EP0328013B1 - Electrical wave guide switch - Google Patents

Electrical wave guide switch Download PDF

Info

Publication number
EP0328013B1
EP0328013B1 EP89101979A EP89101979A EP0328013B1 EP 0328013 B1 EP0328013 B1 EP 0328013B1 EP 89101979 A EP89101979 A EP 89101979A EP 89101979 A EP89101979 A EP 89101979A EP 0328013 B1 EP0328013 B1 EP 0328013B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
fin
conductor structure
electrical
switch according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89101979A
Other languages
German (de)
French (fr)
Other versions
EP0328013A2 (en
EP0328013A3 (en
Inventor
Heinrich Dipl.-Ing. Callsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Daimler Benz Aerospace AG filed Critical Deutsche Aerospace AG
Publication of EP0328013A2 publication Critical patent/EP0328013A2/en
Publication of EP0328013A3 publication Critical patent/EP0328013A3/en
Application granted granted Critical
Publication of EP0328013B1 publication Critical patent/EP0328013B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices

Definitions

  • the invention relates to an electrical waveguide switch according to the preamble of claim 1.
  • Such a waveguide switch is already known from EP-A-0 126 811.
  • Such waveguide switches are used, for example, in radar devices for amplitude modulation and / or pulse shaping of a high-frequency signal, e.g. in the Ka band (26.5 GHz to 40 GHz).
  • Such waveguide switches there is at least one semiconductor switch, for example a so-called PIN diode, in the interior of a waveguide, the damping of the waveguide switch for the electromagnetic waves to be guided being dependent on its switching state, ie, conducting or blocked.
  • Such waveguide switches have locked State a (blocking) attenuation of approximately 30dB to 40dB and are generally narrow-band.
  • the waveguide switch described in the aforementioned EP-A-0 126 811 consists, for example, of a metallic waveguide suitable for electromagnetic waves, in the interior of which a metallic fin-waveguide structure is attached, which divides the waveguide into two halves in the longitudinal direction.
  • the metallic fin conductor structure is electrically insulated from the two waveguide halves on the one hand by the dielectric substrate to which it is applied and on the other hand by a further dielectric layer and is arranged in an E plane, which contains the longitudinal axis of the semiconductor.
  • the fin conductor structure itself is also divided into two parts in the longitudinal direction of the waveguide, each part of this fin conductor structure having a central region, to which taper regions adjoin on both sides.
  • the center areas are electrically connected to one another by two semiconductor switches in the form of semiconductor diodes.
  • the two waveguide halves have metallic webs which run in the longitudinal direction of the waveguide and protrude into the interior of the respective waveguide halves. These webs divide the waveguide into three superimposed areas, namely into the actual waveguide area in the middle, in which the fin-conductor structure with the semiconductor diodes is arranged, and into two edge areas, which have the function of a choke.
  • Blocks of dissipative material are arranged in the two edge regions, which block the excitation or propagation of harmonics of the operating frequency of the electromagnetic waves over these edge regions of the waveguide. Furthermore, there are tapered blocks in the middle waveguide area on both sides of the fin conductor structure arranged, which are dimensioned such that a space remains between the blocks on the one hand and the substrate or the additional dielectric insulation layer on the top of the fin conductor structure on the other.
  • the associated reduction in cross-section of the waveguide interior in the middle waveguide area prevents the propagation of the electromagnetic waves to be guided in the form of normal waveguide modes and instead forces the propagation of the waves in the form of a slot line mode.
  • the invention is therefore based on the object of improving a generic waveguide switch in such a way that a low insertion loss, a high bandwidth, short switch-on and switch-off times and the highest possible blocking loss (isolation) can be achieved in the frequency band used.
  • An advantage of the invention is that the waveguide switch is mechanically robust, reliable and inexpensive to manufacture, especially in an industrial series production.
  • Fig. 1 shows the waveguide switch according to the invention in a perspective view with a breakout (hatched) so that the interior can be displayed.
  • width a 7.11 mm; height b - 3.56 mm
  • In the wider side surfaces of the interior there are two opposite longitudinal grooves 2, 2 '. These have a width of approximately 250 »m and a depth of approximately 500» m.
  • These longitudinal grooves 2, 2 ' serve to hold a rectangular substrate 3, which has a thickness of approximately 254 »m and the lowest possible relative dielectric constant of, for example, 2.2.
  • a suitable material for the substrate 3 is, for example, PTFE (Teflon), which is reinforced with glass fibers.
  • PTFE Teflon
  • the longitudinal grooves 2, 2 ' are arranged such that the fin guide structure 4, 5, 6, 4', 5 ', 6' is located in an E plane which contains the longitudinal axis of the waveguide.
  • the fin conductor structure consists of two parts that are galvanically isolated in the area of the longitudinal axis. Each of these parts consists of a central area 4, 4 ', to which so-called taper areas 5, 5' and 6, 6 'are connected on both sides.
