tends to present a poor hand after post heat-treatment such as dyeing or heat-setting, the temperature Y is not preferable as a heater temperature for the texturing process. In practice, therefore, the higher temperature X is utilized. However, under conventional conditions, there is a relatively large difference between the temperatures X and Y. This means the fluctuation of the heater temperature may be reflected in the dyeability of the resultant yarn.
  • non-touch type heater instead of contact-type, i.e., a heater through which the yarn can pass without contacting the heater surface.
  • contact-type i.e., a heater through which the yarn can pass without contacting the heater surface.
  • a non-touch type heater it is difficult to control a balloon of yarn in the heater zone whereupon the heat-setting effect of the yarn becomes irregular.
  • more than 0.2 second processing time is thought to be necessary for the yarn in the heater, even in the case of a non-touch type heater.
  • the heater temperature must be lower than 350°C to protect the yarn from heat damage. In such a lower temperature region, however, the crimpability and dyeability of the textured yarn relative to the heater temperature are not improved even by the utilization of a non-touch type heater.
  • a heater of the type indicated above said heater being characterized in that it comprises a heater body having a lengthwise groove in the surface therof, that a plurality of yarn guides is arranged in the groove so that the yarn runs along an arcuate path defined by the yarn guides and in that the distance between the heater surface and the yarn path is minimum at the inlet and exit ends of the path and maximum in the middle of the path.
  • the non-touche type heater according to the invention is especially useful for heating a polyester filament yarn.
  • a non-touch type heater Using a non-touch type heater according to the present invention, a textured yarn excellent in evenness for dyeability can be obtained and contamination of the heater surface can be avoided.
  • Polymer filament substantially composed of polyethylene terephthalate means a polymer of which more than 85% of its repeated units is composed of polyethylene terephthalate.
  • the polymer may be copolyester having at least a copolymerized component.
  • the polymer may include additives commonly utilized in synthetic filaments, such as delusterants, anti-staticizers, anti-flammable agnets, and lubricants.
  • the false-twist texturing systems to which the inventive heater is being used include both a single-heater type systems having only a primary heater and mainly used for producing a torque yarn and a double-heater type systems in which the torque yarn produced by a primary heater is continuously relaxed in a secondary heater to form a non-torque bulky yarn.
  • a typical texturing system of the double-heater type is diagrammatically illustrated in Fig. 2, in which a primary heater 3, a cooling plate 5, a twister 6, and a secondary heater 8 are arranged in series.
  • a POY a partially oriented polyester yarn is supplied from a package 1 into the processing zone through a feed roller 2 and is drawn between the feed roller 2 and a delivery roller 7 at a predetermined draw ratio. Simultaneously, the POY is false-twisted by the twister 6, and the twisted portion of the POY is heat-set by the primary heater 3. The POY then is cooled by the cooling plate 5 to fix the twisted form and is detwisted in the downstream region of the twister 6 to form a textured yarn. The textured yarn is introduced into the secondary heater 8 where the torque and bulkiness of the yarn are suppressed to form a non-torque yarn and is finally taken up by a winder 11 through a second delivery roller 9 and a guide 10.
  • the second heater 8 may be omitted, if control of the torque and bulkiness of the resultant yarn is unnecessary, whereupon the above system functions as a single-heater type.
  • the primary heater 3 is of the non-touch type, one preferred embodiment of which is illustrated in Figs. 3a, 3b, and 3c.
  • a heater body 12 is provided along its length with a groove 13 in which a plurality of guide plates 15 are transversely positioned at substantially the same distance, such as 10 cm, from each other.
  • the guide plate 15 has a central slit 16 therein.
  • the slit 16 is formed with an increasingly greater depth toward the ends of the heater body 12. Therefore, the yarn Y to be processed stably passes through the heater 3 along a bow-like path without touching the heater surface, as shown in Fig. 3c, by being guided with the innermost point of each slit 16.
  • Reference numeral 14 designates a sheathed heater embedded in the heater body 12.
  • a "non-touch type heater” means a heater of the above type having a guide plate 15 for suppressing a balloon of the yarn in the heating zone and for completely preventing contact of the yarn with the heater.
  • the “heater temperature” means the temperature of the atmosphere in the groove 13 measured at the point designated by 17, in Fig. 3c. According to the inventor's experiments, however, the atmospheric temperature is almost the same everywhere in the groove 13.
  • the heater temperature must be from 350°C to 800°C and the processing time for the yarn in the heater must be from 0.12 second to 0.04 second. According to the inventor's study, in false-twist texturing system for polyester filament, the logarithm of the heater temperature TH(°C) under which the crimpability of the resultant textured yarn becomes maximum varies in relation to the processing time t, as shown in the graph in Fig. 4.
  • zone B corresponding to the processing time between 0.04 second to 0.12 second, the two temperatures X and Y are observed to approach each other, and the two curves for crimpability and dyeability become flatter than those in zone A, as shown in Fig. 1b.
