EP0326005A1 - Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine - Google Patents

Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine Download PDF

Info

Publication number
EP0326005A1
EP0326005A1 EP89100781A EP89100781A EP0326005A1 EP 0326005 A1 EP0326005 A1 EP 0326005A1 EP 89100781 A EP89100781 A EP 89100781A EP 89100781 A EP89100781 A EP 89100781A EP 0326005 A1 EP0326005 A1 EP 0326005A1
Authority
EP
European Patent Office
Prior art keywords
wire
temperature
tube
pearlitization
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89100781A
Other languages
German (de)
English (en)
Other versions
EP0326005B1 (fr
Inventor
André Reiniche
Philippe Sauvage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to AT89100781T priority Critical patent/ATE87667T1/de
Publication of EP0326005A1 publication Critical patent/EP0326005A1/fr
Application granted granted Critical
Publication of EP0326005B1 publication Critical patent/EP0326005B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Definitions

  • the invention relates to methods and devices for heat treating carbon steel wires so as to obtain a fine pearlitic structure. These threads are used in particular to reinforce rubber and / or plastic articles, for example tire casings.
  • Known treatments of this type have two phases: a first phase which consists in heating the wire and in maintaining it at a temperature higher than the transformation temperature AC3 so as to obtain a homogeneous austenite; - a second phase which consists in cooling the wire to obtain a fine pearlitic structure.
  • One of the most used processes is a so-called "patenting" heat treatment which consists of austenitization of the wire at a temperature of 900 to 1000 ° C. followed by immersion in a bath of lead or of molten salts maintained at a temperature of 450 to 600 ° C.
  • Patenting unfortunately results in high cost prices because the handling of liquid metals or molten salts leads to heavy technologies and the need to clean the wire after patenting. On the other hand, lead is very toxic and the hygiene problems it poses lead to significant expenses.
  • French patent application no. 86.16705 describes a process for thermally treating a carbon steel wire so as to obtain a fine perlitic structure by regulating the temperature of the wire during the transformation from austenite to perlite so that it does not differ by more than 10 ° C, by excess or by default, from a given temperature lower than the transformation temperature AC1 and higher than the temperature of the pearlitic nose, this adjustment being obtained by passing an electric current through the wire for a time greater than the pearlitization time and by performing a modulated ventilation during part of this time.
  • This process makes it possible to avoid the use of metals or of molten salts, and it therefore eliminates the problems of hygiene and cleaning of the abovementioned wires, while leading to simpler installations and more flexible operation.
  • this process requires the use of compressors or turbines to obtain modulated ventilation, which can lead to relatively high investment and operating costs.
  • this process can only be used on an industrial scale for wires of relatively small diameter, for example at most equal to 3 mm.
  • the object of the invention is to make it possible to carry out a heat treatment for the transformation of austenite into perlite which avoids the use of metals or molten salts, as well as the use of forced ventilation, while making it possible to treat wires whose diameter can vary within wide limits.
  • the invention also relates to the methods and complete installations for heat treatment of carbon steel wires using the methods or devices described above.
  • the invention also relates to the steel wires obtained according to the methods and / or with the devices and installations in accordance with the invention.
  • FIG. 1 represents the curve ⁇ showing the evolution of the temperature of a steel wire as a function of time, when this wire is subjected to a pearlitization treatment.
  • This figure also represents the curve X1 corresponding to the start of the transformation of metastable austenite into perlite and the curve X2 corresponding to the end of the transformation of metastable austenite into perlite, for the steel of this wire.
  • the abscissa axis corresponds to time T and the ordinate axis corresponds to temperature ⁇ .
  • the wire Prior to the pearlitization treatment, the wire was heated and maintained at a temperature higher than the transformation temperature AC3 so as to obtain a homogeneous austenite, this temperature ⁇ A , for example between 900 ° C and 1000 ° C, corresponding to the point A in FIG. 1.
  • the point called "pearlitic nose” corresponds to the minimum time T m of the curve X1, the temperature of this pearlitic nose being referenced ⁇ p .
  • the origin O of times T corresponds to point A.
  • the wire is cooled until it reaches a temperature below the transformation temperature AC1, the state of the wire after this cooling corresponding to point B, the temperature obtained at this point B at the end of time T B being referenced ⁇ B.
  • This temperature ⁇ B has been shown in FIG. 1 as being greater than the temperature ⁇ p of the pearlitic nose, which is the most frequent in practice, without being absolutely necessary.
  • This cooling of the wire between points A and B there is transformation of stable austenite into metastable austenite, as soon as the temperature of the wire drops below the transformation point AC3, and "seeds" appear at the grain boundaries of the metastable austenite.
  • the area between the curves X1, X2 is referenced ⁇ .
  • Perlitization consists in passing the thread from the state represented by point B, to the left of zone ⁇ , to a state represented by point C, to the right of zone ⁇ .
  • This transformation of the wire is for example shown diagrammatically by the straight line segment BC which intersects the curve X1 at B x and the curve X2 at C x , but the invention also applies to cases where the variation in temperature of the wire between the points B and C is not linear.
  • the formation of the germs continues in the part of the segment BC situated to the left of the zone ⁇ , that is to say in the segment BBx.
  • the part of the segment BC crossing the zone ⁇ that is to say in the segment B x C x .
  • the pearlitization time is likely to vary from one steel to another, so the treatment represented by the segment C x C aims to avoid applying premature cooling to the wire in case the pearlitization is not completed.
  • residual metastable austenite which would undergo rapid cooling would transform into bainite which is not a structure favorable to wire drawing after heat treatment, nor to the use value and the mechanical properties of the final product.
  • the wire is cooled, for example to room temperature, this cooling, preferably rapid, being shown schematically for example by the curved line segment CD, the temperature at D being referenced ⁇ D.
  • FIGS 2 and 3 show a device 100 according to the invention.
  • This device 100 is a heat exchanger comprising an enclosure 3 in the form of a tube with an internal diameter D ti and an external diameter D te in which the wire 1 to be treated runs along arrow F, the diameter of the wire 1 being referenced D f , this wire 1 being a carbon steel wire.
  • Figure 2 is a section taken along the axis xx 'of the wire 1 which is also the axis of the device 100
  • Figure 3 is a section made perpendicular to this axis xx', the section of Figure 3 being shown schematically by the straight line segments III-III, in Figure 2, the axis xx 'being shown schematically by the letter "x" in Figure 3.
  • the drive means of the wire 1 are known means not shown in these Figures 2 and 3 for the purpose of simplification, these means comprising for example a winder actuated by a motor, for winding the wire after treatment.
  • the space 6 between the wire 1 and the tube 3 is filled with a gas 12 which is directly in contact with the wire 1 and the inner wall 30 of the tube 3.
  • the gas 12 remains in the space 6 during the treatment of the wire 1, the device 100 being devoid of means capable of allowing forced ventilation of the gas 12, that is to say that the gas 12 without forced ventilation is possibly set in motion in space 6 only by the displacement of the wire 1 according to arrow F.
  • is the conductivity of the gas 12 determined at 600 ° C. This conductivity is expressed in watts.m ⁇ 1.0K ⁇ 1.
  • the wire 1 is guided by two wire guides 2 made for example of ceramic or tungsten carbide, these guides 2 being located one at the inlet, the other at the outlet of the wire 1 in the tube 3.
  • the tube 3 is cooled externally by a heat transfer fluid 9, for example water circulating in an annular sleeve 4 which surrounds the tube 3.
  • This sleeve 4 has a length L m , an internal diameter D mi , an external diameter D me .
  • the sleeve 4 is supplied with water 9 through the tubing 8, the water 9 leaves the sleeve 4 through the tubing 10, the flow of water 9 along the tube 3 thus taking place in the opposite direction to the direction F
  • the seal between the zone 7 containing water 9 (internal volume of the sleeve 4) and the space 6 containing the gas 12 is obtained using seals 5 made for example of elastomers.
  • the length of the tube 3 in contact with the fluid 9 is referenced L t in FIG. 2.
  • the exchanger 100 can in itself constitute a device according to the invention. It is also possible to assemble several exchangers 100, along the axis xx ′, by means of the flanges 11 constituting the ends of the sleeve 4, the wire 1 then passing through several exchangers 100 arranged in series along the axis xx ′.
  • These devices allow the thermal treatment of the wire 1 represented by the part of the curve ⁇ located between the points A and C, that is to say the treatment comprising a cooling followed by a pearlitization. These devices can also be used to cool the wire 1 after pearlitization, if desired, this cooling corresponding to the part CD of the curve ⁇ .
  • the gas 12 is for example hydrogen, nitrogen, helium, a mixture of hydrogen and nitrogen, hydrogen and methane, nitrogen and methane, helium and methane, d 'hydrogen, nitrogen and methane.
  • the ratio R between the internal diameter D ti and the diameter D f of the wire is close to 1, and the use of a very conductive gas 12, for example hydrogen, becomes necessary .
  • Figures 4 and 5 show another device 200 according to the invention with an axis yy ′, Figure 4 being a section along this axis and Figure 5 being a section perpendicular to this axis, the section of Figure 5 being shown schematically by the straight line segments VV in FIG. 4, the axis xx ′, being shown diagrammatically by the letter "x” and the axis yy ′ being shown diagrammatically by the letter "y”, in FIG. 5.
  • This exchanger 200 is similar to the exchanger 100 previously described with the difference that it comprises six tubes 3 surrounded by the cylindrical sleeve 4, a wire 1 being disposed along the axis xx ′ of each of these tubes, this axis xx ′ therefore also being the axis of the wire 1 placed in this tube 3.
  • Each of these tubes 3 is filled with gas 12, as for the exchanger 100, and the volume 7 inside the sleeve 4, outside the tubes 3 is the seat of a circulation of heat transfer fluid, for example water.
  • the exchanger 200 can alone constitute a device according to the invention, or be assembled coaxially with other exchangers 200 by means of the flanges 11 constituting the ends of the sleeves 4, the wires 1 thus passing through several 200 exchangers arranged in series.
  • the steps of transformation of the wire shown diagrammatically by the line BC in FIG. 1 are carried out at a temperature which varies as little as possible, the temperature of wire 1 , for example, not differing by more than 10 ° C by excess or by default of the temperature ⁇ B obtained after the cooling shown diagrammatically by the line AB.
  • This limitation of the variation in temperature is therefore carried out for a time greater than the pearlitization time, this pearlitization time corresponding to the BxCx segment.
  • the temperature of the wire 1 does not differ by more than 5 ° C by excess or by default of the temperature ⁇ B on this line BC.
  • Figure 1 shows for example the ideal case where the temperature is constant and equal to ⁇ B during the steps schematized by the line Bc which is therefore a straight line parallel to the abscissa axis.
  • This modulation can preferably be carried out by varying either the internal diameter of the tubes 3 through which the wire passes, or the length of the various tubes 3 through which the wire passes.
  • FIG. 6 represents a device in which this modulation is carried out by varying the internal diameter of the tubes.
  • This device 300 according to the invention comprises seven heat exchangers similar to the exchanger 100 previously described and shown in Figures 2 and 3. These exchangers referenced 100-1 to 100-7 are connected in series by their flanges 11, the wire 1 passing from the heat exchanger 100-1 to the heat exchanger 100-7 in the direction of arrow F, the pipe 10 for the water outlet of an exchanger being connected to the inlet pipe 8 of the heat exchanger previous, in the opposite direction to that of arrow F, the water 9 therefore flowing in series in these exchangers 100.
  • the internal diameter D ti of the tube 3 is constant, but this diameter D ti varies from heat exchanger 100-1 to heat exchanger 100-7 as follows: - The diameter D ti decreases from the heat exchanger 100-2 to the heat exchanger 100-4, so that the cooling power per unit of length increases from the heat exchanger 100-2 to the heat exchanger 100-4; - The diameter D ti increases from the exchanger 100-4 to the exchanger 100-6, which makes it possible to achieve decreasing cooling power per unit of length.
  • the lengths of elements, referenced Lm1 to Lm7, are constant for elements 100-1 to 100-7, as well as the lengths of tube 3 in contact with water, referenced L t1 to L t7 .
  • the 100-4 heat exchanger with the highest cooling power therefore corresponds to the zone where the pearlitization speed is greatest.
  • the device 400 shown in FIG. 7 has the same structure as the device 300 previously described, with seven exchangers referenced 100-1 to 100-7 connected in series by their flange 11.
  • the difference with the device 300 comes from the fact that the exchangers 100 of this device 400 all have the same internal diameter D ti for the tubes 3, and that the length L t , measured parallel to the wire 1, of the tubes 3 in contact with the fluid 9 is varied, without making vary the diameter D ti and this for an element length 100 which can be constant for all these elements, the element lengths, referenced Lm1 to Lm7 in FIG. 7 therefore having for example the same value, for the device 400.
  • the lengths of tubes 3 are referenced L t1 to L t7 for the exchangers 100-1 to 100-7 of the device 400.
  • the exchangers 100-2 to 100-4 have lengths of tubes L t2 to L t4 increasing in the direction of arrow F, so that there is an increase in the average cooling power, reported per meter of wire, from exchanger 100-2 to exchanger 100-4.
  • the lengths L t4 to L t6 decrease in the direction of arrow F, so that there is a decrease in the average cooling power, compared to the meter of wire, from the exchanger 100-4 to '' at exchanger 100-6.
  • relations (3) and (4) need only be checked for exchangers 100-4 where the pearlitization speed is the fastest.
  • exchangers 100-1 and 100-7 lead to small heat exchanges per unit of length, either because the corresponding diameter D ti is high, in the case of device 300, or because the length L ti corresponding is small, in the case of the device 400 and it is possible that these exchangers 100-1 and 100-7 do not verify any of the relations (1) to (4).
  • These exchangers 100-2 and 100-7 correspond to the practically isothermal maintenance of the wire 1 before and after pearlitization, that is to say for the parts BBx and CxC of the segment BC situated outside the zone ⁇ (FIG. 1 ) the temperature is therefore practically constant on the BC segment.
  • the CxC segment corresponds to a practically isothermal maintenance after pearlitization, to avoid applying to the wire 1 premature cooling for the case where the pearlitization is not finished, since the pearlitization time is likely to vary from steel to steel. other as said before.
  • the invention covers cases where both the diameter D ti and the length L t are varied in the same device.
  • exchangers 200 connected in series could be used, so as to treat several wires simultaneously.
  • FIG. 8 represents the diagram of a complete installation for treating a wire 1, this installation according to the invention using at least one of the devices described above.
  • This installation 500 comprises five zones referenced Z1 to Z5.
  • the wire 1 coming from the coil 13 is heated in the zone Z1, in a known manner, for example using a gas or muffle oven up to a temperature of 900 to 1000 ° C to obtain a homogeneous austenite corresponding to point A in FIG. 1, this temperature being higher than the transformation temperature AC3.
  • the wire 1 is then cooled in the zone Z2 to a temperature of 500 to 600 ° C., so as to obtain a metastable austenite corresponding to point B in FIG. 1.
  • the wire 1 then passes through the zone Z3 where it undergoes the treatments corresponding to the segment BC of FIG. 1.
  • the wire then passes through the zone Z4 where it is cooled to a temperature for example of around 300 ° C.
  • the wire then enters the zone Z5 where it is brought to a temperature close to room temperature, for example from 20 to 50 ° C, by immersion in water.
  • the cooling effected in zones Z4 and Z5 corresponds to the segment CD in FIG. 1.
  • the wire 1 leaving the bath Z5 is then wound on the coil 14.
  • the zones Z2 to Z4 can for example use exchangers of the same type as the exchangers 100, 200 previously described with optionally for the zone Z3 a device with modulation 300 or 400.
  • the invention has the following advantages: - simplicity, low investment and operating costs, because: . the use of molten metals or salts is avoided; . there is no need to use compressors or turbines which would be necessary with forced gas circulation; - one can obtain a precise cooling law and avoid the phenomenon of recalescence; - Possibility of performing with the same installation a pearlitization treatment on diameters D f of wires which can vary within wide limits, D f being at most equal to 6 mm, and preferably at least equal to 0.4 mm; - Any hygiene problem is avoided and cleaning of the wire is not necessary since the use of metals or molten salts is avoided.
  • the wires treated in these examples are made of steel, the composition of this steel being given in Table 1, according to the examples, as well as the transformation temperatures AC1 and AC3.
  • the duration of the cooling time in the zone Z2 is less than 5 seconds, this cooling corresponding to the portion AB of the curve ⁇ ( Figure 1).
  • the 100-4 exchanger is the one where the pearlitization speed is maximum.
  • ⁇ at 600 ° C is equal to 0.28 watt.m ⁇ 1.0K ⁇ 1.
  • Table 2 gives the values of R and K for the zones Z2 to Z4 with the indication of the relations (1) to (4) possibly verified in these zones TABLE 2 Zoned R K Relations (1) to (4) possibly verified Z2 3.85 8.13 (1), (2), (3) Z3 exchangers 100-1 and 100-7 19.23 17.84 no verified relationship exchangers 100-2 and 100-6 3.85 8.13 (1), (2), (3) heat exchangers 100-3 and 100-5 3.08 6.78 (1) to (4) exchanger 100-4 2.31 5.05 (1) to (4) Z4 3.85 8.13 (1), (2), (3) After treatment in installation 500, wire 1 has a tensile breaking strength of 1350 MPa (megapascals).
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.20 mm.
  • the tensile breaking strength for this drawn wire is 3500 MPa.
  • the report of the sections corresponds by definition to the report: For example 1 the ratio of the sections is equal to 42.25.
  • Example 2 This example is carried out under the same conditions as Example 1, further varying the diameter D f of the wire and the composition of the hydrogen / nitrogen mixture.
  • the exchangers of zones Z2 and Z4 check the relations (1), (2) and the exchanger 100-4 where the pearlitization speed is maximum, in the device 300 of zone Z3, checks the relations (3 ) and (4).
  • Table 3 gives the values of D f , R and K for the exchangers of zones Z2, Z4 and for the exchanger 100-4 of device 300, the volumetric% of hydrogen in the gas mixtures, as well as the values of ⁇ at 600 ° C.
  • the values of R and K for the zones Z2 and Z4 are referenced respectively R M , K M
  • the values of R and K for the exchanger 100-4 are referenced respectively R m and K m .
  • Table 3 also gives the following values: - the breaking strength (tensile breaking strength) of the wire after heat treatment, expressed in MPa; - the wire drawing diameter, expressed in mm, that is to say the wire diameter after drawing; - the ratio of the sections due to the drawing; - the breaking strength (tensile breaking strength) of the wire at the final diameter, that is to say after drawing, expressed in MPa.
  • the wire 1 has a tensile breaking strength of 1340 MPa.
  • the wire 1 thus obtained and then brass-plated and drawn in a known manner so as to have a diameter of 0.2 mm has a tensile breaking strength equal to 3480 MPa, the ratio of the sections being equal to 42.25.
  • the cooling gas 12 is pure hydrogen.
  • the water flow at 20 ° C is 19 liters per minute.
  • the exchangers of zones Z2 and Z4 verify relations (1) and (2).
  • the following table 4 gives, for the exchangers 100-1 to 100-7, of the device 300 the values of R and K as well as the relationships (1) to (4) possibly verified.
  • TABLE 4 n ° of exchangers R K Relations (1) to (4) possibly verified 100-1 and 100-7 12.5 24.05 (1) 100-2 and 100-6 1.75 5.33 (1) to (4) 100-3 and 100-5 1.50 3.86 (1), (3), (4) 100-4 1.40 3.20 (1), (3), (4)
  • the wire 1 After heat treatment, the wire 1 has a tensile breaking strength equal to 1340 MPa. After brass plating and drawing in a known manner to obtain a diameter of 0.3 mm, the tensile breaking strength is 3450 MPa, the section ratio being 44.44.
  • This example is produced with an installation using exchangers 200 for zones Z les, Z3, Z4, so as to treat six wires 1 simultaneously.
  • the wire 1 After heat treatment, the wire 1 has a tensile breaking strength of 1350 MPa. After brass plating and wire drawing carried out in a known manner to have a diameter of 0.3 mm the tensile breaking strength is 3500 MPa for a section ratio of 44.44.
  • Example 4 The conditions are identical to those of Example 4 by varying the diameter D f of the wires as well as the composition of the gas (mixture of hydrogen and nitrogen).
  • the exchangers of zones Z2 and Z4 check the relations (1) and (2), and the exchanger 100-4 where the pearlitization speed is maximum, in the device 300 of zone Zricif, checks the relations (3) and (4).
  • Table 5 gives the values of D f , of R and K for the exchangers of zones Z2, Z4 and for the exchanger 100-4 of device 300, the volumetric% of hydrogen in the gas mixtures, as well as the values from ⁇ to 600 ° C.
  • R M , K M and the values of R and K for the exchanger 100-4 are referenced respectively R m and K m .
  • Table 5 also gives the following values: - the breaking strength (tensile breaking strength) of the wire after heat treatment, expressed in MPa; - the wire drawing diameter, expressed in mm, that is to say the wire diameter after drawing; - the ratio of the sections due to the drawing; - the breaking strength (tensile breaking strength) of the wire at the final diameter, that is to say after drawing, expressed in MPa.
  • Example 2 This example is carried out under the same conditions as Example 1, but the cracked ammonia which is a decarburizing gas has been replaced by a gas maintaining the thermodynamic equilibrium with respect to the carbon of the steel at 800 ° C. .
  • the values of R and K as well as the relationships that are verified are identical to what is shown in Table 2.
  • the figures concerning the drawing and the resistance of the wire are identical to within 2% of those obtained for Example 1.
  • Example 2 This example is carried out under the same conditions as Example 1, but the cracked ammonia has been replaced by a fuel gas making it possible to correct a decarburization which has occurred in the treatments prior to the heat treatment according to the invention.
  • the wire After heat treatment, the wire has a breaking tensile strength of 1320 MPa. After brass plating and wire drawing carried out in a known manner to have a diameter of 0.2 mm, the section ratio being 42.25, the tensile breaking strength is 3450 MPa.
  • the wire temperatures are as follows: - at the exit of zone Z1: 975 ° C, - at the start of the transformation of metastable austenite into perlite (point B x in FIG. 1): 550 ° C, - at the exit of zone Z4: 350 ° C.
  • the wire has a tensile breaking strength equal to 1310 MPa.
  • the wire After brass plating and drawing in a known manner to have a diameter of 0.84 mm, the section ratio being 42.87, the wire has a tensile breaking strength equal to 3350 MPa.
  • the wire 1 treated according to the invention has the same structure as that obtained by the known lead patenting process, that is to say a fine pearlitic structure.
  • This structure includes cementite lamellae separated by ferrite lamellae.
  • FIG. 9 represents in section a portion 50 of such a fine pearlitic structure.
  • This portion 50 comprises two substantially parallel cementite lamellae 51 separated by a ferrite lamella 52.
  • the thickness of the cementite lamellae 51 is represented by "i” and the thickness of the ferrite lamellae 52 is represented by "e”.
  • the pearlitic structure is fine, that is to say that the average value i + e is at most equal to 1000 ⁇ , with a standard deviation of 250 ⁇ .
  • the invention makes it possible to obtain at least one of the following results: - After heat treatment and before drawing, the wire has a tensile breaking strength at least equal to 1300 MPa; - The wire can be drawn so as to have a section ratio at least equal to 40; - The wire, after drawing, has a tensile breaking strength at least equal to 3000 MPa.
  • the two examples 10 and 11 which follow are not in accordance with the invention.
  • These two comparative examples are produced with an installation similar to the installation 500 previously described comprising the zones Z1 to Z5.
  • the length of the installation is 18 m (zones Z2 to Z4).
  • the heat conducting gas 12 is cracked ammonia comprising 75% hydrogen and 25% nitrogen (% by volume).
  • the conductivity ⁇ at 600 ° C is equal to 0.28 watt.m ⁇ 1.0K ⁇ 1.
  • the steel contains 0.7% carbon, it is identical to that used for the previous examples 4, 5, 6 (Table 1).
  • Temperature of the wire leaving the zone Z1 975 ° C.
  • the cooling time corresponding to zone Z2 is 6.7 sec, the wire leaving this zone Z2 having a temperature of approximately 600 ° C.
  • zone Z3 The passage time in zone Z3 is 4, 6 sec, the perlitization being completed at the exit of this zone Z3.
  • the recalescence is significant, the temperature difference between the minimum temperature and the maximum temperature of the wire, during the transformation of the austenite into perlite (zone Z3) being 80 ° C.
  • the wire After the heat treatment described, the wire has a tensile breaking strength equal to 1100 MPa.
  • the wire is then brass plated and then drawn in a known manner up to a diameter of 0.23 mm and it then has a tensile breaking strength equal to 2765 MPa for a section ratio of 31.95.
  • This example not in accordance with the invention therefore results in excessive recalescence, and low breaking strength values, before and after drawing.
  • Diameter of the treated wire 2.8 mm, speed of progression of the wire: 0.5 m / sec.
  • the temperature of the wire leaving the zone Z1 is 975 ° C as in the previous example.
  • zone Z2 The passage time in zone Z2 is 11.5 sec, the wire, at the exit of this zone Z2, having a temperature of approximately 630 ° C.
  • zone Z3 The passage time in zone Z3 is 8.5 sec, the perlitization being completed at the exit from this zone Z3.
  • the temperature difference between the minimum temperature and the maximum temperature of the wire is 60 ° C., that is to say that the recalescence is less significant than in Example 10 above. , by following a low pearlitization speed in the zone Z3, which is due to a higher transformation temperature.
  • the wire After heat treatment, the wire has a tensile breaking strength of 1010 MPa.
  • the wire is then brass plated then drawn in a known manner up to a diameter of 0.42 mm and it then has a tensile breaking strength equal to 2500 MPa for a section ratio of 44.44.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

Procédé pour traiter thermiquement au moins un fil (1) d'acier au carbone de façon à obtenir une structure perlitique fine, le fil (1), préalablement à ce traitement, ayant été maintenu à une température supérieure à la température de transformation AC3. On refroidit le fil (1) et on effectue ensuite le traitement de perlitisation, ce traitement de refroidissement et de perlitisation étant effectué en faisant passer le fil (1) dans au moins un tube (3) contenant un gaz (12) pratiquement dépourvu de ventilation forcée, le tube (3) étant entouré par un fluide caloporteur (9). Dispositif (100) permettant la mise en oeuvre de ce procédé. Procédés et installations complets de traitement thermiques de fils (1) d'acier au carbone utilisant ce procédé ou ce dispositif. Fils (1) d'acier obtenus selon ces procédés et/ou avec ces dispositifs et ces installations.

Description

  • L'invention concerne les procédés et les dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine. Ces fils sont utilisés notamment pour renforcer des articles en caoutchoucs et/ou en matières plastiques, par exemple des enveloppes de pneumatiques.
  • Ces traitements thermiques ont pour but d'une part d'augmenter l'aptitude au tréfilage des fils et d'autre part d'améliorer leurs caractéristiques mécaniques et leur endurance.
  • Les traitements connus de ce type comportent deux phases :
    - une première phase qui consiste à chauffer le fil et à le maintenir à une température supérieure à la température de transformation AC3 de façon à obtenir une austénite homogène ;
    - une deuxième phase qui consiste à refroidir le fil pour obtenir une structure perlitique fine.
  • Un des procédés les plus utilisés est un traitement thermique dit "de patentage" qui consiste en une austénitisation du fil à une température de 900 à 1000°C suivie d'une immersion dans un bain de plomb ou de sels fondus maintenus à une température de 450 à 600°C.
  • Les bons résultats obtenus, particulièrement dans le cas du traitement thermique au plomb, sont généralement attribués au fait que les coefficients de convection très élevés qui sont réalisés entre le fil et le fluide refroidissant permettent d'une part un refroidissement rapide du fil entre la température de transformation AC3 et une température légèrement supérieure à celle de plomb, d'autre part une limitation de la "recalescence" pendant la transformation de l'austénite métastable en perlite, la recalescence étant une augmentation de la température du fil due au fait que l'énergie apportée par la transformation métallurgique est supérieure à l'énergie perdue par rayonnement et convection.
  • Le patentage se traduit malheureusement par des prix de revient élevés car la manipulation des métaux liquides ou des sels fondus conduit à des technologies lourdes et à la nécessité d'un nettoyage du fil après patentage. D'autre part, le plomb est très toxique et les problèmes d'hygiène qu'il pose conduisent à des dépenses importantes.
  • La demande de brevet français n° 86,16705 décrit un procédé pour traiter thermiquement un fil d'acier au carbone de façon à obtenir une structure perlitique fine en réglant la température du fil durant la transformation d'austénite en perlite de telle sorte qu'elle ne diffère pas de plus de 10°C, par excès ou par défaut, d'une température donnée inférieure à la température de transformation AC1 et supérieure à la température du nez perlitique, ce réglage étant obtenu en faisant passer un courant électrique dans le fil pendant un temps supérieur au temps de perlitisation et en effectuant une ventilation modulée pendant une partie de ce temps. Ce procédé permet d'éviter l'emploi de métaux ou de sels fondus, et il élimine donc les problèmes d'hygiène et de nettoyage de fils précités, tout en conduisant à des installations plus simples et de fonctionnement plus souple. Ce procédé nécessite cependant l'emploi de compresseurs ou de turbines pour l'obtention d'une ventilation modulée, ce qui peut conduire à des frais d'investissement et de fonctionnement relativement élevés. D'autre part ce procédé n'est utilisable à l'échelle industrielle que pour des fils de diamètre relativement faible, par exemple au plus égal à 3 mm.
  • Le but de l'invention est de permettre de réaliser un traitement thermique pour la transformation d'austénite en perlite qui évite l'utilisation de métaux ou de sels fondus, ainsi que l'emploi d'une ventilation forcée, tout en permettant de traiter des fils dont le diamètre peut varier dans de larges limites.
  • En conséquence, l'invention concerne un procédé pour traiter thermiquement au moins un fil d'acier au carbone de façon à obtenir une structure perlitique fine, le fil, préalablement à ce traitement, ayant été maintenu à une temperature supérieure à la température de transformation AC3 pour obtenir une austénite homogène, ce procédé étant caractérisé par les points suivants :
    • a) on refroidit le fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température inférieure à la température de transformation AC1
    • b) on effectue ensuite le traitement de perlitisation à une température inférieure à la température de transformation AC1 ;
    • c) ce traitement de refroidissement et de perlitisation est effectué en faisant passer le fil dans au moins un tube contenant un gaz pratiquement dépourvu de ventilation forcée, le tube étant entouré par un fluide caloporteur de telle sorte qu'un transfert de chaleur s'effectue depuis le fil, à travers le gaz et le tube, vers le fluide caloporteur ;
    • d) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations suivantes soient vérifiées, au moins lors du refroidissement précédant la perlitisation :
      1,05 ≦ R ≦ 14      (1)
      5 ≦ K ≦ 10      (2)
      avec, par définition,
      R = Dti/Df
      K = [Log (Dti/Df)]xD
      Dti étant le diamètre intérieur du tube exprimé en millimètres, Df étant le diamètre du fil exprimé en millimètres, ce diamètre étant au plus égal à 6 mm, λ étant la conductibilité du gaz déterminée à 600°C, cette conductibilité étant exprimée en watts.m⁻¹.⁰K⁻¹, Log étant le logarithme népérien.
  • L'invention concerne également un dispositif permettant de traiter thermiquement au moins un fil d'acier au carbone de façon à obtenir une structure perlitique fine, le fil, préalablement à ce traitement, ayant été maintenu à une température supérieure à la température de transformation AC3 pour obtenir une austénite homogène, ce dispositif étant caractérisé par les points suivants :
    • a) il comporte des moyens permettant de refroidir le fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température inférieure à la température de transformation AC1 ;
    • b) il comporte des moyens permettant d'effectuer le traitement de perlitisation à une température inférieure à la température de transformation AC1 ;
    • c) ces moyens de refroidissement et de perlitisation comportent au moins un tube et des moyens pour faire passer le fil dans le tube, ce tube contenant un gaz pratiquement dépourvu de ventilation forcée, ce tube étant entouré par un fluide caloporteur de telle sorte qu'un transfert de chaleur s'effectue depuis le fil à travers le gaz et le tube, vers le fluide caloporteur ;
    • d) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations suivantes soient vérifiées, au moins lors du refroidissement précédant la perlitisation :
      1,05 ≦ R ≦ 15      (1)
      5 ≦ K ≦ 10      (2)
      avec, par définition,
      R = Dti/Df
      K = [Log(Dti/Df)]xD
      Dti étant le diamètre intérieur du tube exprimé en millimètres, Df étant le diamètre du fil exprimé en millimètres, ce diamètre étant au plus égal à 6 mm, λ étant la conductibilité du gaz déterminée à 600°C, cette conductibilité étant exprimée en watts.m⁻¹.⁰K⁻¹, Log étant le logarithme népérien.
  • Le terme "pratiquement dépourvu de ventilation forcée" veut dire que le gaz dans le tube est soit immobile, soit soumis à une faible ventilation qui ne modifie pratiquement pas les échanges thermiques entre le fil et le gaz, cette faible ventilation étant par exemple due uniquement au déplacement du fil lui-même.
  • L'invention concerne également les procédés et les installations complètes de traitement thermique de fils d'acier au carbone utilisant les procédés ou les dispositifs précédemment décrits.
  • L'invention concerne également les fils d'acier obtenus selon les procédés et/ou avec les dispositifs et les installations conformes à l'invention.
  • L'invention sera aisément comprise à l'aide des exemples non limitatifs qui suivent et des figures toutes schématiques relatives à ces exemples.
  • Sur le dessin :
    • - La figure 1 représente des courbes de transformation d'austénite en perlite, ainsi qu'une courbe montrant l'évolution de la température en fonction du temps pour un fil d'acier traité de façon à obtenir une structure perlitique fine ;
    • - La figure 2 représente un dispositif conforme à l'invention, cette figure étant une coupe effectuée selon l'axe du dispositif ;
    • - La figure 3 représente le dispositif de la figure 2, selon une coupe perpendiculaire à l'axe du dispositif, cette coupe étant schématisée par les segments de ligne droite III-III à la figure 2 ;
    • -La figure 4 représente un autre dispositif conforme à l'invention, cette figure étant une coupe effectuée selon l'axe du dispositif ;
    • -La figure 5 représente le dispositif de la figure 4 selon une coupe perpendiculaire à l'axe du dispositif, cette coupe étant schématisée par les segments de ligne droite V-V à la figure 4.
    • - Les figures 6 et 7 représentent chacune un autre dispositif conforme à l'invention.
    • - La figure 8 représente une installation complète pour traiter thermiquement un fil d'acier, cette installation utilisant au moins un dispositif conforme à l'invention ;
    • La figure 9 représente en coupe une portion de la structure perlitique fine d'un fil traité conformément à l'invention ;
  • La figure 1 représente la courbe φ montrant l'évolution de la température d'un fil d'acier en fonction du temps, lorsque ce fil est soumis à un traitement de perlitisation. Cette figure représente également la courbe X₁ correspondant au début de la transformation d'austénite métastable en perlite et la courbe X₂ correspondant à la fin de la transformation d'austénite métastable en perlite, pour l'acier de ce fil. Sur cette figure 1, l'axe des abscisses correspond au temps T et l'axe des ordonnées correspond à la température ϑ.
  • Préalablement au traitement de perlitisation, le fil a été chauffé et maintenu à une température supérieure à la température de transformation AC3 de façon à obtenir une austénite homogène, cette température ϑA, par exemple comprise entre 900°C et 1000°C, correspondant au point A de la figure 1. Le point dit "nez perlitique", correspond au temps minimum Tm de la courbe X₁, la température de ce nez perlitique étant référencée ϑp. L'origine O des temps T correspond au point A.
  • Le fil est refroidi jusqu'à ce qu'il atteigne une température inférieure à la température de transformation AC1, l'état du fil après ce refroidissement correspondant au point B , la température obtenue en ce point B au bout du temps TB étant référencée ϑB. Cette température ϑB a été représentée à la figure 1 comme supérieure à la température ϑp du nez perlitique, ce qui est le plus fréquent dans la pratique, sans être absolument nécessaire. Durant ce refroidissement du fil entre les points A et B il y a transformation d'austénite stable en austénite métastable, dès que la température du fil descend au dessous du point de transformation AC3, et des "germes" apparaissent aux joints de grains de l'austénite métastable. La zone comprise entre les courbes X₁, X₂ est référencée ω. La perlitisation consiste à faire passer le fil de l'état représenté par le point B, à gauche de la zone ω, à un état représenté par le point C, à droite de la zone ω. Cette transformation du fil est par exemple schématisée par le segment de ligne droite BC qui coupe la courbe X₁ en Bx et la courbe X₂ en Cx, mais l'invention s'applique aussi aux cas où la variation de température du fil entre les points B et C n'est pas linéaire.
  • La formation des germes se poursuit dans la partie du segment BC située à gauche de la zone ω, c'est-à-dire dans le segment BBx. Dans la partie du segment BC traversant la zone ω, c'est-à-dire dans le segment BxCx, il y a transformation d'austénite métastable en perlite, c'est-à-dire perlitisation. Le temps de perlitisation est susceptible de varier d'un acier à l'autre, aussi le traitement représenté par le segment CxC a pour but d'éviter d'appliquer au fil un refroidissement prématuré au cas où la perlitisation ne serait pas terminée. En effet, de l'austénite métastable résiduelle qui subirait un refroidissement rapide se transformerait en bainite qui n'est pas une structure favorable à la tréfilabilité après traitement thermique, ni à la valeur d'usage et aux propriétés mécaniques du produit final.
  • Un refroidissement rapide entre les points A et B suivi d'un maintien isotherme dans le domaine de l'austénite métastable, c'est-à-dire entre les points B et Bx permet un accroissement du nombre de germes et une diminution de leur taille. Ces germes sont les points de départ de la transformation ultérieure de l'austénite métastable en perlite et il est bien connu que la finesse de la perlite, donc la valeur d'usage du fil sera d'autant plus grande que ces germes seront plus nombreux et plus petits.
  • Après le traitement de perlitisation, on refroidit le fil, par exemple jusqu'à la température ambiante, ce refroidissement, de préférence rapide, étant schématisé par exemple par le segment de ligne courbe CD, la température en D étant référencée ϑD.
  • Les figures 2 et 3 représentent un dispositif 100 conforme à l'invention. Ce dispositif 100 est un échangeur de chaleur comportant une enceinte 3 sous forme d'un tube de diamètre intérieur Dti et de diamètre extérieur Dt e dans lequel défile suivant la flèche F le fil 1 à traiter, le diamètre du fil 1 étant référencé Df, ce fil 1 étant un fil d'acier au carbone.
  • La figure 2 est une coupe effectuée suivant l'axe xx′ du fil 1 qui est aussi l'axe du dispositif 100, et la figure 3 est une coupe effectuée perpendiculairement à cet ax xx′, la coupe de la figure 3 étant schématisée par les segments de ligne droite III-III, à la figure 2, l'axe xx′ étant schématisé par la lettre "x" à la figure 3. Les moyens d'entraînement du fil 1 sont des moyens connus non représentés sur ces figures 2 et 3 dans un but de simplification, ces moyens comportant par exemple un enrouleur actionné par un moteur, pour enrouler le fil après traitement. L'espace 6 entre le fil 1 et le tube 3 est rempli d'un gaz 12 qui est directement au contact du fil 1 et de la paroi intérieure 30 du tube 3. Le gaz 12 reste dans l'espace 6 pendant le traitement du fil 1, le dispositif 100 étant dépourvu de moyens susceptibles de permettre une ventilation forcée du gaz 12, c'est-à-dire que le gaz 12 dépourvu de ventilation forcée n'est éventuellement mis en mouvement dans l'espace 6 que par le déplacement du fil 1 selon la flèche F. Lors du traitement thermique du fil 1, un transfert de chaleur s'effectue depuis le fil 1 vers le gaz 12. λ est la conductibilité du gaz 12 déterminée à 600°C. Cette conductibilité est exprimée en watts.m⁻¹.⁰K⁻¹. Le fil 1 est guidé par deux guide-fils 2 réalisés par exemple en céramique ou en carbure de tungstène, ces guides 2 étant situés l'un à l'entrée, l'autre à la sortie du fil 1 dans le tube 3. Le tube 3 est refroidi extérieurement par un fluide caloporteur 9, par exemple de l'eau circulant dans un manchon 4 annulaire qui entoure le tube 3. Ce manchon 4 a une longueur Lm, un diamètre intérieur Dmi, un diamètre extérieur Dme. Le manchon 4 est alimenté en eau 9 par la tubulure 8, l'eau 9 sort du manchon 4 par la tubulure 10, l'écoulement de l'eau 9 le long du tube 3 s'effectuant ainsi en sens inverse de la direction F. L'étanchéité entre la zone 7 contenant de l'eau 9 (volume intérieur du manchon 4) et l'espace 6 contenant le gaz 12 est obtenue à l'aide de joints 5 réalisés par exemple en élastomères. La longueur du tube 3 en contact avec le fluide 9 est référencée Lt à la figure 2.
  • L'échangeur 100 peut constituer à lui seul un dispositif conforme à l'invention. On peut aussi assembler plusieurs échangeurs 100, selon l'axe xx′, grâce aux brides 11 constituant les extrémités du manchon 4, le fil 1 traversant alors plusieurs échangeurs 100 disposés en série selon l'axe xx′.
  • Ces dispositifs permettent le traitement thermique du fil 1 représenté par la partie de la courbe φ située entre les points A et C, c'est-à-dire au traitement comportant un refroidissement suivi d'une perlitisation. Ces dispositifs peuvent ausi servir au refroidissement du fil 1 après perlitisation, si on le désire, ce refroidissement correspondant à la partie CD de la courbe φ.
  • Les caractéristiques du tube 3, du fil 1 et du gaz 12 sont choisies de telle sorte que les relations suivantes soient vérifiées, au moins lors du refroidissement précédant la perlitisation et schématisé par la partie AB de la courbe φ :
    1,05 ≦ R ≦ 15      (1)
    5 ≦ K ≦ 10      (2)
    avec, par définition :
    R = Dti/Df
    K = [Log (D t i/Df)]xD
    Dti et Df étant exprimés en millimètres, λ étant la conductibilité du gaz déterminée à 600°C et exprimée en watts.m⁻¹.⁰K⁻¹, Log étant le logarithme népérien. Df est au plus égal à 6 mm.
  • Le gaz 12 est par exemple l'hydrogène, l'azote, l'hélium, un mélange d'hydrogène et d'azote, d'hydrogène et de méthane, d'azote et de méthane, d'hélium et de méthane, d'hydrogène, d'azote et de méthane.
  • Pour des fils 1 de diamètre important, le rapport R entre le diamètre intérieur Dti et le diamètre Df du fil est voisin de 1, et l'utilisation d'un gaz 12 très conducteur, par exemple de l'hydrogène, devient nécessaire.
  • Les figures 4 et 5 représentent un autre dispositif 200 conforme à l'invention avec un axe yy′, la figure 4 étant une coupe selon cet axe et la figure 5 étant une coupe perpendiculaire à cet axe, la coupe de la figure 5 étant schématisée par les segments de ligne droite V-V à la figure 4, l'axe xx′, étant schématisé par la lettre "x" et l'axe yy′ étant schématisé par la lettre "y", à la figure 5.
  • Cet échangeur 200 est analogue à l'échangeur 100 précédemment décrit avec la différence qu'il comporte six tubes 3 entourés par le manchon 4 cylindrique, un fil 1 étant disposé selon l'axe xx′ de chacun de ces tubes, cet axe xx′ étant donc également l'axe du fil 1 disposé dans ce tube 3. Chacun de ces tubes 3 est rempli par le gaz 12, comme pour l'échangeur 100, et le volume 7 intérieur du manchon 4, à l'extérieur des tubes 3 est le siège d'une circulation de fluide caloporteur, par exemple de l'eau.
  • Comme l'échangeur 100, l'échangeur 200 peut constituer à lui seul un dispositif conforme à l'invention, ou être assemblé coaxialement avec d'autres échangeurs 200 grâce aux brides 11 constituant les extrémités des manchons 4, les fils 1 traversant ainsi plusieurs échangeurs 200 disposés en série.
  • Pour obtenir une transformation d'austénite en perlite dans les meilleures conditions, il est préférable que les étapes de transformation du fil schématisées par la ligne BC à la figure 1 s'effectuent à une température qui varie le moins possible, la température du fil 1, par exemple, ne différant pas de plus de 10°C par excès ou par défaut de la température ϑB obtenue après le refroidissement schématisé par la ligne AB. Cette limitation de la variation de la température étant donc effectuée pendant un temps supérieur au temps de perlitisation, ce temps de perlitisation correspondant au segment BxCx. Avantageusement, la température du fil 1 ne diffère pas de plus de 5°C par excès ou par défaut de la température ϑB sur cette ligne BC. La figure 1 représente par exemple le cas idéal où la température est constante et égale à ϑB pendant les étapes schématisées par la ligne Bc qui est donc un segment de droite parallèle à l'axe des abscisses.
  • La transformation d'austénite en perlite qui s'effectue dans le domaine ω dégage une quantité de chaleur d'environ 100 000 J.Kg⁻¹, avec une vitesse de transformation qui varie dans ce domaine en fonction du temps, cette vitesse étant faible au voisinage des points Bx Cx et maximum vers le milieu du segment Bx Cx. Dans ces conditions, si l'on veut une température pratiquement constante lors de cette transformation, il est nécessaire d'effectuer des échanges thermiques modulés, c'est-à-dire des échanges thermiques dont la puissance par unité de longueur du fil 1 varie le long du dispositif où s'effectue cette transformation, le refroidissement dû au gaz 12 étant maximum lorsque la vitesse de perlitisation est maximum, ceci afin d'éviter le phénomène de recalescence dû à une montée en température excessive du fil 1 lors de la perlitisation.
  • Cette modulation peut être effectuée de préférence en faisant varier soit le diamètre intérieur des tubes 3 où passe le fil, soit la longueur des divers tubes 3 où passe le fil.
  • La figure 6 représente un dispositif dans lequel cette modulation est effectuée en faisant varier le diamètre intérieur des tubes. Ce dispositif 300 conforme à l'invention, comporte sept échangeurs de chaleur analogues à l'échangeur 100 précédemment décrit et représenté aux figures 2 et 3. Ces échangeurs référencés 100-1 à 100-7 sont reliés en série par leurs brides 11, le fil 1 passant de l'échangeur 100-1 à l'échangeur 100-7 dans le sens de la flèche F, la tubulure 10 de sortie d'eau d'un échangeur étant reliée à la tubulure d'admission 8 de l'échangeur précédent, dans le sens opposé à celui de la flèche F, l'eau 9 s'écoulant donc en série dans ces échangeurs 100. Pour chacun des échangeurs 100, le diamètre intérieur Dti du tube 3 est constant, mais ce diamètre Dti varie de l'échangeur 100-1 à l'échangeur 100-7 de la façon suivante :
    - le diamètre Dti diminue de l'échangeur 100-2 à l'échangeur 100-4, de telle sorte que la puissance de refroidissement par unité de longueur croisse de l'échangeur 100-2 à l'échangeur 100-4 ;
    - le diamètre Dti augmente de l'échangeur 100-4 à l'échangeur 100-6, ce qui permet de réaliser des puissance de refroidissement par unité de longueur décroissantes.
  • Les longueurs d'éléments, référencées Lm₁ à Lm₇, sont constantes pour les éléments 100-1 à 100-7, ainsi que les longueurs de tube 3 en contact avec l'eau, référencées Lt1 à Lt7.
  • L'échangeur 100-4 dont la puissance de refroidissement est la plus élevée, correspond donc à la zone où la vitesse de perlitisation est la plus grande.
  • Dans cette zone, on a les relations suivantes :
    1,05 ≦ R ≦ 8      (3)
    3 ≦ K ≦ 8      (4)
    R et K ayant les mêmes définitions que précédemment.
  • Le dispositif 400 représenté sur la figure 7 a la même structure que le dispositif 300 précédemment décrit, avec sept échangeurs référencés 100-1 à 100-7 reliés en série par leur bride 11. La différence avec le dispositif 300 vient de ce que les échangeurs 100 de ce dispositif 400 ont tous le même diamètre intérieur Dti pour les tubes 3, et de ce que l'on fait varier la longueur Lt, mesurée parallèlement au fil 1, des tubes 3 en contact avec le fluide 9, sans faire varier le diamètre Dti et ceci pour une longueur d'élément 100 qui peut être constante pour tous ces éléments, les longueurs d'éléments, référencées Lm₁ à Lm₇ à la figure 7 ayant donc par exemple la même valeur, pour le dispositif 400.
  • A la figure 7, les longueurs de tubes 3 sont référencées Lt1 à Lt7 pour les échangeurs 100-1 à 100-7 du dispositif 400. Les échangeurs 100-2 à 100-4 ont des longueurs de tubes Lt2 à Lt4 croissantes dans le sens de la flèche F, de telle sorte qu'il y a une augmentation de la puissance de refroidissement moyenne, rapportée au mètre de fil, depuis l'échangeur 100-2 jusqu'à l'échangeur 100-4. Au contraire, les longueurs Lt4 à Lt6 décroissent dans le sens de la flèche F, de telle sorte qu'il y a une diminution de la puissance de refroidissement moyenne, rapportée au mètre de fil, depuis l'échangeur 100-4 jusqu'à l'échangeur 100-6. L'échangeur 100-4, dont la puissance de refroidissement est la plus élevée, correspond ici encore à la zone où la vitesse de perlitisation est la plus grande et les relations (3) et (4) précédemment indiquées pour le dispositif 300 sont encore ici respectées.
  • Dans les dispositifs 300 et 400 à modulation, les relations (3) et (4) n'ont besoin d'être vérifiées que pour les échangeurs 100-4 où la vitesse de perlitisation est la plus rapide.
  • Dans les dispositifs 300 et 400, les échangeurs 100-1 et 100-7 conduisent à des échanges thermiques par unité de longueur faibles, soit parce que le diamètre correspondant Dti est élevé, dans le cas du dispositif 300, soit parce que la longueur Lti correspondante est faible, dans le cas du dispositif 400 et il est possible que ces échangeurs 100-1 et 100-7 ne vérifient aucune des relations (1) à (4). Ces échangeurs 100-2 et 100-7 correspondent au maintien pratiquement isotherme du fil 1 avant et après perlitisation, c'est-à-dire pour les parties BBx et CxC du segment BC situées à l'extérieur de la zone ω (figure 1) la température étant donc pratiquement constante sur le segment BC. Le segment CxC correspond à un maintien pratiquement isotherme après perlitisation, pour éviter d'appliquer au fil 1 un refroidissement prématuré pour le cas où la perlitisation ne serait pas terminée, car le temps de perlitisation est susceptible de varier d'un acier à l'autre comme dit précédemment.
  • Pour obtenir une température constante du fil 1 dans les échangeurs 100-1 et 100-7, il peut être avantageux de faire passer un courant électrique dans le fil 1, lorsqu'il traverse ces échangeurs, on peut aussi dans ce but remplacer ces échangeurs 100-1 et 100-7 par des fours à moufle maintenus à la température ϑB, les dispositifs permettant de faire passer le courant électrique, ou ces fours à moufles n'étant pas représentés aux figures 6 et 7 dans un but de simplification.
  • L'invention couvre les cas où l'on fait varier à la fois le diamètre Dti et la longueur Lt, dans le même dispositif. D'autre part, dans les dispositifs 300 et 400, on pourrait utiliser des échangeurs 200 reliés en série, de façon à traiter simultanément plusieurs fils.
  • D'autre part, au lieu d'utiliser plusieurs tubes 3 de diamètres différents, on peut utiliser un tube unique dont le diamètre varie le long de son axe, pour effectuer la modulation des échanges thermiques précédemment décrite en respectant les relations (3) et (4) dans la zone où la vitesse de perlitisation est maximum.
  • La figure 8 représente le schéma d'une installation complète pour traiter un fil 1, cette installation conforme à l'invention utilisant au moins un des dispositifs précédemment décrits.
  • Cette installation 500 comporte cinq zones référencées Z₁ à Z₅. Le fil 1 provenant de la bobine 13 est chauffé dans la zone Z₁, de façon connue, par exemple grâce à un four à gaz ou à moufle jusqu'à une température de 900 à 1000°C pour obtenir une austénite homogène correspondant au point A de la figure 1, cette température étant supérieure à la température de transformation AC3.
  • Le fil 1 est ensuite refroidi dans la zone Z₂ jusqu'à une température de 500 à 600°C, de façon à obtenir une austénite métastable correspondant au point B de la figure 1.
  • Le fil 1 passe ensuite dans la zone Z₃ où il subit les traitements correspondant au segment BC de la figure 1. Le fil passe ensuite dans la zone Z₄ où il est refroidi jusqu'à une température par exemple d'environ 300°C. Le fil pénètre ensuite dans la zone Z₅ où il est amené à une température proche de la température ambiante, par exemple de 20 à 50°C, par immersion dans de l'eau. Le refroidissement opéré dans les zones Z₄ et Z₅ correspond au segment CD de la figure 1.
  • Le fil 1 sortant du bain Z₅ est ensuite enroulé sur la bobine 14.
  • Les zones Z₂ à Z₄ peuvent par exemple utiliser des échangeurs de même type que les échangeurs 100, 200 précédemment décrits avec éventuellement pour la zone Z₃ un dispositif à modulation 300 ou 400.
  • L'invention présente les avantages suivants :
    - simplicité, coûts d'investissement et de fonctionnement peu élevés, car :
    . on évite l'emploi de métaux ou de sels fondus ;
    . on se dispense d'employer des compresseurs ou des turbines qui seraient nécessaires avec une circulation de gaz forcée ;
    - on peut obtenir une loi de refroidissement précise et éviter le phénomène de recalescence ;
    - possibilité d'effectuer avec la même installation un traitement de perlitisation sur des diamètres Df de fils qui peuvent varier dans de larges limites, Df étant au plus égal à 6 mm, et de préférence au moins égal à 0,4 mm ;
    - on évite tout problème d'hygiène et un nettoyage du fil n'est pas nécessaire puisqu'on évite l'emploi de métaux ou de sels fondus.
  • Ces avantages ne sont obtenus que lorsque les relations (1) et (2) sont vérifiées lors du refroidissement schématisé par la portion AB de la courbe φ (figure 1). Lorsqu'on utilise des tubes contenant un gaz dépourvu de ventilation forcée, les tubes étant entourés par un fluide caloporteur, mais les relations (1) et (2) n'étant pas vérifiées lors du refroidissement précédant la perlitisation et correspondant à la portion AB de la courbe φ, il n'est pas possible d'effectuer une perlitisation correcte.
  • L'invention est illustrée par les neuf exemples de réalisation qui suivent et qui sont tous conformes à l'invention.
  • Les fils traités dans ces exemples sont réalisés en acier, la composition de cet acier étant donnée dans le tableau 1, en fonction des exemples, ainsi que les températures de transformation AC1 et AC3.
    Figure imgb0001
  • Tous les exemples sont réalisés avec une installation 500 conforme à l'invention présentant les cinq zones Z₁ à Z₅ précédemment décrites. Cette installation utilise des échangeurs thermiques 100 ou 200 pour les zones Z₂ et Z₄ et des dispositifs 300 ou 400 pour la zone Z₃, dans le cas des exemples 1 à 8 qui sont effectués en évitant le phénomène de recalescence, c'est-à-dire avec une température pratiquement constante dans la zone Z₃. L'exemple 9, au contraire est effectué sans lutter contre la recalescence, la température variant dans la zone Z₃. Les conditions de l'exemple 9 seront définies ultérieurement. Pour ce qui est des exemples 1 à 8, les conditions sont les suivantes :
    • a) la vitesse du fil est de 1 mètre par seconde.
    • b) la longueur des différentes zones Z₁ à Z₅, mesurée en suivant le fil est la suivante :
      pour la zone Z₁ : 3 m ; pour la zone Z₂ : 2,6 m ; pour la zone Z₃ : 3 m ; pour la zone Z₄ : 3 m ; pour la zone Z₅ : 1 m ; ces longueurs sont référencées L₁ à L₅ à la figure 8.
    • c) les températures des fils sont les suivantes :
      - à la sortie de la zone Z₁ = 975°C
      - à la sortie de la zone Z₂ et dans toute la zone Z₃ = 550°C
      - à la sortie de la zone Z₄ = 300°C.
  • Pour tous les exemples 1 à 9 la durée du temps de refroidissement dans la zone Z₂ est inférieure à 5 secondes, ce refroidissement correspondant à la portion AB de la courbe φ (figure 1).
  • La réalisation des exemples s'effectue de la façon suivante :
  • EXEMPLE 1
  • - Diamètre du fil 1 traité : 1,3 mm
    - Gaz 12 conducteur de la chaleur : NH₃ craqué (Pourcentages en volumes : H₂ = 75 %, N₂ = 25 %).
    - Débit d'eau 9 à 20°C : 8 litres par minute, tous les manchons 4 étant en série.
    - Les caractéristiques de l'échangeur 100 de la zone Z₂ sont les suivantes :
    . Tube 3 réalisé en verre type pyrex, les diamètres étant les suivants : Dti = 5 mm, Dte = 10 mm.
    . Diamètres du manchon 4 :Dmi = 35,2 mm; Dme = 42,4 mm.
    . Pour une température du fil de 975°C, les températures du tube 3 sont les suivantes : face interne 190°C, face externe 65°C.
    - Les caractéristiques de la zone Z₃ sont les suivantes :
    utilisation du dispositif 300, à modulation par variation de Dti, les valeurs de Dti et Dte étant les suivantes pour les échangeurs 100-1 à 100-7 :
    pour les échangeurs 100-1 et 100-7 : Dti = 25 mm, Dte = 35 mm,
    pour les échangeurs 100-2 et 100-6 : Dti = 5 mm, Dte = 10 mm,
    pour les échangeurs 100-3 et 100-5 : Dti = 4 mm, Dte = 8 mm
    pour l'échangeur 100-4 : Dti = 3 mm, Dte = 8 mm.
    L'échangeur 100-4 est celui où la vitesse de perlitisation est maximum.
    Les diamètres des manchons 4 ont, dans tous les cas, les valeurs suivantes : Dmi = 35,2 mm, Dme = 42,4 mm.
    Les diverses longueurs Lm des manchons 4 sont les suivantes : pour les échangeurs 100-1 et 100-7, Lm = 0,75 m. Pour les échangeurs 100-2 à 100-6, Lm = 0,30 m, ce qui correspond donc à une longueur totale de 3 m.
    - Les caractéristiques de l'échangeur 100 formant la zone Z₄ sont les suivantes :
    Tube 3 en verre de type pyrex avec Dti = 5 mm, Dte = 10 mm. Les diamètres du manchon 4 sont les suivants : Dmi = 35,2 mm, Dme = 42,4 mm.
    La valeur de λ à 600°C est égale à 0,28 watt.m⁻¹.⁰K⁻¹. Le tableau 2 suivant donne les valeurs de R et K pour les zones Z₂ à Z₄ avec l'indication des relations (1) à (4) éventuellement vérifiées dans ces zones TABLEAU 2
    Zone R K Relations (1) à (4) éventuellement vérifiées
    Z₂ 3,85 8,13 (1), (2), (3)
    Z₃
    échangeurs 100-1 et 100-7 19,23 17,84 aucune relation vérifiée
    échangeurs 100-2 et 100-6 3,85 8,13 (1), (2), (3)
    échangeurs 100-3 et 100-5 3,08 6,78 (1) à (4)
    échangeur 100-4 2,31 5,05 (1) à (4)
    Z₄ 3,85 8,13 (1), (2), (3)
    Après traitement dans l'installation 500, le fil 1 a une résistance de rupture à la traction de 1350 MPa (mégapascals). Ce fil est ensuite laitonné puis tréfilé de façon connue pour obtenir un diamètre final de 0,20 mm. La résistance de rupture à la traction pour ce fil tréfilé est de 3500 MPa. Le rapport des sections correspond par définition au rapport :
    Figure imgb0002
    Pour l'exemple 1 le rapport des sections est égal à 42,25.
  • EXEMPLE 2
  • Cet exemple est réalisé dans les mêmes conditions que l'exemple 1, en faisant en outre varier le diamètre Df du fil et la composition du mélange hydrogène/azote. Dans tous les cas les échangeurs des zones Z₂ et Z₄ vérifient les relations (1), (2) et l'échangeur 100-4 où la vitesse de perlitisation est maximum, dans le dispositif 300 de la zone Z₃, vérifie les relations (3) et (4). Le tableau 3 donne les valeurs de Df, de R et K pour les échangeurs des zones Z₂, Z₄ et pour l'échangeur 100-4 du dispositif 300, le % volumétrique d'hydrogène dans les mélanges gazeux, ainsi que les valeurs de λ à 600°C. Les valeurs de R et de K pour les zones Z₂ et Z₄ sont référencées respectivement RM, KM, et les valeurs de R et K pour l'échangeur 100-4 sont référencées respectivement Rm et Km.
  • Le tableau 3 donne d'autre part les valeurs suivantes :
    - la résistance à la rupture (résistance de rupture à la traction) du fil après traitement thermique, exprimée en MPa ;
    - le diamètre de tréfilage du fil, exprimé en mm, c'est-à-dire le diamètre du fil après tréfilage ;
    - le rapport des sections dû au tréfilage ;
    - la résistance à la rupture (résistance de rupture à la traction) du fil au diamètre final, c'est-à-dire après tréfilage, exprimée en MPa.
    Figure imgb0003
  • Exemple 3
  • Cet exemple est réalisé dans les mêmes conditions que l'exemple 1, sauf pour la zone Z₃ qui est réalisée avec le dispositif 400. Les caractéristiques des échangeurs 100 de ce dispositif 400 sont les suivantes :
    . Tous les tubes 3 sont en alumine, les diamètres Dti et Dte identiques pour les sept échangeurs 100 ayant les valeurs suivantes : Dti = 3 mm, Dte = 8 mm. Les longueurs Lt de tube varient de la façon suivante :
    pour les échangeurs 100-1 et 100-7, Lt = 0,15 m ;
    pour les échangeurs 100-2 et 100-6, Lt = 0,20 m ;
    pour les échangeurs 100-3 et 100-5, Lt = 0,25 m ;
    pour l'échangeur 100-4, Lt = 0,28 m.
    Tous les échangeurs 100-1 à 100-7 vérifient les relations (1) à (4), avec : λ = 0,28 ; R = 2,31 ; K = 5,05.
    Après traitement dans l'installation 500 le fil 1 a une résistance de rupture à la traction de 1340 MPa.
    Le fil 1 ainsi obtenu puis laitonné et tréfilé de façon connue pour avoir un diamètre de 0,2 mm a une résistance de rupture à la traction égale à 3480 MPa, le rapport des sections étant égal à 42,25.
  • Exemple 4
  • On utilise un fil de diamètre Df = 2 mm. Le gaz de refroidissement 12 est de l'hydrogène pur. Le débit d'eau à 20°C est de 19 litres par minute. Les caractéristiques de l'exemple sont les suivantes :
    - Zone Z₂ : Utilisation de trois échangeurs 100 en série, chacun ayant les caractéristiques suivantes : tube 3 en acier vitrifié à l'intérieur. Dti = 4,5 mm ; Dte = 10 mm. Diamètres du manchon 4 : Dmi = 35,2 mm ; Dme = 42,4 mm.
    - Zone Z₃ : Utilisation d'un dispositif 300, avec des tubes 3 en acier vitrifiés à l'intérieur, les diamètres de ces tubes 3 étant les suivants :
    pour les échangeurs 100-1 et 100-7 : Dti = 25 mm, Dte = 35 mm
    pour les échangeurs 100-2 et 100-6 : Dti = 3,5 mm, Dte = 10 mm
    pour les échangeurs 100-3 et 100-5 : Dti = 3 mm, Dte = 10 mm
    pour l'échangeur 100-4 : Dti = 2,8 mm, Dte = 10 mm
    Diamètres des manchons 4 : Dmi = 35,2 mm, Dme = 42,4 mm.
    - Zone Z₄ : Utilisation de trois échangeurs 100 en série, chacun ayant les caractéristiques suivantes : tubes 3 en acier vitrifié à l'intérieur. Dti = 4,5 mm ; Dte = 10 mm.
    On a λ = 0,42 watt.m⁻¹.⁰K⁻¹.
  • Les échangeurs des zones Z₂ et Z₄ vérifient les relations (1) et (2). le tableau 4 suivant donne, pour les échangeurs 100-1 à 100-7, du dispositif 300 les valeurs de R et K ainsi que les relations (1) à (4) éventuellement vérifiées. TABLEAU 4
    n° d'échangeurs R K Relations (1) à (4) éventuellement vérifiées
    100-1 et 100-7 12,5 24,05 (1)
    100-2 et 100-6 1,75 5,33 (1) à (4)
    100-3 et 100-5 1,50 3,86 (1), (3), (4)
    100-4 1,40 3,20 (1), (3), (4)
  • Après traitement thermique, le fil 1 présente une résistance de rupture à la traction égale à 1340 MPa. Après laitonnage et tréfilage effectués de façon connue pour obtenir un diamètre de 0,3 mm, la résistance de rupture à la traction est de 3450 MPa, le rapport des sections étant de 44,44.
  • Exemple 5
  • Cet exemple est réalisé avec une installation utilisant des échangeurs 200 pour les zones Z₂, Z₃, Z₄, de façon à traiter six fils 1 simultanément.
  • Le débit d'eau à 20°C est de 110 litres par minute, et les diamètres des manchons 4 sont les suivants :
    Dmi = 82,5 mm, Dme = 88,9 mm
    A part ces points, les conditions de l'exemple sont les mêmes que pour l'exemple 4.
  • Après traitement thermique, le fil 1 présente une résistance de rupture à la traction de 1350 MPa. Après laitonnage et tréfilage effectués de façon connue pour avoir un diamètre de 0,3 mm la résistance de rupture à la traction est de 3500 MPa pour un rapport des sections de 44,44.
  • Exemple 6
  • Les conditions sont identiques à celles de l'exemple 4 en faisant varier le diamètre Df des fils ainsi que la composition du gaz (mélange d'hydrogène et d'azote).
  • Dans tous les cas, les échangeurs des zones Z₂ et Z₄ vérifient les relations (1) et (2), et l'échangeur 100-4 où la vitesse de perlitisation est maximum, dans le dispositif 300 de la zone Z₃, vérifie les relations (3) et (4).
  • Le tableau 5 suivant donne les valeurs de Df, de R et K pour les échangeurs des zones Z₂, Z₄ et pour l'échangeur 100-4 du dispositif 300, le % volumétrique d'hydrogène dans les mélanges gazeux, ainsi que les valeurs de λ à 600°C.
  • Les valeurs de R et K pour les zones Z₂ et Z₄ sont référencées respectivement RM, KM et les valeurs de R et K pour l'échangeur 100-4 sont référencées respectivement Rm et Km.
  • Le tableau 5 donne d'autre part les valeurs suivantes :
    - la résistance à la rupture (résistance de rupture à la traction) du fil après traitement thermique, exprimée en MPa ;
    - le diamètre de tréfilage du fil, exprimé en mm, c'est-à-dire le diamètre du fil après tréfilage ;
    - le rapport des sections dû au tréfilage ;
    - la résistance à la rupture (résistance de rupture à la traction) du fil au diamètre final, c'est-à-dire après tréfilage, exprimée en MPa.
    Figure imgb0004
  • Exemple 7
  • On effectue cet exemple dans les mêmes conditions que l'exemple 1, mais l'ammoniac craqué qui est un gaz décarburant a été remplacé par un gaz maintenant l'équilibre thermodynamique vis-à-vis du carbone de l'acier à 800°C. La composition volumétrique de ce gaz étant H₂ = 74 %, N₂ = 24 %, CH₄ = 2 %. Les valeurs de R et K ainsi que les relations qui sont vérifiées sont identiques à ce qui est porté au tableau 2. Les chiffres concernant le tréfilage et la résistance du fil sont identiques à 2 % près à ceux obtenus pour l'exemple 1.
  • Exemple 8
  • On effectue cet exemple dans les mêmes conditions que l'exemple 1 mais l'ammoniac craqué a été remplacé par un gaz carburant permettant de corriger une décarburation qui s'est produite dans les traitements antérieurs au traitement thermique selon l'invention. Composition volumétrique du gaz : H₂ = 63,75 %, N₂ = 21,25 %, CH₄ = 15 %. On n'observe pas de dépôt de graphite à la surface du fil, l'épaisseur de recarburation est de l'ordre de 3 µm.
  • Les valeurs de R, K ainsi que les relations vérifiées sont identiques à ce qui est porté au tableau 2. Après traitement thermique, le fil présente une résistance de rupture à la traction de 1320 MPa. Après laitonnage et tréfilage effectués de façon connue pour avoir un diamètre de 0,2 mm, le rapport des sections étant de 42,25, la résistance de rupture à la traction est de 3450 MPa.
  • Exemple 9
  • Cet exemple est effectué sans effacer la recalescence. Diamètre Df du fil 1 = 5,5 mm ; vitesse de défilement du fil 1 = 1,5 m/s.
  • Les zones Z₂, Z₃, Z₄ utilisent chacune un échangeur 100, ces échangeurs étant tous identiques, avec des tubes 3 en acier vitrifié intérieurement avec Dti = 6 mm, Dte = 12 mm. Débit d'eau à 20°C = 120 litres/minute, gaz de refroidissement : hydrogène pur. Temps total de traitement thermique = 9,9 secondes. Longueur de l'installation de traitement thermique (zones Z₂ à Z₄) = 14,85 m.
  • Les températures du fil sont les suivantes :
    - à la sortie de la zone Z₁ : 975°C,
    - au début de la transformation de l'austénite métastable en perlite (point Bx de la figure 1) : 550°C,
    - à la sortie de la zone Z₄ : 350°C.
  • L'écart entre la température minimum et la température maximum durant la transformation de l'austénite en perlite (recalescence) est de 60°C.
    λ = 0,42 ;      R = 1,091 ;      K = 6,27
    Après traitement thermique, le fil présente une résistance de rupture à la traction égale à 1310 MPa. Après laitonnage et tréfilage effectués de façon connue pour avoir un diamètre de 0,84 mm, le rapport des sections étant de 42,87, le fil présente une résistance de rupture à la traction égale à 3350 MPa.
  • Le fil 1 traité conformément à l'invention comporte la même structure que celle qu'on obtient par le procédé connu de patentage au plomb, c'est-à-dire une structure perlitique fine. Cette structure comporte des lamelles de cémentite séparées par des lamelles de ferrite. A titre d'exemple, la figure 9 représente en coupe une portion 50 d'une telle structure perlitique fine. Cette portion 50 comporte deux lamelles de cémentite 51 pratiquement parallèles séparées par une lamelle de ferrite 52. L'épaisseur des lamelles de cémentite 51 est représentée par "i" et l'épaisseur des lamelles de ferrite 52 est représentée par "e". La structure perlitique est fine, c'est-à-dire que la valeur moyenne i+e est au plus égale à 1000 Å, avec un écart type de 250 Å.
  • Tous les exemples 1 à 9 précédemment décrits permettent d'obtenir une structure correspondant à celle précédemment décrite pour la portion 50, mais la structure atteinte est la plus fine dans le cas où on lutte contre la recalescence.
  • De préférence, l'invention permet d'obtenir au moins un des résultats suivants :
    - Après traitement thermique et avant tréfilage, le fil présente une résistance de rupture à la traction au moins égale à 1300 MPa ;
    - Le fil peut être tréfilé de façon à avoir un rapport des sections au moins égal à 40 ;
    - Le fil, après tréfilage, présente une résistance de rupture à la traction au moins égale à 3000 MPa.
  • A titre de comparaison, les deux exemples 10 et 11 qui suivent ne sont pas conformes à l'invention. Ces deux exemples comparatifs sont réalisés avec une installation analogue à l'installation 500 précédemment décrite comportant les zones Z₁ à Z₅. Les zones Z₂, Z₃, Z₄ utilisent chacune un échangeur 100, ces échangeurs étant tous identiques avec des tubes 3 en verre de type pyrex, avec Dti = 25 mm et Dte = 35 mm. Les diamètres des manchons ont dans tous les cas les valeurs suivantes : Dmi = 50 mm, Dme = 60 mm. La longueur de l'installation est de 18 m (zones Z₂ à Z₄).
  • Dans les deux exemples comparatifs le gaz 12 conducteur de la chaleur est de l'ammoniac craqué comportant 75 % d'hydrogène et 25 % d'azote (% en volumes). La conductibilité λ à 600°C est égale à 0,28 watt.m⁻¹.⁰K⁻¹. L'acier comporte 0,7 % de carbone, il est identique à celui qui est utilisé pour les exemples précédents 4, 5, 6 (tableau 1).
  • Les conditions particulières aux exemples comparatifs 10 et 11 sont les suivantes :
  • Exemple 10
  • Diamètre du fil traité : 1,3 mm ; vitesse de progression du fil : 1 m/sec. On a donc R = 19,23 et K = 17,8, aucune des relations (1) à (4) n'étant vérifiée. Température du fil à la sortie de la zone Z₁ : 975°C. Le temps de refroidissement correspondant à la zone Z₂ est de 6,7 sec, le fil à la sortie de cette zone Z₂ ayant une température de 600°C environ.
  • Le temps de passage dans la zone Z₃ est de 4, 6 sec, la perlitisation étant terminée à la sortie de cette zone Z₃.
  • La recalescence est importante, la différence de température entre la température minimum et la température maximum du fil, durant la transformation de l'austénite en perlite (zone Z₃) étant de 80°C.
  • Après le traitement thermique décrit, le fil a une résistance de rupture à la traction égale à 1100 MPa. Le fil est ensuite laitonné puis tréfilé de façon connue jusqu'à un diamètre de 0,23 mm et il a alors une résistance de rupture à la traction égale à 2765 MPa pour un rapport des sections de 31,95. Cet exemple non conforme à l'invention se traduit donc par une recalescence excessive, et des valeurs de résistance de rupture faibles, avant et après tréfilage. D'autre part la structure du fil, après le traitement thermique décrit dans cet exemple vérifie la relation i + e = 1350 Å (valeur moyenne), l'écart type étant de 255 Å, cette structure n'étant donc pas conforme à la structure précédemment décrite.
  • Exemple 11
  • Diamètre du fil traité : 2,8 mm, vitesse de progession du fil : 0,5 m/sec.
  • On a donc R = 8,93 et K = 61,3. La relation (1) est donc la seule des relations (1) à (4) qui soit vérifiée.
  • La température du fil à la sortie de la zone Z₁ est de 975°C comme dans l'exemple précédent.
  • Le temps de passage dans la zone Z₂ est de 11,5 sec, le fil, à la sortie de cette zone Z₂, ayant une température de 630°C environ.
  • Le temps de passage dans la zone Z₃ est de 8,5 sec, la perlitisation étant terminée à la sortie de cette zone Z₃. Dans cette zone Z₃, lors de la perlitisation, la différence de température entre la température minimum et la température maximum du fil est de 60°C, c'est-à-dire que la recalescence est moins importante que dans l'exemple 10 précédent, par suite d'une vitesse de perlitisation faible dans la zone Z₃, ce qui est dû à une température de transformation plus élevée.
  • Après traitement thermique, le fil a une résistance de rupture à la traction de 1010 MPa. Le fil est ensuite laitonné puis tréfilé de façon connue jusqu'à un diamètre de 0,42 mm et il a alors une résistance de rupture à la traction égale à 2500 MPa pour un rapport des sections de 44,44.
  • Cet exemple non conforme à l'invention se traduit par un temps de traitement très long et une résistance de rupture à la traction faible.
  • D'autre part, la structure du fil, après le traitement thermique décrit dans cet exemple, vérifie la relation :
    i + e = 1450 Å (valeur moyenne),
    l'écart type étant de 300 Å,
    c'est-à-dire que la structure du fil n'est pas conforme à la structure précédemment décrite.
  • Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits.

Claims (14)

1. Procédé pour traiter thermiquement au moins un fil d'acier au carbone de façon à obtenir une structure perlitique fine, le fil, préalablement à ce traitement, ayant été maintenu à une température supérieure à la température de transformation AC3 pour obtenir une austénite homogène, ce procédé étant caractérisé par les points suivants :
a) on refroidit le fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température inférieure à la température de transformation AC1 ;
b) on effectue ensuite le traitement de perlitisation à une température inférieure à la température de transformation AC1 ;
c) ce traitement de refroidissement et de perlitisation est effectué en faisant passer le fil dans au moins un tube contenant un gaz pratiquement dépourvu de ventilation forcée, le tube étant entouré par un fluide caloporteur de telle sorte qu'un transfert de chaleur s'effectue depuis le fil, à travers le gaz et le tube, vers le fluide caloporteur ;
d) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations suivantes soient vérifiées, au moins lors du refroidissement précédant la perlitisation :
1,05 ≦ R ≦ 15      (1)
5 ≦ K ≦ 10      (2)
avec, par définition,
R = Dti/Df
K = [Log(Dti/Df)]xDf²/λ
Dti étant le diamètre intérieur du tube exprimé en millimètres, Df étant le diamètre du fil exprimé en millimètres, ce diamètre étant au plus égal à 6 mm, λ étant la conductibilité du gaz déterminée à 600°C, cette conductibilité étant exprimée en watts.m⁻¹.⁰K⁻¹, Log étant le logarithme népérien .
2. Procédé selon la revendication 1 caractérisé en ce que, après avoir refroidi le fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température donnée inférieure à la température de transformation AC1, on maintient le fil à une température qui ne diffère pas de plus de 10°C par excès ou par défaut de cette température donnée, pendant un temps supérieur au temps de perlitisation en modulant les échanges thermiques, les relations suivantes étant vérifiées dans la ou les zones du ou des tubes où la vitesse de perlitisation est la plus rapide :
1,05 ≦ R ≦ 8      (3)
3 ≦ K ≦ 8      (4).
3. Procédé selon la revendication 2 caractérisé en ce que l'on maintient le fil à une température qui en varie pas de plus de 5°C par excès ou par défaut de cette température donnée.
4. Procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que la modulation est effectuée en faisant varier le diamètre intérieur du ou d'au moins un tube.
5. Procédé selon l'une quelconque des revendications 2 à 4 caractérisé en ce que la modulation est effectuée en utilisant plusieurs tubes dont on fait varier la longueur.
6. Procédé pour traiter thermiquement au moins un fil d'acier au carbone caractérisé par les points suivants :
- on chauffe le fil pour le porter à une température supérieure à la température de transformation AC3 pour obtenir une austénite homogène ;
- on effectue ensuite un traitement conforme à l'une quelconque des revendications 1 à 5 ;
- on refroidit ensuite le fil.
7. Dispositif permettant de traiter thermiquement au moins un fil d'acier au carbone de façon à obtenir une structure perlitique fine, le fil, préalablement à ce traitement, ayant été maintenu à une température supérieure à la température de transformation AC3 pour obtenir une austénite homogène, ce dispositif étant caractérisé par les points suivants :
a) il comporte des moyens permettant de refroidir le fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température inférieure à la température de transformation AC1 ;
b) il comporte des moyens permettant d'effectuer le traitement de perlitisation à une température inférieure à la température de transformation AC1 ;
c) ces moyens de refroidissement et de perlitisation comportent au moins un tube et des moyens pour faire passer le fil dans le tube, ce tube contenant un gaz pratiquement dépourvu de ventilation forcée, ce tube étant entouré par un fluide caloporteur de telle sorte qu'un transfert de chaleur s'effectue depuis le fil à travers le gaz et le tube, vers le fluide caloporteur ;
d) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations suivantes soient vérifiées, au moins lors du refroidissement précédent la perlitisation :
1,05 ≦ R ≦ 15      (1)
5 ≦ K ≦ 10      (2)
avec, par définition,
R = Dti/Df
K = [Log(Dti/Df)]xDf²/λ
Dti étant le diamètre intérieur du tube exprimé en millimètres, Df étant le diamètre du fil exprimé en millimètres, ce diamètre étant au plus égal à 6 mm, λ étant la conductibilité du gaz déterminée à 600°C, cette conductibilité étant exprimée en watts.m⁻¹.⁰K⁻¹, Log étant le logarithme népérien.
8. Dispositif selon la revendication 7 caractérisé en ce qu'un ou plusieurs tubes sont agencés de telle sorte qu'après refroidissement du fil depuis une température supérieure à la température de transformation AC3 jusqu'à une température donnée inférieure à la température de transformation AC1, ils permettent de maintenir le fil à une température qui ne diffère pas de plus de 10°C par excès ou par défaut de cette température donnée, pendant un temps supérieur au temps de perlitisation, en modulant les échanges thermiques, les relations suivantes étant vérifiées dans la ou les zones du ou des tubes où la vitesse de perlitisation est la plus rapide :
1,05 ≦ R ≦ 8      (3)
3 ≦ K ≦ 8      (4).
9. Dispositif selon la revendication 8 caractérisé en ce que ce ou ces tubes sont agencés de telle sorte que la température du fil ne diffère pas de plus de 5°C par excès ou par défaut de cette température donnée.
10. Dispositif selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que le diamètre intérieur du ou d'au moins un tube varie.
11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé en ce qu'il comporte plusieurs tubes dont la longueur varie.
12. Installation de traitement thermique d'au moins un fil d'acier au carbone comportant au moins un dispositif conforme à l'une quelconque des revendications 7 à 11, cette installation comportant en outre des moyens permettant de porter le fil à une température supérieure à la température de transformation AC3 avant perlitisation et des moyens permettant de refroidir le fil après perlitisation.
13. Fil obtenu avec le procédé conforme à l'une quelconque des revendications 1 à 6.
14. Fil obtenu avec le dispositif conforme à l'une quelconque des revendications 7 à 11 ou avec l'installation conforme à la revendication 12.
EP89100781A 1988-01-25 1989-01-18 Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine Expired - Lifetime EP0326005B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89100781T ATE87667T1 (de) 1988-01-25 1989-01-18 Verfahren und vorrichtungen zur waermebehandlung von kohlenstoffstahldraehten, um so ein feines perlitisches gefuege zu bekommen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8800904 1988-01-25
FR8800904A FR2626290B1 (fr) 1988-01-25 1988-01-25 Procedes et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de facon a obtenir une structure perlitique fine

Publications (2)

Publication Number Publication Date
EP0326005A1 true EP0326005A1 (fr) 1989-08-02
EP0326005B1 EP0326005B1 (fr) 1993-03-31

Family

ID=9362671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100781A Expired - Lifetime EP0326005B1 (fr) 1988-01-25 1989-01-18 Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine

Country Status (16)

Country Link
US (1) US4983227A (fr)
EP (1) EP0326005B1 (fr)
JP (1) JP2812696B2 (fr)
KR (1) KR970008163B1 (fr)
CN (1) CN1022050C (fr)
AT (1) ATE87667T1 (fr)
AU (1) AU614811B2 (fr)
BR (1) BR8900292A (fr)
CA (1) CA1333249C (fr)
DE (1) DE68905618T2 (fr)
ES (1) ES2039708T3 (fr)
FR (1) FR2626290B1 (fr)
IE (1) IE64032B1 (fr)
OA (1) OA08978A (fr)
TR (1) TR23543A (fr)
ZA (1) ZA89575B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410294A1 (fr) * 1989-07-26 1991-01-30 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Procédé et dispositif permettant de traiter thermiquement des feuilles métalliques
EP0543596A1 (fr) * 1991-11-19 1993-05-26 Shuji Nishiura Procédé de fabrication de fil fin en acier à teneur élevée en carbone ayant une haute résistance à la traction
EP1078994A2 (fr) * 1999-08-27 2001-02-28 Graf + Cie Ag Procédé et dispositif pour la fabrication de fil fin

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632973B1 (fr) * 1988-06-21 1993-01-15 Michelin & Cie Procedes et dispositifs pour obtenir une structure d'austenite homogene
FR2650296B1 (fr) * 1989-07-26 1991-10-11 Michelin & Cie Procede et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique
JPH03240919A (ja) * 1990-02-15 1991-10-28 Sumitomo Metal Ind Ltd 伸線用鋼線材の製造方法
US5462613A (en) * 1994-06-07 1995-10-31 Gs Technologies Corporation Method and apparatus for producing steel rods with a desired tensile strength and model for simulating same
US5843583A (en) * 1996-02-15 1998-12-01 N.V. Bekaert S.A. Cord with high non-structural elongation
PT1283757E (pt) * 2000-05-24 2005-01-31 Bekaert Sa Nv Maquinagem por electro-erosao por fio
US7055244B2 (en) * 2002-03-14 2006-06-06 Anand Waman Bhagwat Method of manufacturing flat wire coil springs to improve fatigue life and avoid blue brittleness
KR100871757B1 (ko) * 2007-02-22 2008-12-05 엘에스전선 주식회사 초극세선용 인 라인 어닐링 장치
KR100823960B1 (ko) 2007-03-21 2008-04-22 배윤수 전선제조용 동선의 가공방법
ES2365462B1 (es) 2010-03-24 2012-08-10 Automat Industrial S.L. Procedimiento y dispositivo para el patentado de alambre por transferencia de calor por radiación-convección.
CN102766736A (zh) * 2012-06-17 2012-11-07 淮北宇光纺织器材有限公司 针布退火保温装置
CN102719651A (zh) * 2012-06-27 2012-10-10 贵州大学 一种快速感应加热钢丝风冷热处理工艺
CN103215430A (zh) * 2013-04-23 2013-07-24 冯伟年 钢丝等温热处理的新技术
DE102013009767A1 (de) * 2013-06-11 2014-12-11 Heinrich Stamm Gmbh Drahtelektrode zum funkenerosiven Schneiden von Gegenständen
CN103397170B (zh) * 2013-08-22 2014-09-17 西北有色金属研究院 管、线材用气氛保护高频感应加热连续退火方法及装置
FR3017882B1 (fr) * 2014-02-21 2016-03-11 Michelin & Cie Procede de traitement thermique d'un element de renfort en acier pour pneumatique
FR3017880B1 (fr) * 2014-02-21 2018-07-20 Compagnie Generale Des Etablissements Michelin Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
CN106251982B (zh) * 2016-10-17 2018-03-13 六安维奥智能科技有限公司 一种线缆退火的冷却装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE712842C (de) * 1938-05-05 1941-10-27 Siemens Schuckertwerke Akt Ges Vorrichtung zum Gluehen und Abschrecken von metallischen Werkstoffen unter Verwendung eines roehrenfoermigen Ofens
DE2111631A1 (de) * 1970-03-13 1972-03-30 Pirelli Vorrichtung zum Haerten von Stahldraht
FR2300810A1 (fr) * 1975-02-14 1976-09-10 Four Ind Belge Procede et dispositif de patentage de fils d'acier
US4581512A (en) * 1984-07-10 1986-04-08 Mg Industries, Inc. Method and apparatus for cooling induction heated material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214507A (en) * 1975-07-24 1977-02-03 Nippon Steel Corp Process for quenching a hot rolled wire
JPS5247508A (en) * 1975-10-13 1977-04-15 Chugai Ro Kogyo Kaisha Ltd Cooling equipment of cooling tube type
JPS5413406A (en) * 1977-07-01 1979-01-31 Shinko Wire Co Ltd Wire quenching method using forced air cooling process
JPS6160816A (ja) * 1984-08-30 1986-03-28 Rozai Kogyo Kk 加熱冷却装置
JPS61170520A (ja) * 1985-01-25 1986-08-01 Kobe Steel Ltd 徐冷設備
CA1265421A (fr) * 1985-10-31 1990-02-06 Norio Anzawa Methode et dispositif de refroidissement des aciers venant du laminage
FR2607519B1 (fr) * 1986-11-27 1989-02-17 Michelin & Cie Procede et dispositif pour traiter thermiquement un fil d'acier
FR2650296B1 (fr) * 1989-07-26 1991-10-11 Michelin & Cie Procede et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE712842C (de) * 1938-05-05 1941-10-27 Siemens Schuckertwerke Akt Ges Vorrichtung zum Gluehen und Abschrecken von metallischen Werkstoffen unter Verwendung eines roehrenfoermigen Ofens
DE2111631A1 (de) * 1970-03-13 1972-03-30 Pirelli Vorrichtung zum Haerten von Stahldraht
FR2300810A1 (fr) * 1975-02-14 1976-09-10 Four Ind Belge Procede et dispositif de patentage de fils d'acier
US4581512A (en) * 1984-07-10 1986-04-08 Mg Industries, Inc. Method and apparatus for cooling induction heated material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410294A1 (fr) * 1989-07-26 1991-01-30 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Procédé et dispositif permettant de traiter thermiquement des feuilles métalliques
FR2650295A1 (fr) * 1989-07-26 1991-02-01 Michelin & Cie Procede et dispositif permettant de traiter thermiquement des feuillards metalliques
EP0543596A1 (fr) * 1991-11-19 1993-05-26 Shuji Nishiura Procédé de fabrication de fil fin en acier à teneur élevée en carbone ayant une haute résistance à la traction
EP1078994A2 (fr) * 1999-08-27 2001-02-28 Graf + Cie Ag Procédé et dispositif pour la fabrication de fil fin
EP1078994A3 (fr) * 1999-08-27 2003-05-28 Graf + Cie Ag Procédé et dispositif pour la fabrication de fil fin

Also Published As

Publication number Publication date
CA1333249C (fr) 1994-11-29
DE68905618D1 (de) 1993-05-06
ZA89575B (en) 1989-09-27
KR970008163B1 (ko) 1997-05-21
FR2626290B1 (fr) 1990-06-01
ATE87667T1 (de) 1993-04-15
KR890012012A (ko) 1989-08-23
JPH01222025A (ja) 1989-09-05
TR23543A (tr) 1990-03-22
ES2039708T3 (es) 1993-10-01
AU2876489A (en) 1989-07-27
EP0326005B1 (fr) 1993-03-31
CN1035528A (zh) 1989-09-13
AU614811B2 (en) 1991-09-12
IE64032B1 (en) 1995-06-28
CN1022050C (zh) 1993-09-08
BR8900292A (pt) 1989-09-19
OA08978A (fr) 1990-11-30
JP2812696B2 (ja) 1998-10-22
US4983227A (en) 1991-01-08
IE890212L (en) 1989-07-25
DE68905618T2 (de) 1993-07-08
FR2626290A1 (fr) 1989-07-28

Similar Documents

Publication Publication Date Title
EP0326005B1 (fr) Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine
EP0813613B1 (fr) Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
EP0478771A1 (fr) Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils.
EP0925380A1 (fr) Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible
EP1405926A1 (fr) Installation de trempe par induction, notamment pour la fabrication d'éléments de suspension
CA1303946C (fr) Procede et dispositif pour traiter thermiquement un fil d'acier
FR2672827A1 (fr) Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement; procede pour obtenir ce fil.
EP0347699B1 (fr) Procédés et dispositifs pour obtenir une structure d'austénite homogène
EP0410300A1 (fr) Procédé et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique
EP3108022B1 (fr) Procédé de traitement thermique à refroidissement continu d'un élément de renfort en acier pour pneumatique
EP3108021B1 (fr) Procédé de traitement thermique d'un élément de renfort en acier pour pneumatique
FR2576323A1 (fr) Procede de traitement de profils conducteurs, notamment metalliques, installation pour sa mise en oeuvre et profils traites ainsi obtenus
EP0493424B1 (fr) Procedes et dispositifs permettant de traiter thermiquement des fils metalliques en les faisant passer sur des cabestans
CA2214012C (fr) Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
EP0410294A1 (fr) Procédé et dispositif permettant de traiter thermiquement des feuilles métalliques
FR2488279A1 (fr) Traitement par refroidissement accelere de barres en acier dans la chaude de laminage
FR2695654A1 (fr) Dispositif de chauffage d'un fil en mouvement.
BE1005034A6 (fr) Procede de fabrication de fil d'acier dur.
BE704139A (fr)
FR3017881A1 (fr) Installation et procede de traitement thermique a haute vitesse d'un element de renfort en acier pour pneumatique
FR2586257A1 (fr) Procede et appareil pour recuire en continu un acier en teneur extra-basse en carbone pour emboutissage profond
FR2760465A1 (fr) Four tubulaire a radiation a tres haute resistance au fluage pour la decomposition thermique d'hydrocarbures en presence de vapeur d'eau
BE344193A (fr)
EP0885975A1 (fr) Procédé de traitement thermique en continu d'un fil ou ruban métallique
BE642745A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930331

Ref country code: NL

Effective date: 19930331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930331

REF Corresponds to:

Ref document number: 87667

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68905618

Country of ref document: DE

Date of ref document: 19930506

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930520

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039708

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950105

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990217

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021230

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030110

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030122

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030123

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS *MICHELIN-MICHELIN & CIE

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040119