EP0328013B1 - Commutateur électrique pour guides d'ondes - Google Patents

Commutateur électrique pour guides d'ondes Download PDF

Info

Publication number
EP0328013B1
EP0328013B1 EP89101979A EP89101979A EP0328013B1 EP 0328013 B1 EP0328013 B1 EP 0328013B1 EP 89101979 A EP89101979 A EP 89101979A EP 89101979 A EP89101979 A EP 89101979A EP 0328013 B1 EP0328013 B1 EP 0328013B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
fin
conductor structure
electrical
switch according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89101979A
Other languages
German (de)
English (en)
Other versions
EP0328013A2 (fr
EP0328013A3 (en
Inventor
Heinrich Dipl.-Ing. Callsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Daimler Benz Aerospace AG filed Critical Deutsche Aerospace AG
Publication of EP0328013A2 publication Critical patent/EP0328013A2/fr
Publication of EP0328013A3 publication Critical patent/EP0328013A3/de
Application granted granted Critical
Publication of EP0328013B1 publication Critical patent/EP0328013B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices

Definitions

  • the invention relates to an electrical waveguide switch according to the preamble of claim 1.
  • Such a waveguide switch is already known from EP-A-0 126 811.
  • Such waveguide switches are used, for example, in radar devices for amplitude modulation and / or pulse shaping of a high-frequency signal, e.g. in the Ka band (26.5 GHz to 40 GHz).
  • Such waveguide switches there is at least one semiconductor switch, for example a so-called PIN diode, in the interior of a waveguide, the damping of the waveguide switch for the electromagnetic waves to be guided being dependent on its switching state, ie, conducting or blocked.
  • Such waveguide switches have locked State a (blocking) attenuation of approximately 30dB to 40dB and are generally narrow-band.
  • the waveguide switch described in the aforementioned EP-A-0 126 811 consists, for example, of a metallic waveguide suitable for electromagnetic waves, in the interior of which a metallic fin-waveguide structure is attached, which divides the waveguide into two halves in the longitudinal direction.
  • the metallic fin conductor structure is electrically insulated from the two waveguide halves on the one hand by the dielectric substrate to which it is applied and on the other hand by a further dielectric layer and is arranged in an E plane, which contains the longitudinal axis of the semiconductor.
  • the fin conductor structure itself is also divided into two parts in the longitudinal direction of the waveguide, each part of this fin conductor structure having a central region, to which taper regions adjoin on both sides.
  • the center areas are electrically connected to one another by two semiconductor switches in the form of semiconductor diodes.
  • the two waveguide halves have metallic webs which run in the longitudinal direction of the waveguide and protrude into the interior of the respective waveguide halves. These webs divide the waveguide into three superimposed areas, namely into the actual waveguide area in the middle, in which the fin-conductor structure with the semiconductor diodes is arranged, and into two edge areas, which have the function of a choke.
  • Blocks of dissipative material are arranged in the two edge regions, which block the excitation or propagation of harmonics of the operating frequency of the electromagnetic waves over these edge regions of the waveguide. Furthermore, there are tapered blocks in the middle waveguide area on both sides of the fin conductor structure arranged, which are dimensioned such that a space remains between the blocks on the one hand and the substrate or the additional dielectric insulation layer on the top of the fin conductor structure on the other.
  • the associated reduction in cross-section of the waveguide interior in the middle waveguide area prevents the propagation of the electromagnetic waves to be guided in the form of normal waveguide modes and instead forces the propagation of the waves in the form of a slot line mode.
  • the invention is therefore based on the object of improving a generic waveguide switch in such a way that a low insertion loss, a high bandwidth, short switch-on and switch-off times and the highest possible blocking loss (isolation) can be achieved in the frequency band used.
  • An advantage of the invention is that the waveguide switch is mechanically robust, reliable and inexpensive to manufacture, especially in an industrial series production.
  • Fig. 1 shows the waveguide switch according to the invention in a perspective view with a breakout (hatched) so that the interior can be displayed.
  • width a 7.11 mm; height b - 3.56 mm
  • In the wider side surfaces of the interior there are two opposite longitudinal grooves 2, 2 '. These have a width of approximately 250 »m and a depth of approximately 500» m.
  • These longitudinal grooves 2, 2 ' serve to hold a rectangular substrate 3, which has a thickness of approximately 254 »m and the lowest possible relative dielectric constant of, for example, 2.2.
  • a suitable material for the substrate 3 is, for example, PTFE (Teflon), which is reinforced with glass fibers.
  • PTFE Teflon
  • the longitudinal grooves 2, 2 ' are arranged such that the fin guide structure 4, 5, 6, 4', 5 ', 6' is located in an E plane which contains the longitudinal axis of the waveguide.