  • the heater temperature must be in the range of from 230°C to 280°C. Under such a high temperature, the yarn easily melts when threaded to the heater at the commencement of operation, or yarn breakage occurs during operation and the yarn sticks on the heater surface. This is difficult to remove and can cause successive yarn breakage in the heater. Therefore, the contact-type heater is unsuitable for the present invention.
  • the preferable heater temperature, in the zone B is from 350°C to 800°C, the possibility of the yarn sticking on the heater surface is very low because the yarn path is separate from the heater surface. Even if the yarn touches the surface, it immediately burns up and leaves no foreign matter. Therefore, the non-touch type heater is suitable for the present invention.
  • zone C corresponding to a processing time less than 0.04 second, the heater temperature must be very high, such as exceeding 800°C, which results in a large power consumption and shorter heater life. Moreover, the absolute value of the maximum crimpability becomes very low even under such a high heater temperature, because there is insufficient heat transmission from the heater to the yarn due to the shorter processing time.
  • the twister for false-twisting the yarn is preferably a belt type, in which yarn is twisted between a pair of endless belts.
  • a typical structure thereof is illustrated in Figs. 5 and 6, in which a pair of endless belts 21, 22 made of frictional material such as nitrile-butadiene rubber (NBR) with a hardness of 78° are driven by two pairs of pulleys 23, 24, and 25, 26, respectively.
  • the two belts 21, 22, intersect each other with a specific angle ⁇ and are driven in an opposite direction from each other by motors 27, 28, respectively.
  • a yarn Y to be processed is introduced into the contact area between the two belts 21, 22 via an inlet guide 30, false-twisted while kept in a nipped state therebetween, and withdrawn therefrom via an outlet guide 31.
  • FIG. 6 is a graph of the twisting ability of the belt-type twister compared to a conventional three-disc type twister in the case of twisting a polyester filament of 150 d/30 f.
  • curve D the ability of the conventional disc-type twister rapidly declining in the area of the processing speed exceeding 1,000 m/min.
  • curve E that of the belt-type twister does not decline even in the area exceeding 2,000 m/min.
  • Figure 8a illustrates the relationship between the twisting ability and the intersecting angle of the belts of the belt-type twister. It is apparent from the curves that, in the lower processing speed area around 500 m/min, the twisting ability becomes larger as the intersecting angle increases, but, in the higher processing speed area above 1,000 m/min, the tendency is not so simple. According to the study of the present inventors, it was found that there exists a suitable range for the intersecting angle relative to the processing speed, as shown in a graph of Fig. 8b, which is between two curves F and G.
  • the lower curve F is determined by the minimum twist number required for obtaining an acceptable textured yarn, such as 2,200 T/m for a fully drawn polyester filament yarn of 150 d.
  • the upper curve G indicates the maximum intersecting angle in which stable processing can be carried out.
  • the belt speed must be increased with the increase of the processing speed in order to smoothly propel the yarn.
  • the yarn cannot be stably twisted even if the belt speed is increased.
  • the mechanism of this phenomenon is still unclear, but the fact teaches that the yarn must be twisted under the smaller intersecting angle with the increase of the processing speed. For this reason, an intersecting angle in a range of from 90° to 110° is preferable in the area exceeding a processing speed of 1,000 m/min.
  • the processing time in the heater zone is selected within a range of from 0.04 second to 0.12 second, which is much shorter compared to that of the conventional system, the length of the heater may be shortened even with a high processing speed. This results in more compactness of the overall texturing system.
  • a heater length of at least 2.5 m is required in a conventional system. The entire installation of the same is as shown in Fig. 9, in which the yarn path must be bent acutely due to the overhead construction of the installation.
  • the heater length may be less than 1.8 m, typically from 65 cm to 70 cm which corresponds to the case of a processing speed of 400 m/min in the conventional system. Therefore, the installation becomes compact and the yarn path follows a substantially straight line, as shown in Fig. 2, which results in improved space efficiency and yarn quality. Moreover, according to the present invention, no scum cleaning of the heater is necessary, which is required in a conventional system every 10 or 30 days, because the scum does not stick at all on the heater surface due to usage of a non-touch type heater and the high temperature thereof.
  • Two kinds of POY's were obtained by melt-spinning polyethylene terephthalate polymer having an intrinsic viscosity [ ⁇ ] of 0.63, including 0.03 weight % of titanium oxide under a melting temperature of 295°C and a spinning temperature of 285°, the POY's having a fineness of 115 d/36 f and 225 d/48 f and birefringence ⁇ n of 0.045 and 0.042, respectively.
  • the POY's were subjected to an in-draw texturing process under various processing times by means of the same system as illustrated in Fig. 2 but without the secondary heater 8.
  • the textured yarns resulting from each run were tested for crimpability and tensile strength.
  • the crimpability was measured as follows:
  • the dyeability was measured as follows:
  • runs 3, 4, 7, 8, 16, 17, 20, 21, and 22, circled in Table 1 and carried out under conditions according to the present invention present superior results in yarn quality and heater contamination.
  • a POY of 225 d/30 f was spun under the same conditions as described in Example 1.
  • the birefringence ⁇ n thereof was 0.045.
  • the POY was subjected to an in-draw texturing process by means of the same system as shown in Fig. 2 but without the secondary heater 8.
  • the processing conditions were as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Claims (3)