  • the central regions 4, 4 ′ have a lateral spacing of approximately 50 ⁇ m and are connected by at least one semiconductor switch 7.
  • the number of semiconductor switches depends on the desired electrical properties, eg bandwidth. of the waveguide switch.
  • the axial distance between the semiconductor switches 7 is also dependent on the desired electrical properties and is, for example, approximately 2 mm.
  • the distances between the semiconductor switches are chosen so that the line disturbances caused by the individual diodes compensate one another in the entire Ka band.
  • the central areas 4 and 4 ' are delimited on both sides by taper areas 5, 6 and 5', 6 '. These have an axial length of approximately three (air) wavelengths, for example approximately 15 mm for the Ka band.
  • a galvanic contact is present between the lower part of the fin conductor structure shown in FIG. 1 and the waveguide 1.
  • the upper part of the fin conductor structure is galvanically isolated from the waveguide 1, so that the semiconductor switches 7 can be controlled electrically, for example with a direct voltage. This insulation takes place with the aid of an insulation layer 8, for example a plastic film.
  • the properties of the waveguide switch in particular its blocking attenuation (insulation), surprisingly depend very strongly on the properties of the insulation layer 8. If you choose, for example, a plastic film, such as Teflon, with a real dielectric constant, blocking attenuations of 30dB to 40dB, at most 50dB, can be achieved. If, on the other hand, if a plastic film made of a dissipative material, ie a material with a complex dielectric constant, is selected for the insulation layer 8 according to the invention, significantly higher blocking attenuations can be achieved, for example up to 80 dB for the Ka band (FIG. 3).
  • a suitable plastic film consists, for example, of coated polyester material and has a thickness of approximately 10 »m.
  • This surprising effect can be explained by the fact that the insulation of the upper part of the fin conductor structure creates a TEM line which runs parallel to the actual fin conductor structure.
  • the insulated upper part forms a center conductor and the surrounding waveguide housing forms an outer conductor.
  • the cable properties are determined almost exclusively by the film inserted to insulate the upper part and the width of the mechanical clamping area of the upper part, because there the two conductors of the TEM cable are separated from each other only by the film with a thickness in the »area. All of the work carried out by this management is concentrated in this area.
  • the line since it is strongly mismatched at its ends, forms a resonator that is loosely coupled to the actual fin conductor structure.
  • the maximum insulation of the waveguide gates of the PIN diode switch that can be achieved with PIN diodes in the fin conductor structure is limited by the power component that passes through the resonator from the input to the output gate when the PIN diode is blocked.
  • an insulation layer 8 made of dissipative material makes it possible to close this detour (bypass) via the resulting resonator.
  • FIG. 2 shows the equivalent circuit diagram for a PIN diode which is inserted into the fin conductor structure according to FIG. 1.
  • L S and C p mean parasitic inductances or capacitances by inserting one or capacitances by inserting a PIN diode into the fin conductor structure arise.
  • the resistance R S describes the contact resistance of the PIN diode and is independent of the selected bias or bias current.
  • C j and R j denote the capacitance and the resistance of the pn junction of the PIN diode. R j depends on the value of the bias voltage or bias current.
  • the width of the insulation layer 8 is greater than or equal to the wall thickness of the waveguide 1, 1 '.
  • an insulation layer is selected with a width that is greater than or equal to the depth of the longitudinal groove 2 ', but is smaller than the wall thickness of the waveguide. This makes it advantageously possible to produce a waveguide 1, 1 'with a galvanically closed cross section.
  • the switching times are approximately 35ns (rise time) and 5ns (fall time) when using six semiconductor switches 7, which are designed as PIN diodes.
  • the insertion loss (transmission loss) is less than 1.3 dB in the entire Ka band (FIG. 3).
  • insulation layer 8 directly to the fin conductor structure, e.g. as a layer of lacquer.
  • the invention is not limited to the exemplary embodiment described, but rather can be applied analogously to further frequency bands. All that is required is the dimensions, e.g. of the waveguide and the fin conductor structure, as well as the type and number of semiconductor switches according to the frequency and / or wavelength used. Such a procedure is familiar to a person skilled in the field of radio or ultra-high frequency technology.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

Die Erfindung betrifft einen elektrischen Hohlleiterschalter nach dem Oberbegriff des Patentanspruchs 1. Ein solcher Hohlleiterschalter ist aus der EP-A-0 126 811 bereits bekannt.The invention relates to an electrical waveguide switch according to the preamble of claim 1. Such a waveguide switch is already known from EP-A-0 126 811.

Derartige Hohlleiterschalter werden beispielsweise in Radargeräten zur Amplitudenmodulation und/oder Impulsformung eines hochfrequenzten Signals, z.B. im Ka-Band (26,5 GHz bis 40 GHz), benutzt.Such waveguide switches are used, for example, in radar devices for amplitude modulation and / or pulse shaping of a high-frequency signal, e.g. in the Ka band (26.5 GHz to 40 GHz).

Bei derartigen Hohlleiterschaltern befindet sich im Innenraum eines Hohlleiters mindestens ein Halbleiterschalter, z.B. eine sogenannte PIN-Diode, von dessen Schaltzustand, d.h. leitend oder gesperrt, die Dämpfung des Hohlleiterschalters für die zu führenden elektromagnetischen Wellen abhängig ist. Derartige Hohlleiterschalter haben im gesperrten Zustand eine (Sperr-)Dämpfung von ungefähr 30dB bis 40dB und sind im allgemeinen schmalbandig.In the case of such waveguide switches, there is at least one semiconductor switch, for example a so-called PIN diode, in the interior of a waveguide, the damping of the waveguide switch for the electromagnetic waves to be guided being dependent on its switching state, ie, conducting or blocked. Such waveguide switches have locked State a (blocking) attenuation of approximately 30dB to 40dB and are generally narrow-band.

Der in der eingangs genannten EP-A-0 126 811 beschriebene Hohlleiterschalter besteht beispielsweise aus einem für elektromagnetische Wellen geeigneten metallischen Hohlleiter, in dessen Innenraum eine auf einem Substrat aufgebrachte metallische Fin-Leiterstruktur angebracht ist, die den Hohlleiter in Längsrichtung in zwei Hälften teilt. Die metallische Fin-Leiterstruktur ist bei diesem bekannten Hohlleiterschalter auf der einen Seite durch das dielektrische Substrat, auf dem sie aufgebracht ist, und auf der anderen Seite durch eine weitere dielektrische Schicht von den beiden Hohlleiterhälften elektrisch isoliert und ist in einer E-Ebene angeordnet, die die Längsachse des Hohleiters enthält. Die Fin-Leiterstruktur selbst ist in Längsrichtung des Hohlleiters ebenfalls in zwei Teile geteilt, wobei jedes Teil dieser Fin-Leiterstruktur einen Mittenbereich besitzt, an den sich beidseitig Taperbereiche anschließen. Die Mittenbereiche sind durch zwei Halbleiterschalter in Form von Halbleiterdioden elektrisch miteinander verbunden. Die beiden Hohlleiterhälften weisen metallische Stege auf, die in Längsrichtung des Hohlleiters verlaufen und ins Innere der jeweiligen Hohlleiterhälften ragen. Diese Stege unterteilen den Hohlleiter in drei übereinanderliegende Bereiche, nämlich in den eigentlichen Hohlleiterbereich in der Mitte, in dem die Fin-Leiterstruktur mit den Halbleiterdioden angeordnet ist, und in zwei Randbereiche, die die Funktion einer Drossel haben.The waveguide switch described in the aforementioned EP-A-0 126 811 consists, for example, of a metallic waveguide suitable for electromagnetic waves, in the interior of which a metallic fin-waveguide structure is attached, which divides the waveguide into two halves in the longitudinal direction. In this known waveguide switch, the metallic fin conductor structure is electrically insulated from the two waveguide halves on the one hand by the dielectric substrate to which it is applied and on the other hand by a further dielectric layer and is arranged in an E plane, which contains the longitudinal axis of the semiconductor. The fin conductor structure itself is also divided into two parts in the longitudinal direction of the waveguide, each part of this fin conductor structure having a central region, to which taper regions adjoin on both sides. The center areas are electrically connected to one another by two semiconductor switches in the form of semiconductor diodes. The two waveguide halves have metallic webs which run in the longitudinal direction of the waveguide and protrude into the interior of the respective waveguide halves. These webs divide the waveguide into three superimposed areas, namely into the actual waveguide area in the middle, in which the fin-conductor structure with the semiconductor diodes is arranged, and into two edge areas, which have the function of a choke.

In den beiden Randbereichen sind Blöcke aus dissipativem Material angeordnet, die die Anregung bzw. Ausbreitung von Harmonischen der Betriebsfrequenz der elektromagnetischen Wellen über diese Randbereiche des Hohlleiters unterbinden. Ferner sind im mittleren Hohlleiterbereich auf beiden Seiten der Fin-Leiterstruktur getaperte Blöcke angeordnet, die so bemessen sind, daß zwischen den Blöcken einerseits und dem Substrat bzw. der zusätzlichen dielektrischen Isolationsschicht auf der Oberseite der Fin-Leiterstruktur andererseits ein Zwischenraum verbleibt. Die damit verbundenen Querschnittsveringerungen des Hohlleiter-Innenraums im mittleren Hohlleiterbereich verhindert die Ausbreitung der zu führenden elektromagnetischen Wellen in Form von normalen Hohlleiter-Moden und erzwingt stattdessen die Ausbreitung der Wellen in Form von einer Schlitzleitungs-Mode.Blocks of dissipative material are arranged in the two edge regions, which block the excitation or propagation of harmonics of the operating frequency of the electromagnetic waves over these edge regions of the waveguide. Furthermore, there are tapered blocks in the middle waveguide area on both sides of the fin conductor structure arranged, which are dimensioned such that a space remains between the blocks on the one hand and the substrate or the additional dielectric insulation layer on the top of the fin conductor structure on the other. The associated reduction in cross-section of the waveguide interior in the middle waveguide area prevents the propagation of the electromagnetic waves to be guided in the form of normal waveguide modes and instead forces the propagation of the waves in the form of a slot line mode.

In dem Artikel von W. Senf und S. Derwischer: "Mikrowellenverstärker in Finleitungstechnik", in: Radio Fernsehen Elektronik, 35 (1986) 11, Seiten 728-731 werden ferner Finleitungsverstärker beschrieben, bei denen das Substrat, auf dem die Fin-Leiterstruktur aufgebracht ist, in einer oberen und unteren Nut in der Hohlleiterwand geführt ist.In the article by W. Senf and S. Derwischer: "Microwave amplifier in fin line technology", in: Radio Fernsehen Elektronik, 35 (1986) 11, pages 728-731 fin line amplifiers are also described, in which the substrate on which the fin conductor structure is applied, is guided in an upper and lower groove in the waveguide wall.

Der Erfindung liegt daher die Aufgabe zugrunde, einen gattungsgemäßen Hohlleiterschalter dahingehend zu verbessern, daß im verwendeten Frequenzband eine geringe Einfügungsdämpfung, eine hohe Bandbreite, geringe Ein- und Ausschaltzeiten sowie eine möglichst hohe Sperrdämpfung (Isolation) erreichbar ist.The invention is therefore based on the object of improving a generic waveguide switch in such a way that a low insertion loss, a high bandwidth, short switch-on and switch-off times and the highest possible blocking loss (isolation) can be achieved in the frequency band used.

Diese Aufgabe wird gelöst durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Vorteilhafte Ausgestaltungen und/oder Weiterbildungen sind den Unteransprüchen entnehmbar.This object is achieved by the features specified in the characterizing part of patent claim 1. Advantageous refinements and / or further developments can be found in the subclaims.

Ein Vorteil der Erfindung besteht darin, daß der Hohlleiterschalter mechanisch robust, zuverlässig und kostengünstig herstellbar ist, insbesondere bei einer industriellen Serienfertigung.An advantage of the invention is that the waveguide switch is mechanically robust, reliable and inexpensive to manufacture, especially in an industrial series production.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert unter Bezugnahme auf eine schematische Zeichnung.The invention is explained in more detail below on the basis of exemplary embodiments with reference to a schematic drawing.

In den Fig. 1 bis 3 wird ein Hohlleiterschalter vom Parallelschalt("shunt")-Typ beschrieben, welcher für das Ka-Band geeignet ist.1 to 3, a waveguide switch of the parallel connection ("shunt") type is described, which is suitable for the Ka band.

Fig. 1 zeigt den erfindungsgemäßen Hohlleiterschalter in einer perspektivischen Darstellung mit einem Ausbruch (schraffiert gezeichnet), so daß der Innenraum darstellbar ist. Der Hohlleiter 1, 1', der aus zwei parallel zur Längsachse zusammengefügten metallischen Teilen besteht, besitzt eine Länge c von ungefähr 35mm sowie einen Innenraum mit einem reckteckförmigen Querschnitt (Breite a = 7.11 mm; Höhe b - 3.56mm). In den breiteren Seitenflächen des Innenraumes befinden sich zwei gegenüberliegende Längsnuten 2, 2'. Diese besitzen jeweils eine Breite von ungefähr 250»m und eine Tiefe von ungefähr 500»m. Diese Längsnuten 2, 2' dienen zur Halterung eines rechteckförmigen Substrates 3, das eine Dicke von ungefähr 254»m und eine möglichst geringe relative Dielektrizitätskonstante von z.B. 2.2 besitzt. Ein für das Substrat 3 geeignetes Material ist z.B. PTFE (Teflon), das mit Glasfasern verstärkt ist. Auf einer Seite des Substrates 3 befindet sich eine sogenannte Fin-Leiterstruktur 4, 5, 6, 4', 5', 6', die z.B. mit Hilfe der Photolithografie aus einer ungefähr 17»m dicken Kupferschicht herausgeätzt wurde.Fig. 1 shows the waveguide switch according to the invention in a perspective view with a breakout (hatched) so that the interior can be displayed. The waveguide 1, 1 ', which consists of two metallic parts joined parallel to the longitudinal axis, has a length c of approximately 35 mm and an interior with a rectangular cross section (width a = 7.11 mm; height b - 3.56 mm). In the wider side surfaces of the interior there are two opposite longitudinal grooves 2, 2 '. These have a width of approximately 250 »m and a depth of approximately 500» m. These longitudinal grooves 2, 2 'serve to hold a rectangular substrate 3, which has a thickness of approximately 254 »m and the lowest possible relative dielectric constant of, for example, 2.2. A suitable material for the substrate 3 is, for example, PTFE (Teflon), which is reinforced with glass fibers. On one side of the substrate 3 there is a so-called fin conductor structure 4, 5, 6, 4 ', 5', 6 ', which was etched out of an approximately 17 »m thick copper layer using photolithography, for example.

Die Längsnuten 2, 2' sind derart angeordnet, daß sich die Fin-Leiterstruktur 4, 5, 6, 4', 5', 6' in einer E-Ebene befindet, welche die Längsachse des Hohlleiters enthält. Die Fin-Leiterstruktur besteht aus zwei Teilen, die im Bereich der Längsachse galvanisch getrennt sind. Jedes dieser Teile besteht aus einem Mittenbereich 4, 4', an das sich beidseitig sogenannte Taperbereiche 5, 5' sowie 6, 6' anschließen. Die Mittenbereiche 4, 4' haben einen lateralen Abstand von ungefähr 50»m und sind durch mindestens einen Halbleiterschalter 7 verbunden. Die Anzahl der Halbleiterschalter ist abhängig von den gewünschten elektrischen Eigenschaften, z.B. Bandbreite. des Hohlleiterschalters. Der axiale Abstand zwischen den Halbleiterschaltern 7 ist ebenfalls von den gewünschten elektrischen Eigenschaften abhängig und beträgt z.B. ungefähr 2mm. Die Abstände zwischen den Halbleiterschaltern, z.B. Dioden, sind so gewählt, daß sich die Leitungsstörungen, verursacht durch die einzelnen Dioden, gegenseitig im gesamten Ka-Band kompensieren. Die Mittenbereiche 4 bzw. 4′ sind jeweils beidseitig durch Taperbereiche 5, 6 bzw. 5′, 6′ eingegrenzt. Diese haben eine axiale Länge von ungefähr drei (Luft-)Wellenlängen, also z.B. ungefähr 15 mm für das Ka-Band. Zwischen dem in Fig. 1 dargestellten unteren Teil der Fin-Leiterstruktur und dem Hohlleiter 1 ist ein galvanischer Kontakt vorhanden. Dagegen ist der obere Teil der Fin-Leiterstruktur galvanisch isoliert gegenüber dem Hohlleiter 1, damit die Halbleiterschalter 7 elektrisch ansteuerbar sind, z.B. mit einer Gleichspannung. Diese Isolation erfolgt mit Hilfe einer Isolationsschicht 8, z.B. einer Kunststoffolie. Es hat sich nun herausgestellt, daß die Eigenschaften des Hohlleiterschalters, insbesondere dessen Sperrdämpfung (Isolation), in überraschender Weise sehr stark von den Eigenschaften der Isolationsschicht 8 abhängen. Wählt man dafür z.B. eine Kunststoffolie, z.B. Teflon, mit einer reellen Dielektrizitätskonstanten, so sind Sperrdämpfungen von 30dB bis 40dB, allenfalls 50dB erreichbar. Wählt man dagegen für die Isolationsschicht 8 erfindungsgemäß eine Kunststoffolie aus einem dissipativen Material, d.h. einem Material mit einer komplexen Dielektrizitätskonstante, so sind erheblich höhere Sperrdämpfungen erreichbar, z.B. bis zu 80dB für das Ka-Band (Fig. 3). Eine dafür geeignete Kunststoffolie besteht z.B. aus beschichtetem Polyester-Material und besitzt eine Dicke von ungefähr 10»m. Dieser überraschende Effekt ist dadurch erklärbar, daß durch die Isolation des oberen Teiles der Fin-Leiterstruktur eine TEM-Leitung entsteht, die parallel zu der eigentlichen Fin-Leiterstruktur verläuft. Der isolierte obere Teil bildet einen Mittelleiter und das umgebende Hohlleitergehäuse einen Außenleiter. Die Leitungseigenschaften werden fast ausschließlich durch die zur Isolation des oberen Teils eingelegte Folie und der Breite des mechanischen Klemmbereiches des oberen Teils bestimmt, denn dort sind die beiden Leiter der TEM-Leitung nur durch die Folie mit einer Dicke im »-Bereich voneinander getrennt. Die gesamte von dieser Leitung geführte Leistung konzentriert sich auf diesen Bereich. Die Leitung, da sie an ihren Enden stark fehlangepaßt ist, bildet einen Resonator, der lose mit der eigentlichen Fin-Leiterstruktur gekoppelt ist. Die maximal mit PIN-Dioden in der Fin-Leiterstruktur erreichbare Isolation der Hohlleitertore des PIN-Diodenschalters ist begrenzt durch den Leistungsanteil, der bei gesperrter PIN-Diode über den Resonator vom Eingangs- zum Ausgangstor gelangt.The longitudinal grooves 2, 2 'are arranged such that the fin guide structure 4, 5, 6, 4', 5 ', 6' is located in an E plane which contains the longitudinal axis of the waveguide. The fin conductor structure consists of two parts that are galvanically isolated in the area of the longitudinal axis. Each of these parts consists of a central area 4, 4 ', to which so-called taper areas 5, 5' and 6, 6 'are connected on both sides. The central regions 4, 4 ′ have a lateral spacing of approximately 50 μm and are connected by at least one semiconductor switch 7. The number of semiconductor switches depends on the desired electrical properties, eg bandwidth. of the waveguide switch. The axial distance between the semiconductor switches 7 is also dependent on the desired electrical properties and is, for example, approximately 2 mm. The distances between the semiconductor switches, for example diodes, are chosen so that the line disturbances caused by the individual diodes compensate one another in the entire Ka band. The central areas 4 and 4 'are delimited on both sides by taper areas 5, 6 and 5', 6 '. These have an axial length of approximately three (air) wavelengths, for example approximately 15 mm for the Ka band. A galvanic contact is present between the lower part of the fin conductor structure shown in FIG. 1 and the waveguide 1. In contrast, the upper part of the fin conductor structure is galvanically isolated from the waveguide 1, so that the semiconductor switches 7 can be controlled electrically, for example with a direct voltage. This insulation takes place with the aid of an insulation layer 8, for example a plastic film. It has now been found that the properties of the waveguide switch, in particular its blocking attenuation (insulation), surprisingly depend very strongly on the properties of the insulation layer 8. If you choose, for example, a plastic film, such as Teflon, with a real dielectric constant, blocking attenuations of 30dB to 40dB, at most 50dB, can be achieved. If, on the other hand, if a plastic film made of a dissipative material, ie a material with a complex dielectric constant, is selected for the insulation layer 8 according to the invention, significantly higher blocking attenuations can be achieved, for example up to 80 dB for the Ka band (FIG. 3). A suitable plastic film consists, for example, of coated polyester material and has a thickness of approximately 10 »m. This surprising effect can be explained by the fact that the insulation of the upper part of the fin conductor structure creates a TEM line which runs parallel to the actual fin conductor structure. The insulated upper part forms a center conductor and the surrounding waveguide housing forms an outer conductor. The cable properties are determined almost exclusively by the film inserted to insulate the upper part and the width of the mechanical clamping area of the upper part, because there the two conductors of the TEM cable are separated from each other only by the film with a thickness in the »area. All of the work carried out by this management is concentrated in this area. The line, since it is strongly mismatched at its ends, forms a resonator that is loosely coupled to the actual fin conductor structure. The maximum insulation of the waveguide gates of the PIN diode switch that can be achieved with PIN diodes in the fin conductor structure is limited by the power component that passes through the resonator from the input to the output gate when the PIN diode is blocked.

Durch die erfindungsgemäße Anwendung einer Isolationsschicht 8 aus dissipativem Material ist es möglich, diesen Umweg (Bypass) über den entstandenen Resonator zu schließen.The inventive use of an insulation layer 8 made of dissipative material makes it possible to close this detour (bypass) via the resulting resonator.

Zum besseren Verständnis der Meßkurven gemäß Fig. 3 zeigt Fig. 2 das Ersatzschaltbild für eine PIN-Diode, die in die Fin-Leiterstruktur gemäß Fig. 1 eingefügt ist. In Fig. 2 bedeuten LS bzw. Cp parasitäre Induktivitäten bzw. Kapazitäten, die durch das Einfügen einer bzw. Kapazitäten, die durch das Einfügen einer PIN-Diode in die Fin-Leiterstruktur entstehen. Der Widerstand RS beschreibt den Kontaktwiderstand der PIN-Diode und ist unabhängig von der gewählten Vorspannung bzw. dem Vorstrom. Cj bzw. Rj bezeichnen die Kapazität bzw. den Widerstand des pn-Übergangs der PIN-Diode. Rj ist abhängig vom Wert der Vorspannung bzw. des Vorstromes.For better understanding of the measurement curves according to FIG. 3, FIG. 2 shows the equivalent circuit diagram for a PIN diode which is inserted into the fin conductor structure according to FIG. 1. In FIG. 2, L S and C p mean parasitic inductances or capacitances by inserting one or capacitances by inserting a PIN diode into the fin conductor structure arise. The resistance R S describes the contact resistance of the PIN diode and is independent of the selected bias or bias current. C j and R j denote the capacitance and the resistance of the pn junction of the PIN diode. R j depends on the value of the bias voltage or bias current.

In dem Ausführungsbeispiel gemäß Fig. 1 ist die Breite der Isolationsschicht 8 größer gleich der Wandstärke des Hohlleiters 1, 1′. In einem weiteren Ausführungsbeispiel wird eine Isolationsschicht mit einer Breite gewählt, die größer gleich der Tiefe der Längsnut 2′, jedoch kleiner als die Wandstärke des Hohlleiters ist. Dadurch ist es vorteilhafterweise möglich, einen Hohlleiter 1, 1′ mit einem galvanisch geschlossenen Querschnitt herzustellen.1, the width of the insulation layer 8 is greater than or equal to the wall thickness of the waveguide 1, 1 '. In a further embodiment, an insulation layer is selected with a width that is greater than or equal to the depth of the longitudinal groove 2 ', but is smaller than the wall thickness of the waveguide. This makes it advantageously possible to produce a waveguide 1, 1 'with a galvanically closed cross section.

Weiterhin ist es möglich, zumindest im Bereich des Mittenbereichs 4, 4′ (Fig. 1), die Querschnittsfläche des Innenraumes des Hohlleiters zu verengen, so daß z.B. a=b=3,56mm ist für das Ka-Band. Dadurch ist eine weitere Erhöhung der Sperrdämpfung möglich, z.B. bis auf 90dB. Bei nichtreduziertem Hohlleiter-Querschnitt erreicht man eine Isolation von ungefähr 8dB pro PIN-Diode, bei reduziertem Querschnitt ungefähr 15 dB pro Diode.Furthermore, it is possible to narrow the cross-sectional area of the interior of the waveguide, at least in the region of the central region 4, 4 '(FIG. 1), so that e.g. a = b = 3.56mm is for the Ka tape. This enables a further increase in the barrier damping, e.g. up to 90dB. With a non-reduced waveguide cross-section, insulation of approximately 8 dB per PIN diode is achieved, and with a reduced cross-section approximately 15 dB per diode.

Bei dem beschriebenen Ausführungsbeispiel liegen die Schaltzeiten bei ungefähr 35ns (Anstiegszeit) sowie 5ns (Abfallzeit) bei Verwendung von sechs Halbleiterschaltern 7, die als PIN-Dioden ausgebildet sind. Die Einfügungsdämpfung (Durchlaßdämpfung) ist dabei kleiner 1,3dB im gesamten Ka-Band (Fig. 3).In the exemplary embodiment described, the switching times are approximately 35ns (rise time) and 5ns (fall time) when using six semiconductor switches 7, which are designed as PIN diodes. The insertion loss (transmission loss) is less than 1.3 dB in the entire Ka band (FIG. 3).

Außerdem ist es möglich, die Isolationsschicht 8 unmittelbar auf die Fin-Leiterstruktur aufzubringen, z.B. als Lackschicht.It is also possible to apply the insulation layer 8 directly to the fin conductor structure, e.g. as a layer of lacquer.

Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt, sondern sinngemäß auf weitere Frequenzbänder anwendbar. Dazu müssen lediglich die Abmessungen, z.B. des Hohlleiters sowie der Fin-Leiterstruktur, sowie die Art und Anzahl der Halbleiterschalter entsprechend der verwendeten Frequenz und/oder Wellenlänge geändert werden. Eine solche Vorgehensweise ist einem Fachmann auf dem Gebiet der Hoch- oder Höchstfrequenztechnik geläufig.The invention is not limited to the exemplary embodiment described, but rather can be applied analogously to further frequency bands. All that is required is the dimensions, e.g. of the waveguide and the fin conductor structure, as well as the type and number of semiconductor switches according to the frequency and / or wavelength used. Such a procedure is familiar to a person skilled in the field of radio or ultra-high frequency technology.

Claims (9)

  1. Electrical waveguide switch consisting of a metallic waveguide which is suitable for electromagnetic waves and in the interior space of which at least one semiconductor switch is mounted in such a manner that the impedance of the waveguide is variable in dependence on the switching state of the semiconductor switch, wherein
    - a metallic fin-conductor structure, which is divided in the longitudinal direction of the waveguide, is mounted in the interior space of the waveguide,
    - each part of the fin-conductor structure has a central region which is adjoined at both sides by tapered regions,
    - the central regions are electrically connected by at least one semiconductor switch,
    - an electrical insulation is provided between the fin-conductor structure and the waveguide and
    - the fin-conductor structure has at least one electrical terminal for the selectable driving of the semiconductor switches,
    characterised thereby,
    - that one part of the fin-conductor structure is electrically conductively connected with the waveguide (1, 1'),
    - that the other part of the fin-conductor structure is electrically insulated from the waveguide (1, 1') and has the at least one electrical terminal for the selectable driving of the semiconductor switches (7) and
    - that the electrical insulation of the other part of the finconductor structure takes place with the aid of an insulating layer (8), which consists of a dissipative material.
  2. Electrical waveguide switch according to claim 1, characterised thereby, that the central regions (4, 4') of the fin-conductor structure have a lateral spacing which is small by comparison with the wavelength conductible in the waveguide (1, 1').
  3. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the tapered regions (5, 5', 6, 6') have a length of approximately three wavelengths in the axial direction.
  4. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the semiconductor switch (7) is constructed as semiconductor diode.
  5. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the fin-conductor structure is applied onto a substrate (3), which has a low dielectric constant.
  6. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the fin-conductor structure is arranged in an E-plane which contains the longitudinal axis of the waveguide (1, 1').
  7. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the waveguide (1, 1') in the operative state has a closed cross-sectional area.
  8. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that at least one longitudinal groove (2, 2') for the reception of the substrate (3) as well as the fin-conductor structure is present in the interior space of the waveguide (1, 1').
  9. Electrical waveguide switch according to one of the preceding claims, characterised thereby, that the waveguide (1, 1') at least in the range of the central region (4, 4') has a cross-sectional reduction of the interior space in such a manner that an additional attenuation arises for the waves to be conducted.
EP89101979A 1988-02-11 1989-02-04 Electrical wave guide switch Expired - Lifetime EP0328013B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3804205A DE3804205A1 (en) 1988-02-11 1988-02-11 ELECTRIC SEMICONDUCTOR SWITCH
DE3804205 1988-02-11

Publications (3)

Publication Number Publication Date
EP0328013A2 EP0328013A2 (en) 1989-08-16
EP0328013A3 EP0328013A3 (en) 1990-07-11
EP0328013B1 true EP0328013B1 (en) 1994-06-15

Family

ID=6347170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89101979A Expired - Lifetime EP0328013B1 (en) 1988-02-11 1989-02-04 Electrical wave guide switch

Country Status (2)

Country Link
EP (1) EP0328013B1 (en)
DE (2) DE3804205A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315638A1 (en) * 2008-06-24 2009-12-24 Honeywell International Inc. Millimeter wave low-loss high-isolation switch
US10996178B2 (en) 2017-06-23 2021-05-04 Tektronix, Inc. Analog signal isolator
CN113523866A (en) * 2021-07-19 2021-10-22 华能国际电力股份有限公司德州电厂 Self-suction type water-cooled wall fin cutting machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270106A (en) * 1979-11-07 1981-05-26 The United States Of America As Represented By The Secretary Of The Air Force Broadband mode suppressor for microwave integrated circuits
EP0126811B1 (en) * 1983-05-20 1988-08-17 The Marconi Company Limited Microwave switch
DE3319573A1 (en) * 1983-05-30 1984-12-06 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt PIN-diode switch for millimetric waves

Also Published As

Publication number Publication date
DE58907860D1 (en) 1994-07-21
EP0328013A2 (en) 1989-08-16
EP0328013A3 (en) 1990-07-11
DE3804205A1 (en) 1989-08-24

Similar Documents

Publication Publication Date Title
DE69224866T2 (en) Radar transmitter with FET switches
DE69802467T2 (en) Printed circuit board with a transmission line for high frequencies
DE4407251C2 (en) Dielectric waveguide
EP0267403A2 (en) Capacitive separating circuit
DE3781010T2 (en) INTEGRATED CAPACITY STRUCTURES IN MICROWAVE FLOW PIPING DEVICES.
EP1004149B1 (en) Waveguide filter
DE3782612T2 (en) SHORT SLOT WAVE LEAD HYBRID COUPLER WITH MULTIPLE SWITCHABLE POWER LEVEL.
DE3689178T2 (en) Double-comb duplex device with band-stop resonators.
DE3685553T2 (en) PIN DIODE ATTENUATOR.
EP0328013B1 (en) Electrical wave guide switch
DE2503850C2 (en) Waveguide antenna consisting of several individual antennas
DE10143688A1 (en) Directional coupler, antenna device and radar system
DE2848271C2 (en)
EP0022990B1 (en) Microstrip microwave balun
DE2522918A1 (en) DIRECTIONAL GUIDANCE WITH FIELD SHIFT EFFECT
EP0124168B1 (en) Mixer
DE2719272A1 (en) HIGH FREQUENCY DIODE PHASE SHIFTER
DE3019523A1 (en) Compact coupling between waveguide and microstrip conductor - having stepped recess extending into duct
EP1495513A1 (en) Electric matching network with a transformation line
WO2005038976A1 (en) Electrical adaptation network comprising a transformation line
EP1139491A2 (en) Radiating coaxial high-frequency cable
DE2937917C2 (en) Waveguide arrangement with reactance element
DE60201709T2 (en) Multi-frequency oscillator with resonant dielectric
DE19516479B4 (en) Waveguide switch
DE2225576C3 (en) Directional line for microwaves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19930401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940615

REF Corresponds to:

Ref document number: 58907860

Country of ref document: DE

Date of ref document: 19940721

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050204