  • the fin conductor structure consists of two parts that are galvanically isolated in the area of the longitudinal axis. Each of these parts consists of a central area 4, 4 ', to which so-called taper areas 5, 5' and 6, 6 'are connected on both sides.
  • the central regions 4, 4 ′ have a lateral spacing of approximately 50 ⁇ m and are connected by at least one semiconductor switch 7.
  • the number of semiconductor switches depends on the desired electrical properties, eg bandwidth. of the waveguide switch.
  • the axial distance between the semiconductor switches 7 is also dependent on the desired electrical properties and is, for example, approximately 2 mm.
  • the distances between the semiconductor switches are chosen so that the line disturbances caused by the individual diodes compensate one another in the entire Ka band.
  • the central areas 4 and 4 ' are delimited on both sides by taper areas 5, 6 and 5', 6 '. These have an axial length of approximately three (air) wavelengths, for example approximately 15 mm for the Ka band.
  • a galvanic contact is present between the lower part of the fin conductor structure shown in FIG. 1 and the waveguide 1.
  • the upper part of the fin conductor structure is galvanically isolated from the waveguide 1, so that the semiconductor switches 7 can be controlled electrically, for example with a direct voltage. This insulation takes place with the aid of an insulation layer 8, for example a plastic film.
  • the properties of the waveguide switch in particular its blocking attenuation (insulation), surprisingly depend very strongly on the properties of the insulation layer 8. If you choose, for example, a plastic film, such as Teflon, with a real dielectric constant, blocking attenuations of 30dB to 40dB, at most 50dB, can be achieved. If, on the other hand, if a plastic film made of a dissipative material, ie a material with a complex dielectric constant, is selected for the insulation layer 8 according to the invention, significantly higher blocking attenuations can be achieved, for example up to 80 dB for the Ka band (FIG. 3).
  • a suitable plastic film consists, for example, of coated polyester material and has a thickness of approximately 10 »m.
  • This surprising effect can be explained by the fact that the insulation of the upper part of the fin conductor structure creates a TEM line which runs parallel to the actual fin conductor structure.
  • the insulated upper part forms a center conductor and the surrounding waveguide housing forms an outer conductor.
  • the cable properties are determined almost exclusively by the film inserted to insulate the upper part and the width of the mechanical clamping area of the upper part, because there the two conductors of the TEM cable are separated from each other only by the film with a thickness in the »area. All of the work carried out by this management is concentrated in this area.
  • the line since it is strongly mismatched at its ends, forms a resonator that is loosely coupled to the actual fin conductor structure.
  • the maximum insulation of the waveguide gates of the PIN diode switch that can be achieved with PIN diodes in the fin conductor structure is limited by the power component that passes through the resonator from the input to the output gate when the PIN diode is blocked.
  • an insulation layer 8 made of dissipative material makes it possible to close this detour (bypass) via the resulting resonator.
  • FIG. 2 shows the equivalent circuit diagram for a PIN diode which is inserted into the fin conductor structure according to FIG. 1.
  • L S and C p mean parasitic inductances or capacitances by inserting one or capacitances by inserting a PIN diode into the fin conductor structure arise.
  • the resistance R S describes the contact resistance of the PIN diode and is independent of the selected bias or bias current.
  • C j and R j denote the capacitance and the resistance of the pn junction of the PIN diode. R j depends on the value of the bias voltage or bias current.
  • the width of the insulation layer 8 is greater than or equal to the wall thickness of the waveguide 1, 1 '.
  • an insulation layer is selected with a width that is greater than or equal to the depth of the longitudinal groove 2 ', but is smaller than the wall thickness of the waveguide. This makes it advantageously possible to produce a waveguide 1, 1 'with a galvanically closed cross section.
  • the switching times are approximately 35ns (rise time) and 5ns (fall time) when using six semiconductor switches 7, which are designed as PIN diodes.
  • the insertion loss (transmission loss) is less than 1.3 dB in the entire Ka band (FIG. 3).
  • insulation layer 8 directly to the fin conductor structure, e.g. as a layer of lacquer.
  • the invention is not limited to the exemplary embodiment described, but rather can be applied analogously to further frequency bands. All that is required is the dimensions, e.g. of the waveguide and the fin conductor structure, as well as the type and number of semiconductor switches according to the frequency and / or wavelength used. Such a procedure is familiar to a person skilled in the field of radio or ultra-high frequency technology.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Claims (9)

  1. Commutateur électrique pour guide d'ondes, comprenant un guide d'ondes métallique convenable pour des ondes électromagnétiques, dans la cavité duquel est monté au moins un commutateur à semi-conducteur de telle manière que l'impédance du guide d'ondes peut être modifiée en fonction de l'état de commutation du commutateur à semi-conducteur, dans lequel
    - dans la cavité du guide d'ondes est montée une structure métallique conductrice à ailette qui est subdivisée dans la direction longitudinale du guide d'ondes,
    - chaque partie de la structure conductrice à ailette possède une région centrale à laquelle se raccordent des deux côtés des régions qui vont en se rétrécissant,
    - des régions centrales sont reliées électriquement par au moins un commutateur à semi-conducteur,
    - il est prévu une isolation électrique entre la structure conductrice à ailette et le guide d'ondes,
    - la structure conductrice à ailette possède au moins un terminal électrique pour le pilotage du commutateur à semi-conducteur,
    caractérisé en ce que
    - une partie de la structure conductrice à ailette est reliée de manière électriquement conductrice au guide d'onde (1, 1'),
    - l'autre partie de la structure conductrice à ailette est isolée électriquement par rapport au guide d'ondes (1, 1') et possède ledit au moins un terminal électrique pour le pilotage du commutateur à semi-conducteur (7), et
    - l'isolation électrique de l'autre partie de la structure conductrice à ailette est assurée à l'aide d'une couche d'isolation (8) qui est constituée par un matériau dissipateur.
  2. Commutateur électrique pour guide d'ondes selon la revendication 1, caractérisé en ce que les régions centrales (4, 4') de la structure conductrice à ailette sont situées à une distance latérale qui est faible par rapport aux longueurs d'ondes qui peuvent être véhiculées dans le guide d'ondes (1, 1').
  3. Commutateur électrique pour guide d'ondes selon l'une quelconques des revendications précédentes, caractérisé en ce que les régions qui vont en se rétrécissant (5, 5', 6, 6') possèdent en direction axiale une longueur égale à environ trois longueurs d'onde.
  4. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce que le commutateur à semi-conducteur (7) est réalisé sous la forme d'une diode semi-conductrice.
  5. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure conductrice à ailette est appliquée sur un substrat (3) qui possède une faible constante diélectrique.
  6. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure conductrice à ailette est agencée dans un plan E qui contient l'axe longitudinal du guide d'ondes (1, 1').
  7. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce que le guide d'ondes (1, 1') présente en coupe transversale une surface fermée dans l'état propre au fonctionnement.
  8. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu au moins une gorge longitudinale (2, 2') dans la cavité du guide d'ondes (1, 1') afin de recevoir le substrat (3) ainsi que la structure conductrice à ailette.
  9. Commutateur électrique pour guide d'ondes selon l'une quelconque des revendications précédentes, caractérisé en ce que le guide d'ondes (1, 1') possède au moins dans la région de la région centrale (4, 4') une réduction de section, de telle manière qu'il en résulte un amortissement additionnel pour les ondes à véhiculer.
EP89101979A 1988-02-11 1989-02-04 Commutateur électrique pour guides d'ondes Expired - Lifetime EP0328013B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3804205 1988-02-11
DE3804205A DE3804205A1 (de) 1988-02-11 1988-02-11 Elektrischer hohlleiterschalter

Publications (3)

Publication Number Publication Date
EP0328013A2 EP0328013A2 (fr) 1989-08-16
EP0328013A3 EP0328013A3 (en) 1990-07-11
EP0328013B1 true EP0328013B1 (fr) 1994-06-15

Family

ID=6347170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89101979A Expired - Lifetime EP0328013B1 (fr) 1988-02-11 1989-02-04 Commutateur électrique pour guides d'ondes

Country Status (2)

Country Link
EP (1) EP0328013B1 (fr)
DE (2) DE3804205A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315638A1 (en) * 2008-06-24 2009-12-24 Honeywell International Inc. Millimeter wave low-loss high-isolation switch
US10996178B2 (en) 2017-06-23 2021-05-04 Tektronix, Inc. Analog signal isolator
CN113523866A (zh) * 2021-07-19 2021-10-22 华能国际电力股份有限公司德州电厂 自吸式水冷壁鳍片切割机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270106A (en) * 1979-11-07 1981-05-26 The United States Of America As Represented By The Secretary Of The Air Force Broadband mode suppressor for microwave integrated circuits
DE3377760D1 (en) * 1983-05-20 1988-09-22 Marconi Co Ltd Microwave switch
DE3319573A1 (de) * 1983-05-30 1984-12-06 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Pin-dioden-schalter fuer millimeterwellen

Also Published As

Publication number Publication date
DE3804205A1 (de) 1989-08-24
EP0328013A2 (fr) 1989-08-16
EP0328013A3 (en) 1990-07-11
DE58907860D1 (de) 1994-07-21

Similar Documents

Publication Publication Date Title
DE69224866T2 (de) Radarsender mit FET Schaltern
DE69802467T2 (de) Leiterplatte mit einer Übertragungsleitung für hohe Frequenzen
DE4407251C2 (de) Dielektrischer Wellenleiter
EP0267403A2 (fr) Circuit capacitif séparateur
DE3781010T2 (de) Integrierte kapazitaetsstrukturen in mikrowellenflossenleitungsvorrichtungen.
EP1004149B1 (fr) Filtre a guides d'ondes
DE3782612T2 (de) Kurzschlitz-wellenleiterhybridkoppler mit mehrfachschaltbarem leistungspegel.
DE3689178T2 (de) Doppelkammduplexgerät mit Bandsperrenresonatoren.
DE3685553T2 (de) Pin-dioden-daempfungsglieder.
EP0328013B1 (fr) Commutateur électrique pour guides d'ondes
DE2503850C2 (de) Aus mehreren Einzelantennen bestehende Hohlleiterantenne
DE10143688A1 (de) Richtungskoppler, Antennenvorrichtung und Radarsystem
DE2848271C2 (fr)
EP0022990B1 (fr) Symétriseur microondes du type microstrip
DE2522918A1 (de) Richtungsleitung mit feldverschiebungseffekt
EP0124168B1 (fr) Mélangeur
DE2719272A1 (de) Hoechstfrequenz-diodenphasenschieber
DE3019523A1 (de) Uebergang von einem hohlleiter auf eine mikrostreifenleitung
EP1495513A1 (fr) Reseau d'adaptation electrique pourvu d'une ligne de transformation
WO2005038976A1 (fr) Reseau d'adaptation electrique comprenant une ligne de transformation
EP1139491A2 (fr) Cable coaxial rayonnant haute fréquence
DE2937917C2 (de) Hohlleiteranordnung mit Blindwiderstandselement
DE60201709T2 (de) Mehrfrequenz-Oszillator mit resonantem Dielektrikum
DE19516479B4 (de) Hohlleiterschalter
DE2225576C3 (de) Richtungsleitung für Mikrowellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19930401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940615

REF Corresponds to:

Ref document number: 58907860

Country of ref document: DE

Date of ref document: 19940721

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050204