1. Berührungslos arbeitender Heizapparat zum Erhitzen eines synthetischen Filamentgarns in einem Falschdrahttexturierprozeß, während das laufende Garn im Abstand von der Oberfläche des Heizapparates gehalten wird,
wobei der Heizapparat dadurch gekennzeichnet ist, daß er einen Heizkörper (12) aufweist, der in seiner Oberfläche eine in Längsrichtung verlaufende Nut (13) besitzt, daß in der Nut (13) mehrere Garnführungen (15) vorgesehen sind, derart, daß das Garn (Y) längs eines durch die Garnführungen (15) definierten, bogenförmigen Pfades läuft, und daß der Abstand zwischen der Oberfläche des Heizapparates und dem Pfad des Garns am einlaßseitigen und am auslaßseitigen Ende des Pfades einen Minimalwert und in der Mitte des Pfades einen Maximalwert besitzt.
2. Berührungslos arbeitender Heizapparat nach Anspruch 1, dadurch gekennzeichnet, daß die Garnführungen Führungslatten (15) sind, von denen jede einen darin vorgesehenen, zentralen Schlitz (16) aufweist, wobei die Schlitze (16) in Richtung auf die Enden des Heizkörpers (12) mit zunehmend größerer Tiefe ausgebildet sind.
3. Berührungslos arbeitender Heizapparat nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß in den Heizkörper (12) eine umhüllte Heizung (14) eingebaut ist.
EP89107696A 1983-11-01 1984-10-25 Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes Expired - Lifetime EP0332227B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP89107696A EP0332227B1 (de) 1983-11-01 1984-10-25 Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP203678/83 1983-11-01
JP58203678A JPS6099026A (ja) 1983-11-01 1983-11-01 仮撚加工方法
JP135257/84 1984-07-02
JP59135257A JPS6119825A (ja) 1984-07-02 1984-07-02 仮撚加工法
EP89107696A EP0332227B1 (de) 1983-11-01 1984-10-25 Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP84112844.0 Division 1984-10-25

Publications (3)

Publication Number Publication Date
EP0332227A2 EP0332227A2 (de) 1989-09-13
EP0332227A3 EP0332227A3 (en) 1989-11-15
EP0332227B1 true EP0332227B1 (de) 1992-02-26

Family

ID=27232372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107696A Expired - Lifetime EP0332227B1 (de) 1983-11-01 1984-10-25 Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes

Country Status (1)

Country Link
EP (1) EP0332227B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404217A1 (de) * 1993-03-02 1994-09-08 Barmag Barmer Maschf Heizeinrichtung zum Erwärmen eines laufenden Fadens

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406673B1 (de) * 1989-07-01 1995-08-30 Barmag Ag Falschzwirnkräuselmaschine für einen synthetischen Faden
US5138829A (en) * 1990-02-10 1992-08-18 Teijin Seiki Co., Ltd. Apparatus for heat treating a synthetic yarn
JP3164180B2 (ja) * 1992-07-24 2001-05-08 帝人製機株式会社 合成繊維糸条の熱処理装置
FR2679262B1 (fr) * 1991-07-18 1994-01-14 Ic Bt Roanne Dispositif pour le traitement thermique de fils en mouvement.
EP0524111B1 (de) * 1991-07-18 1994-11-17 Icbt Roanne Vorrichtung zur thermischen Behandlung von laufenden Garnen
US5578231A (en) * 1992-06-06 1996-11-26 Barmag Ag Heater for an advancing yarn
WO1993025739A1 (de) * 1992-06-06 1993-12-23 Barmag Ag Heizeinrichtung für einen laufenden faden
WO1993025738A1 (de) * 1992-06-06 1993-12-23 Barmag Ag Heizkörper für einen laufenden faden
KR950703086A (ko) * 1992-08-25 1995-08-23 클라우스 퓌팅·프리트헬름 헨센 전진사를 위한 조절가능한 가열장치(adjustable heating apparatus for an advancing yarn)
EP1645668A1 (de) * 2004-10-08 2006-04-12 Schärer Schweiter Mettler AG Garnheizer und Verwendung eines Garnheizers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE567120A (de) * 1957-04-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404217A1 (de) * 1993-03-02 1994-09-08 Barmag Barmer Maschf Heizeinrichtung zum Erwärmen eines laufenden Fadens

Also Published As

Publication number Publication date
EP0332227A2 (de) 1989-09-13
EP0332227A3 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
EP0143974B1 (de) Verfahren zur Herstellung eines texturierten Garnes
US3691750A (en) Textured core yarns
EP0621357B1 (de) Verfahren und apparat zum herstellen von polyesterfasern
US4059950A (en) Multifilament yarn having novel configuration and a method for producing the same
EP0332227B1 (de) Berührungsloser Heizapparat für das Erwärmen eines synthetischen Garnes
US6723265B1 (en) Method for producing polyester-based combined filament yarn
US3995420A (en) Highly elastic synthetic crimp yarn with low residual latent crimp and process for producing said yarn
US3910027A (en) Process for the simultaneous stretch texturing of filament yarn
EP0089005B1 (de) Texturiertes Garn und Verfahren und Vorrichtung zur Herstellung desselben
US4242862A (en) Multifilament yarn having novel configuration and a method for producing the same
US4539805A (en) Process and apparatus for producing easily dyeable polyester false-twisted yarns
US4329841A (en) Method for the production of a synthetic crepe yarn
US5404706A (en) Method of false twist texturing and a false twist texturing machine
EP0201521B1 (de) Verfahren und vorrichtung zur thermischen behandlung von streifen
US4341068A (en) Method for producing an improved bundle of fibrous elements
EP0505641B1 (de) Verbundgarn aus kurzen und langen Fasern und Verfahren und Vorrichtung zu dessen Herstellung
JPH1060745A (ja) 嵩高弾性糸の製造方法
JP2901145B2 (ja) 仮撚加工機
EP0087124B1 (de) Verfahren und Vorrichtung zur Herstellung von falschdralltexturierten, leicht färbbaren Polyestergarnen
JP3071922B2 (ja) 複合加工糸の製造方法
USRE28117E (en) Production op torque yarn
JP3538065B2 (ja) 複合仮撚加工糸の製造方法
JP2000502415A (ja) 無端の合成フイラメント糸からフアンシーヤーンを造るための方法および装置
JPS6214650B2 (de)
JPH04333629A (ja) 高速仮撚加工方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 143974

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19891218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEIJIN SEIKI CO. LTD.

17Q First examination report despatched

Effective date: 19910508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 143974

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3485526

Country of ref document: DE

Date of ref document: 19920402

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 727

REG Reference to a national code

Ref country code: GB

Ref legal event code: 727A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 727B

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: GB

Ref legal event code: SP

26 Opposition filed

Opponent name: ICBT ROANNE

Effective date: 19921124

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19940207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001010

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001016

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001025

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011025

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST