EP0322627B1 - Vorrichtung zum Aufheizen eines Gasstroms - Google Patents

Vorrichtung zum Aufheizen eines Gasstroms Download PDF

Info

Publication number
EP0322627B1
EP0322627B1 EP88120766A EP88120766A EP0322627B1 EP 0322627 B1 EP0322627 B1 EP 0322627B1 EP 88120766 A EP88120766 A EP 88120766A EP 88120766 A EP88120766 A EP 88120766A EP 0322627 B1 EP0322627 B1 EP 0322627B1
Authority
EP
European Patent Office
Prior art keywords
flow
infrared
elements
heat exchanger
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120766A
Other languages
English (en)
French (fr)
Other versions
EP0322627A1 (de
Inventor
Peter Tattermusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV, Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to AT88120766T priority Critical patent/ATE74419T1/de
Publication of EP0322627A1 publication Critical patent/EP0322627A1/de
Application granted granted Critical
Publication of EP0322627B1 publication Critical patent/EP0322627B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0052Heating devices using lamps for industrial applications for fluid treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular

Definitions

  • the invention relates to a device for heating a clean gas stream to temperatures above 600 ° C. with a heat exchanger which has heat exchanger surfaces which run transversely or obliquely to the gas stream and flow against it, which are made of infrared-absorbing ceramic material and are illuminated by an infrared light source arranged outside the gas stream. the infrared light source being separated from the gas stream by an infrared-transparent shield.
  • Such a device for heating a clean gas stream is known from US Pat. No. 3,519,255.
  • this device also has the additional feature that the heat exchanger surfaces are supported by a plurality of elements arranged one behind the other in the direction of flow of the gas stream.
  • devices for heating a gas stream in which the gas stream usually flows through an electrically heated filament, for example made of tungsten wire, and the gas flow is heated by the heat exchange between the surfaces of the filament flowing against it.
  • an electrically heated filament for example made of tungsten wire
  • the invention is therefore based on the object of improving a device of the generic type in such a way that simple and unproblematic heating of a gas stream to high temperatures, in particular above 600 ° C., can be achieved.
  • This object is achieved in a device for heating a clean gas stream to temperatures above 600 ° C. with a heat exchanger which has heat exchanger surfaces which run transversely or obliquely to the gas stream and which are flowed against by the latter, which are made of infrared-absorbing ceramic material and are illuminated by an infrared light source arranged outside the gas stream are, wherein the infrared light source is separated from the clean gas flow by an infrared-transparent shield, solved according to the invention in that the infrared-transparent shield is part of an encapsulation for the infrared light source and in that the encapsulation for the infrared light source is cooled by the clean gas flow.
  • This solution has the great advantage that, on the one hand, cooling which is advantageous for the encapsulation of the infrared light source occurs, so that the infrared light source in turn does not overheat and, on the other hand, this cooling is used at the same time for heating the clean gas stream.
  • the infrared light sources comprise a thermal radiator arranged in a vacuum in the encapsulation.
  • the thermal radiator can be operated at significantly higher temperatures than in the cases in which it is arranged directly in the gas stream, since the vacuum avoids chemical reactions and signs of corrosion on one surface thereof.
  • material evaporation on the surface does not have a negative effect on the gas flow.
  • the known tungsten wires are therefore preferably also used as thermal radiators.
  • electrically heated carbon rods as thermal radiators, which can also be easily heated to high temperatures when arranged in a vacuum without their function being impaired.
  • a particularly optimal heating of the heat exchanger can be achieved if a plurality of infrared light sources shielded from one another are provided, the shielding of the infrared light sources from one another offering the advantage in the context of the invention that the infrared light sources do not heat up against each other, but only the heat exchanger.
  • the above-mentioned object is achieved in a device for heating a clean gas stream to temperatures above 600 ° C with a heat exchanger which has transverse or substantially oblique to the gas stream and flows onto the heat exchanger surfaces, which are made of infrared-absorbing ceramic material and from an outside of the Gas flow arranged and separated from the gas flow by an infrared-transparent shield are illuminated and are carried by several elements arranged one behind the other in the flow direction of the gas stream, solved according to the invention in that the elements form an optically dense surface with their heat exchanger surfaces with respect to each direction of incidence of the infrared radiation opposite infrared gas sources are provided and that the infrared light sources of each side are shielded from each other.
  • infrared light sources can be arranged on opposite sides of the gas stream without heating them up and in addition that several infrared light sources can also be arranged on each side of the gas stream, which also do not heat up each other.
  • the heat exchanger comprises a plurality of elements which are arranged one behind the other in the flow direction and which support the heat exchanger surfaces. These elements are advantageously arranged at a distance from one another and expediently extend with their longitudinal direction transverse to the gas flow.
  • the construction of the device according to the invention is structurally particularly simple when the elements are illuminated transversely to the direction of flow of the gas flow, since in this case the infrared light sources can be arranged on both sides of the gas flow.
  • the heat exchanger can be used as uniformly as possible if the elements are illuminated symmetrically to the direction of flow.
  • heat exchanger surfaces of the individual elements are arranged in at least two rows extending in the direction of flow of the gas stream and have a distance from one another in the direction of flow, in which the rows are at a distance from one another transversely to the direction of flow, and in which has proven particularly useful the heat exchanger surfaces of one row cover the interstices of the other for the incident infrared radiation.
  • the elements are arranged in such a way that the heat exchanger surface of an upstream element at least partially redirects the gas stream impinging on it to the heat exchanger surface of a downstream element.
  • the elements are wall elements extending in the direction of flow.
  • the elements may additionally be expedient for the elements to form gas channels running in the direction of flow.
  • the material for the elements it has proven useful if they are made of temperature-resistant material which is non-reactive with the gas, so that in particular the materials graphite, ceramic, glass, stone, clay or metal come into question, the metal In this case, it can be selected so that it does not react with the gas flow, since the selection of the metal is not restricted to those materials which are suitable as a resistance element for electrical heating, but can be made according to the criteria mentioned above.
  • FIG. 1 shows a device according to the invention, designated as a whole by 10, for heating a clean gas flow when used in an overall device, in which a fan 12 generates a clean gas flow 14 which is guided in a channel 16 to the device according to the invention, flows through it and then to the device 10 according to the invention in a further channel 18 to a heated by the heated clean gas stream 14 'to be heated object 20 is performed.
  • a fan 12 generates a clean gas flow 14 which is guided in a channel 16 to the device according to the invention, flows through it and then to the device 10 according to the invention in a further channel 18 to a heated by the heated clean gas stream 14 'to be heated object 20 is performed.
  • the device 10 shows a heat exchanger 22 arranged in the clean gas flow 14, which comprises elements 26 arranged one behind the other in the flow direction 24 of the clean gas flow 14, which in the case of the first exemplary embodiment are cylindrical rods.
  • These elements 26 are arranged in the flow direction 24, for example in three mutually parallel rows 28a, b, c, the elements 26 of the rows 28a and 28c in the flow direction 24 being at the same height and at a distance from one another which is at most the extent of the elements 26 in Direction of flow 24 corresponds.
  • the elements 26 of the row 28b are arranged in a gap with the elements 26 of the rows 28a and c so that they cover gaps between the elements 26 of the rows 28a and 28c, as seen transversely to the flow direction 24, so that the heat exchanger 22 transversely to the flow direction 24 seen forms an optically dense surface.
  • infrared radiators 30 extending parallel to the flow direction 24 are arranged, which comprise a tungsten wire as the infrared light source 32, which is arranged in a shielding tube 34 in a vacuum.
  • This shielding tube 34 is made of infrared-transmissive material, in particular quartz glass, and is expediently provided on its side facing away from the heat exchanger 22 with an infrared-reflecting mirror coating, for example a gold layer.
  • a cooling tube 36 through which water flows is formed on the shielding tube 34 on its side facing away from the heat exchanger 22.
  • infrared radiators 30 are arranged one above the other and parallel to the direction of flow in the direction of longitudinal axes 38 of the elements 26, each infrared radiator 30 being arranged in a groove 40 in a groove 40 in a side wall element 42 of a housing denoted as a whole by 44, and each of the grooves 40 extends parallel to the flow direction 24 and preferably also has clean gas flowing through it.
  • the individual elements 26 of the heat exchanger 22 are illuminated essentially over their entire extent in the direction of their longitudinal axis 38. Mainly one directly exposed to infrared radiation is used Area of a peripheral surface 46 as a heat exchanger surface 48. Although it is also possible to use the regions of the peripheral surface 46 that are not exposed to infrared radiation as a heat exchanger surface, they are also heated by heat conduction in the material of the elements 26. However, this can only serve as an additional option for heat exchange.
  • the elements 26 of the two outer rows 28a and 28c on their halves of their peripheral surface 46 facing the infrared radiators 30 are exposed to the infrared radiation and therefore preferably serve as heat exchanger surfaces 48 with them
  • the elements 26 of the middle row 28b are also exposed essentially to the full circumferential surface 46 of the infrared radiation by the infrared emitters 30 arranged on both sides, so that the full circumferential surface 46 also serves as the heat exchanger surface 48.
  • the staggered arrangement of the elements 26 in the row 28b relative to the rows 28a and c ensures that the heat exchanger 22 forms an optically dense surface on its sides facing the infrared radiators 30, so that the entire radiation power of the infrared radiators is absorbed, and in particular none Infrared radiation from an infrared radiator 30 arranged on one side reaches the infrared radiator 30 arranged opposite and unnecessarily heats it up.
  • the arrangement of the infrared radiators 30 in the grooves 40 receiving them also ensures that the infrared radiators 30 do not irradiate each other and additionally heat up unnecessarily.
  • the device according to the invention for heating a clean gas stream now functions in such a way that the clean gas stream 14, the elements 26 of the heat exchanger 22 flow on their upstream peripheral surfaces 46a and along their lateral peripheral surfaces 46b, which serve as heat exchanger surfaces 48, so that when flowing through the entire heat exchanger 22, a heating of the clean gas stream 14 takes place. Furthermore, the clean gas flow 14 flows with its edge regions through the individual grooves 40 and the infrared radiators 30 arranged therein and thus brings about additional cooling of the shielding tubes 40, which at the same time results in the edge regions of the clean gas flow 14 being heated up. Overall, the heated clean gas stream 14 'leaves the heat exchanger 22 and flows through the channel 18 to the object 20 to be heated.
  • the individual elements 26' are arranged in two rows 28a 'and 28b' one behind the other in the flow direction 24, but offset transversely to the flow direction 24 on gap and have one with respect to the flow direction 24 elongated, for example diamond-shaped cross-section.
  • the cross section however, it can also have the shape of an elongated ellipsoid or similar shape. This makes it possible to achieve that the elements 26 'essentially face one of the infrared radiators 30 with each area of their peripheral surface 46 and, moreover, the clean gas stream 14 flows around almost the entire area of their peripheral surface 46, so that essentially the entire peripheral surface 46 is used as the heat exchanger surface 48 Available.
  • the elements 26 ⁇ are lamella-shaped and are at an angle to the flow direction 24 with their transverse axis 50. These elements 26 ⁇ are preferably arranged in the individual rows 28a ⁇ and 28b ⁇ that the upstream element 26 ⁇ of a row 26b 'or 26a' preferably deflects the clean gas stream 14 to the element 26 ⁇ of the other row 28a 'or 28b' and thus the most effective possible heating of the flow and also the infrared radiators 30 facing heat exchanger surfaces 48 allows.
  • a fourth embodiment, shown in Fig. 5, differs from the previous embodiments in that the elements are not arranged individually one behind the other, but are continuous, extending in the flow direction wall elements 26 ⁇ ', which favor any heat transfer to the gas stream 14 Have surface.
  • these wall elements 26 ⁇ ' are corrugated.
  • a fifth embodiment shown in Fig. 6, the extending in the flow direction 24 wall elements 26 ⁇ 'form by their arrangement at a distance transversely to the flow direction 24 relative to each other a gas channel 52, in which heating of the gas stream 14 also takes place, although in In this case, the wall elements 26 ⁇ 'are heated by the infrared radiation and the heating of the heat exchanger surfaces 48 facing the gas channel 52 takes place via heat conduction in the wall elements from the radiated heat exchanger surfaces 48 facing away from the gas channel 52 to the heat exchanger surfaces 48 facing the gas channel 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Aufheizen eines Reingasstroms auf Temperaturen über 600° C mit einem Wärmetauscher, welcher quer oder schräg zum Gasstrom verlaufende und von diesem angeströmte Wärmetauscherflächen aufweist, die aus infrarotabsorbierendem Keramikmaterial hergestellt sind und von einer außerhalb des Gasstroms angeordneten Infrarotlichtquelle angestrahlt sind, wobei die Infrarotlichtquelle vom Gasstrom durch eine infrarotdurchlässige Abschirmung getrennt ist.
  • Eine derartige Vorrichtung zum Aufheizen eines Reingasstroms ist aus der US-PS 3,519,255 bekannt. Diese Vorrichtung weist neben den vorstehend genannten Merkmalen auch noch zusätzlich das Merkmal auf, daß die Wärmetauscherflächen von mehreren in Strömungsrichtung des Gasstroms hintereinander angeordneten Elementen getragen sind.
  • Der Nachteil dieser Vorrichtung ist jedoch darin zu sehen, daß die Verwendung der Infrarotlichtquellen mit Problemen behaftet ist, da diese sich übermäßig aufheizen und dadurch beschädigt werden.
  • Ferner sind Vorrichtungen zum Aufheizen eines Gasstromes bekannt, bei denen üblicherweise eine elektrisch beheizte Wendel, beispielsweise aus Wolframdraht, von dem Gasstrom durchströmt und der Gasstrom durch den Wärmeaustausch zwischen angeströmten Oberflächen der Wendel aufgeheizt wird.
  • Bei diesen Vorrichtungen besteht dann, wenn der Gasstrom auf hohe Temperaturen, insbesondere über 600° C aufgeheizt werden soll, das Problem, daß die Wendel an ihrer Oberfläche mit dem Gasstrom chemisch reagiert und sich eine den Wärmeaustausch behindernde korrosionsähnliche Schicht auf der Wendel bildet. Außerdem besteht das Problem, daß dann, wenn ein möglichst reiner, auf hohe Temperaturen aufgeheizter Gasstrom erhältlich sein soll, durch die für ein Aufheizen des Reingasstroms über 600° C notwendigen hohen Temperaturen der Wendel eine Materialabdampfung auf der Wendel stattfindet, so daß der Reingasstrom stets durch die Materialabdampfung hervorgerufene Verunreinigungen enthält.
  • Dies zeigt, daß die bislang bekannten Vorrichtungen zum Aufheizen eines Gasstroms, insbesondere eines Reingasstroms auf hohe Temperaturen mit einer Vielzahl von Problemen behaftet sind.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der gattungsgemäßen Art derart zu verbessern, daß eine einfache und problemlose Aufheizung eines Gasstroms auf hohe Temperaturen, insbesondere über 600° C erreichbar ist.
  • Diese Aufgabe wird bei einer Vorrichtung zum Aufheizen eines Reingasstroms, auf Temperaturen über 600° C mit einem Wärmetauscher, welcher quer oder schräg zum Gasstrom verlaufende und von diesem angeströmte Wärmetauscherflächen aufweist, die aus infrarotabsorbierendem Keramikmaterial hergestellt sind und von einer außerhalb des Gasstroms angeordneten Infrarotlichtquelle angestrahlt sind, wobei die Infrarotlichtquelle vom Reingasstrom durch eine infrarotdurchlässige Abschirmung getrennt ist, erfindungsgemäß dadurch gelöst, daß die infrarotdurchlässige Abschirmung Teil einer Kapselung für die Infrarotlichtquelle ist und daß die Kapselung für die Infrarotlichtquelle vom Reingasstrom gekühlt ist.
  • Diese Lösung hat den großen Vorteil, daß einerseits eine für die Kapselung der Infrarotlichquelle vorteilhafte Kühlung auftritt, so daß die Infrarotlichtquelle ihrerseits nicht überhitzt und andererseits diese Kühlung gleichzeitig zur Aufheizung des Reingasstroms verwendet wird.
  • Bekannterweise finden als Infrarotlichtquellen häufig stromgeheizte Glühelemente Verwendung, die jedoch, wie eingangs beschrieben, bei direkter Anordnung im Gasstrom die bekannten Nachteile zeigen. Diese Nachteile können jedoch dann vermieden werden, wenn die Infrarotlichtquellen einen in der Kapselung im Vakuum angeordneten thermischen Strahler umfasst. In diesem Fall kann der thermische Strahler bei wesentlich höheren Temperaturen betrieben werden als in den Fällen, in denen er unmittelbar im Gasstrom angeordnet ist, da durch das Vakuum chemische Reaktionen und Korrosionserscheinungen auf einer Oberfläche desselben vermieden werden. Außerdem wirkt sich auch eine Materialabdampfung an der Oberfläche auf den Gasstrom nicht negativ aus. Als thermische Strahler finden daher bevorzugt ebenfalls die bekannten Wolframdrähte Verwendung. Es ist aber auch denkbar, als thermische Strahler elektrisch beheizte Kohlestäbe zu verwenden, die ebenfalls bei Anordnung im Vakuum problemlos auf hohe Temperaturen augeheizt werden können, ohne daß deren Funktion beeinträchtigt wird.
  • Eine besonders optimale Aufheizung des Wärmetauschers ist dann erreichbar, wenn mehrere gegeneinander abgeschirmte Infrarotlichtquellen vorgesehen sind, wobei die Abschirmung der Infrarotlichtquellen gegeneinander im Rahmen der Erfindung den Vorteil bietet, daß die Infrarotlichtquellen sich nicht gegenseitig aufheizen, sondern lediglich den Wärmetauscher.
  • Darüber hinaus wird die vorstehend genannte Aufgabe bei einer Vorrichtung zum Aufheizen eines Reingasstroms auf Temperaturen über 600° C mit einem Wärmetauscher, welcher quer oder im wesentlichen schräg zum Gasstrom verlaufende und von diesem angeströmte Wärmetauscherflächen aufweist, die aus infrarotabsorbierendem Keramikmaterial hergestellt und von einer außerhalb des Gasstroms angeordneten und vom Gasstrom durch eine infrarotdurchlässige Abschirmung getrennten Infrarotquelle angestrahlt sind und die von mehreren in Strömungsrichtung des Gasstroms hintereinander angeordneten Elementen getragen sind, erfindungsgemäß dadurch gelöst, daß die Elemente bezüglich jeder Auftreffrichtung der Infrarotstrahlung mit ihren Wärmetauscherflächen eine optisch dichte Fläche bilden, daß aufeinander gegenüberliegenden Seiten des Gasstroms mehrere Infrarotlichtquellen vorgesehen sind und daß die Infrarotlichtquellen jeder Seite gegeneinander abgeschirmt sind.
  • Durch diese erfindungsgemäße Lösung wird die Möglichkeit geschaffen, daß auf einander gegenüberliegenden Seiten des Gasstroms Infrarotlichtquellen angeordnet werden können, ohne daß sich diese aufheizen und daß zusätzlich auch noch auf jeder Seite des Gasstroms mehrere Infrarotlichtquellen angeordnet werden können, die sich ebenfalls gegenseitig nicht aufheizen.
  • Bei den bisher beschriebenen Ausführungsbeispielen wurden über die Ausbildung und Anordnung der Wärmetauscherflächen selbst keine Aussagen gemacht. So hat es sich im Rahmen der Erfindung als vorteilhaft erwiesen, wenn die Wärmetauscherflächen im wesentlichen schräg zum Gasstrom ausgerichtet sind, um eine besonders effektive Wärmeübertragung bei Auftreffen des Gases auf den Wärmetauscherflächen zu erreichen.
  • Darüber hinaus hat sich eine Anordnung als zweckmäßig erwiesen, bei welcher die Wärmetauscherflächen schräg zum Gasstrom von der Infrarotlichtquelle angestrahlt sind, so daß sich bei der vorteilhaften geradlinigen Führung des Gasstroms durch den Wärmetauscher keine Schwierigkeiten ergeben.
  • Ein konstruktiv besonders einfacher und im Rahmen der Erfindung zweckmäßiger Aufbau ergibt sich dann, wenn der Wärmetauscher mehrere in Stromrichtung hintereinander angeordnete und die Wärmetauscherflächen tragende Elemente umfaßt. Diese Elemente sind vorteilhafterweise im Abstand voneinander angeordnet und erstrecken sich zweckmäßigerweise mit ihrer Längsrichtung quer zum Gasstrom.
  • Der Aufbau der erfindungsgemäßen Vorrichtung ist konstruktiv besonders einfach dann, wenn die Elemente quer zur Strömungsrichtung des Gasstroms angestrahlt sind, da in diesem Fall die Infrarotlichtquellen beiderseits des Gasstroms angeordnet werden können.
  • Eine möglichst gleichmäßige Ausnützung des Wärmetauschers ist dann möglich, wenn die Elemente symmetrisch zur Strömungsrichtung angestrahlt sind.
  • Besonders bewährt hat sich dabei eine Ausführungsform, bei welcher die Wärmetauscherflächen der einzelnen Elemente in mindestens zwei sich in Strömungsrichtung des Gasstroms erstreckenden Reihen angeordnet sind und in der Strömungsrichtung einen Abstand voneinander aufweisen, bei welcher die Reihen quer zur Strömungsrichtung einen Abstand voneinander aufweisen und bei welcher die Wärmetauscherflächen einer Reihe für die einfallenden Infrarotstrahlung die Zwischenräume der jeweils anderen verdecken.
  • Ferner hat es sich als zweckmäßig erwiesen, wenn die Elemente so angeordnet sind, daß die Wärmetauscherfläche eines stromaufwärts liegenden Elements den auf diese auftreffenden Gasstrom zumindest teilweise auf die Wärmetauscherfläche eines stromabwärts liegenden Elements umleitet.
  • Als Alternative zu den hintereinander angeordneten einzelnen Elementen ist bei einer anderen bevorzugten Variante vorgesehen, daß die Elemente sich in Strömungsrichtung erstreckende Wandelemente sind.
  • Hierbei kann es zusätzlich noch zweckmäßig sein, daß die Elemente in Strömungsrichtung verlaufende Gaskanäle bilden.
  • Bei der Auswahl des Materials für die Elemente hat es sich bewährt, wenn diese aus temperaturfestem und mit dem Gas reaktionsunfähigem Material hergestellt sind, so daß insbesondere die Materialien Graphit, Keramik, Glas, Stein, Ton oder auch Metall in Frage kommen, wobei das Metall in diesem Fall so ausgewählt sein kann, daß es mit dem Gasstrom nicht reagiert, da die Auswahl des Metalls nicht auf solche Materialien eingeschränkt ist, die sich als Widerstandselement zur elektrischen Aufheizung eignen, sondern gemäss den vorstehend genannten Kriterien getroffen werden kann.
  • Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung einiger Ausführungsbeispiele. In der Zeichnung zeigen:
  • Figur 1
    einen Schnitt durch ein erstes Ausführungsbeispiel einer erfindungsgemässen Vorrichtung, eingesetzt in eine Anlage zur Aufheizung eines Objekts;
    Figur 2
    einen Schnitt quer zur Strömungsrichtung durch das erste Ausführungsbeispiel in Figur 1;
    Figur 3
    eine Darstellung ähnlich Figur 1 eines zweiten Ausführungsbeispiels und
    Figur 4
    eine Darstellung ähnlich Figur 3 eines dritten Ausführungsbeispiels
    Figur 5
    eine Darstellung ähnlich Fig. 3 eines vierten Ausführungsbeispiels und
    Figur 6
    eine Darstellung ähnlich Fig. 3 eines fünften Ausführungsbeispiels.
  • Figur 1 zeigt eine als Ganzes mit 10 bezeichnete erfindungsgemässe Vorrichtung zum Aufheizen eines Reingasstroms beim Einsatz in einer Gesamtvorrichtung, in welcher durch ein Gebläse 12 ein Reingasstrom 14 erzeugt wird, welcher in einem Kanal 16 zu der erfindungsgemässen Vorrichtung geführt ist, diese durchströmt und im Anschluss an die erfindungsgemässe Vorrichtung 10 in einem weiteren Kanal 18 zu einem von dem aufgeheizten Reingasstrom 14′ umströmten aufzuheizenden Objekt 20 geführt ist.
  • Die erfindungsgemässe Vorrichtung 10 zeigt, wie in Figur 1 und 2 dargestellt, einen im Reingasstrom 14 angeordneten Wärmetauscher 22, welcher in Strömungsrichtung 24 des Reingasstroms 14 versetzt hintereinander angeordnete Elemente 26 umfasst, bei welchen es sich im Fall des ersten Ausführungsbeispiels um zylindrische Stäbe handelt. Diese Elemente 26 sind in Strömungsrichtung 24 beispielsweise in drei zueinander parallelen Reihen 28a, b, c angeordnet, wobei die Elemente 26 der Reihen 28a und 28c in Strömungsrichtung 24 auf gleicher Höhe stehen und einen Abstand voneinander aufweisen, welcher höchstens der Erstreckung der Elemente 26 in Strömungsrichtung 24 entspricht. Dagegen sind die Elemente 26 der Reihe 28b zu den Elementen 26 der Reihen 28a und c auf Lücke angeordnet, so daß sie quer zur Strömungsrichtung 24 gesehen Zwischenräume zwischen den Elementen 26 der Reihen 28a und 28c verdecken, so daß der Wärmetauscher 22 quer zur Strömungsrichtung 24 gesehen eine optisch dichte Fläche bildet.
  • Beiderseits des Wärmetauschers 22 sind sich parallel zur Strömungsrichtung 24 erstreckende Infrarotstrahler 30 angeordnet, die als Infrarotlichtquelle 32 einen Wolframdraht umfassen, welcher in einem Abschirmrohr 34 im Vakuum angeordnet ist. Dieses Abschirmrohr 34 ist aus infrarotdurchlässigem Material, insbesondere aus Quarzglas hergestellt und auf seiner dem Wärmetauscher 22 abgewandten Seite zweckmässigerweise noch mit einer infrarotreflektierenden Verspiegelung, beispielsweise einer Goldschicht, versehen.
  • Um eine effektive Kühlung dieser Infrarotstrahler zu erreichen, ist an das Abschirmrohr 34 auf seiner dem Wärmetauscher 22 abgewandten Seite ein wasserdurchströmtes Kühlrohr 36 angeformt.
  • Bei dem in Figur 2 dargestellten Ausführungsbeispiel sind Infrarotstrahler 30 in Richtung von Längsachsen 38 der Elemente 26 übereinander und parallel zur Strömungsrichtung angeordnet, wobei jeder Infrarotstrahler 30 in einer diesen aufnehmenden Nut 40 eines Seitenwandelements 42 eines als Ganzes mit 44 bezeichneten Gehäuses angeordnet ist und sich jede der Nuten 40 parallel zur Strömungsrichtung 24 erstreckt und vorzugsweise ebenfalls von Reingas durchströmt ist.
  • Durch die insgesamt drei auf jeder Seite des Wärmetauschers 22 angeordneten Infrarotstrahler 30 werden die einzelnen Elemente 26 des Wärmetauschers 22 im wesentlichen über ihre ganze Erstreckung in Richtung ihrer Längsachse 38 angestrahlt. Dabei dient hauptsächlich ein der Infrarotstrahlung direkt ausgesetzter Bereich einer Umfangsfläche 46 als Wärmetauscherfläche 48. Es besteht zwar die Möglichkeit, auch die nicht der Infrarotstrahlung ausgesetzten Bereiche der Umfangsfläche 46 als Wärmetauscherfläche zu nutzen, dabei werden diese durch Wärmeleitung im Material der Elemente 26 ebenfalls aufgeheizt. Dies kann jedoch nur als zusätzliche Möglichkeit zum Wärmetausch dienen.
  • Bei dem erfindungsgemässen Wärmetauscher 22 werden aufgrund der bezüglich der Strömungsrichtung 24 beiderseits desselben angeordneten Infratrotstrahler 30 die Elemente 26 der beiden äusseren Reihen 28a und 28c auf ihren jeweils den Infrarotstrahlern 30 zugewandten Hälften ihrer Umfangsfläche 46 der Infrarotstrahlung ausgesetzt und dienen daher vorzugsweise mit diesen als Wärmetauscherflächen 48, während die Elemente 26 der mittleren Reihe 28b durch die beiderseits angeordneten Infrarotstrahler 30 auch im wesentlichen mit der vollen Umfangsfläche 46 der Infrarotstrahlung ausgesetzt sind,so daß auch die volle Umfangsfläche 46 als Wärmetauscherfläche 48 dient.
  • Ferner wird durch die versetzte Anordnung der Elemente 26 in der Reihe 28b gegenüber den Reihen 28a und c erreicht, daß der Wärmetauscher 22 auf seinen den Infrarotstrahlern 30 zugewandten Seiten eine optisch dichte Fläche bildet, so daß die gesamte Strahlungsleistung der Infrarotstrahler absorbiert wird und insbesondere keine Infrarotstrahlung von einem auf einer Seite angeordneten Infrarotstrahler 30 den gegenüberliegend angeordneten Infrarotstrahler 30 erreicht und diesen unnötigerweise zusätzlich aufheizt.
  • Ferner ist auch durch die Anordnung der Infrarotstrahler 30 in den jeweils diesen aufnehmenden Nuten 40 sichergestellt, daß die Infrarotstrahler 30 sich nicht gegenseitig bestrahlen und zusätzlich unnötigerweise aufheizen.
  • Die erfindungsgemässe Vorrichtung zum Aufheizen eines Reingasstroms funktioniert nun derart, daß der Reingasstrom 14, die Elemente 26 des Wärmetauschers 22 an ihrem stromaufwärts liegenden Umfangsflächen 46a an- und an deren seitlichen Umfangsflächen 46b entlangströmt, welche als Wärmetauscherflächen 48 dienen, so daß dadurch beim Durchströmen des gesamten Wärmetauschers 22 eine Aufheizung des Reingasstroms 14 stattfindet. Ferner durchströmt der Reingasstrom 14 mit seinen Randbereichen die einzelnen Nuten 40 und die darin angeordneten Infrarotstrahler 30 und bewirkt damit eine zusätzliche Kühlung der Abschirmrohre 40, die gleichzeitig eine Aufheizung der Randbereiche des Reingasstroms 14 zur Folge hat. Damit verlässt insgesamt der aufgeheizte Reingasstrom 14′ den Wärmetauscher 22 und strömt durch den Kanal 18 zu dem aufzuheizenden Objekt 20.
  • Bei einem zweiten Ausführungsbeispiel des erfindungsgemässen Wärmetauschers 22′, dargestellt in Figur 3, sind die einzelnen Elemente 26′ in zwei Reihen 28a′ und 28b′ in Strömungsrichtung 24 hintereinander, jedoch quer zur Strömungsrichtung 24 gegeneinander versetzt auf Lücke angeordnet und weisen einen bezüglich der Strömungsrichtung 24 länglichen, beispielsweise rautenförmigen Querschnitt auf. Der Querschnitt kann jedoch aber auch die Form eines langgezogenen Ellipsoids oder ähnliche Form haben. Damit ist erreichbar, daß die Elemente 26′ im wesentlichen mit jedem Bereich ihrer Umfangsfläche 46 einem der Infrarotstrahler 30 zugewandt sind und ausserdem nahezu im gesamten Bereich ihrer Umfangsfläche 46 vom Reingasstrom 14 umströmt sind, so daß im wesentlichen die gesamte Umfangsfläche 46 als Wärmetauscherfläche 48 zur Verfügung steht.
  • Bei einem dritten Ausführungsbeispiel des erfindungsgemässen Wärmetauschers 22˝, dargestellt in Figur 4, sind die Elemente 26˝ lamellenförmig ausgebildet und stehen mit ihrer Querachse 50 schräg zur Strömungsrichtung 24. Vorzugsweise sind diese Elemente 26˝ in den einzelnen Reihen 28a˝ und 28b˝ so angeordnet, daß jeweils das stromaufwärts angeordnete Element 26˝ der einen Reihe 26b′ oder 26a′ vorzugsweise den Reingasstrom 14 auf das Element 26˝ der jeweils anderen Reihe 28a′ bzw. 28b′ umlenkt und somit eine möglichst effektive Aufheizung an den angeströmten und ausserdem den Infrarotstrahlern 30 zugewandten Wärmetauscherflächen 48 ermöglicht.
  • Ein viertes Ausführungsbeispiel, dargestellt in Fig. 5, unterscheidet sich von den vorhergehenden Ausführungsbeispielen dadurch, daß die Elemente nicht einzeln hintereinander angeordnet sind, sondern durchgehende, sich in Strömungsrichtung erstreckende Wandelemente 26˝′ sind, die eine beliebige, eine Wärmeübertragung zum Gasstrom 14 begünstigende Oberfläche aufweisen. In Fig. 5 sind diese Wandelemente 26˝′ gewellt.
  • Bei einem fünften Ausführungsbeispiel, dargestellt in Fig. 6, bilden die sich in Strömungsrichtung 24 erstreckenden Wandelemente 26˝′ durch ihre Anordnung im Abstand quer zur Strömungsrichtung 24 relativ zueinander einen Gaskanal 52, in welchem ebenfalls eine Aufheizung des Gasstroms 14 stattfindet, wobei allerdings in diesem Fall die Wandelemente 26˝′ durch die Infrarotstrahlung aufgeheizt werden und eine Aufheizung der dem Gaskanal 52 zugewandten Wärmetauscherflächen 48 über Wärmeleitung in den Wandelementen von den dem Gaskanal 52 abgewandten angestrahlten Wärmetauscherflächen 48 zu den dem Gaskanal 52 zugewandten Wärmetauscherflächen 48 stattfindet.
  • Mit den beschriebenen Ausführungsbeispielen sind bei Verwendung von Keramikmaterial für die Elemente 26 Reingastemperaturen von mindestens 900° C erreichbar.

Claims (15)

  1. Vorrichtung zum Aufheizen eines Reingasstroms auf Temperaturen über 600°C mit einem Wärmetauscher, welcher quer oder schräg zum Gasstrom (14) verlaufende und von diesem angeströmte Wärmetauscherflächen (48) aufweist, die aus infrarotabsorbierendem Keramik-Material hergestellt und von einer außerhalb des Gasstroms (14) angeordneten Infrarotlichtquelle (32) angestrahlt sind, wobei die Infrarotlichtquelle (32) vom Gasstrom (14) durch eine infrarotdurchlässige Abschirmung (34) getrennt ist,
    dadurch gekennzeichnet,
    daß die infrarotdurchlässige Abschirmung (34) Teil einer Kapselung für die Infrarotlichtquelle (32) ist und daß die Kapselung für die Infrarotlichtquelle (32) vom Gasstrom (14) gekühlt ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß mehrere gegeneinander abgeschirmte Infrarotlichtquellen (32) vorgesehen sind.
  3. Vorrichtung zum Aufheizen eines Reingasstroms auf Temperaturen über 600°C mit einem Wärmetauscher, welcher quer oder im wesentlichen schräg zum Gasstrom (14) verlaufende und von diesem angeströmte Wärmetauscherflächen (48) aufweist, die aus infrarotabsorbierendem Keramik-Material hergestellt und von einer außerhalb des Gasstroms (14) angeordneten und vom Gasstrom (14) durch eine infrarotdurchlässige Abschirmung (34) getrennten Infrarotlichtquelle (32) angestrahlt sind und die von mehreren in Strömungsrichtung (24) des Gasstroms (14) hintereinander angeordneten Elementen (26) getragen sind, dadurch gekennzeichnet, daß die Elemente (26) bezüglich jeder Auftreffrichtung der Infrarotstrahlung mit ihren Wärmetauscherflächen (48) eine optisch dichte Fläche bilden, daß auf einander gegenüberliegenden Seiten des Gasstroms (14) mehrere Infrarotlichtquellen (32) vorgesehen sind und daß die Infrarotlichtquellen (32) jeder Seite gegeneinander abgeschirmt sind.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die infrarotdurchlässige Abschirmung (34) vom Gasstrom (14) gekühlt ist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die infrarotdurchlässige Abschirmung (34) Teil einer Kapselung für die Infrarotlichtquelle (32) ist.
  6. Vorrichtung nach Anspruch 1, 2 oder 5, dadurch gekennzeichnet, daß die Infrarotlichtquelle (32) einen in der Kapselung im Vakuum angeordneten thermischen Strahler (32) umfaßt.
  7. Vorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Wärmetauscherflächen (48) schräg zum Gasstrom (14) von der Infrarotlichtquelle (32) angestrahlt sind.
  8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die Elemente (26) im Abstand voneinander angeordnet sind.
  9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß die Elemente (26) sich quer zum Gasstrom (14) erstrecken.
  10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Elemente (26) quer zur Strömungsrichtung (24) des Gasstroms (14) angestrahlt sind.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Elemente (26) symmetrisch zur Strömungsrichtung (24) angestrahlt sind.
  12. Vorrichtung nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, daß die Wäremtauscherflächen (48) der einzelnen Elemente (26) in mindestens zwei sich in Strömungsrichtung (24) des Gasstroms (14) erstreckenden Reihen (28a, b) angeordnet sind und in der Strömungsrichtung (24) einen Abstand voneinander aufweisen, daß die Reihen (28a, b) quer zur Strömungsrichtung (24) einen Abstand voneinander aufweisen und daß die Wärmetauscherflächen (48) einer Reihe (28a, b) für die einfallende Infrarotstrahlung die Zwischenräume der jeweils anderen Reihe (28b, a) verdecken.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Elemente so angeordnet sind, dap die Wärmetauscherfläche (48) eines stromaufwärts liegenden Elements (26) den auf diese auftreffenden Gasstrom (14) zumindest teilweise auf die Wärmetauscherfläche (48) eines stromabwärts liegenden Elements (26) umleitet.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Elemente (26"') sich in Strömungsrichtung (24) erstreckende Wandelemente sind.
  15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Elemente (26"') in Strömungsrichtung (24) verlaufende Gaskanäle (52) bilden.
EP88120766A 1987-12-30 1988-12-13 Vorrichtung zum Aufheizen eines Gasstroms Expired - Lifetime EP0322627B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88120766T ATE74419T1 (de) 1987-12-30 1988-12-13 Vorrichtung zum aufheizen eines gasstroms.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3744498A DE3744498C1 (de) 1987-12-30 1987-12-30 Vorrichtung zum Aufheizen eines Gasstroms
DE3744498 1987-12-30

Publications (2)

Publication Number Publication Date
EP0322627A1 EP0322627A1 (de) 1989-07-05
EP0322627B1 true EP0322627B1 (de) 1992-04-01

Family

ID=6343829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120766A Expired - Lifetime EP0322627B1 (de) 1987-12-30 1988-12-13 Vorrichtung zum Aufheizen eines Gasstroms

Country Status (6)

Country Link
US (1) US5014339A (de)
EP (1) EP0322627B1 (de)
JP (1) JPH01297139A (de)
AT (1) ATE74419T1 (de)
CA (1) CA1309311C (de)
DE (1) DE3744498C1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066918Y2 (ja) * 1987-01-14 1994-02-23 日本バイリーン株式会社 自動車用内装材
DE102006042685A1 (de) 2006-09-12 2008-03-27 Wacker Chemie Ag Verfahren und Vorrichtung zur kontaminationsfreien Erwärmung von Gasen
JP5610679B2 (ja) * 2008-09-01 2014-10-22 栗田工業株式会社 液体加熱器および液体加熱方法
US8541721B2 (en) * 2008-12-01 2013-09-24 Daniel Moskal Wake generating solid elements for joule heating or infrared heating
RU2733497C2 (ru) * 2016-02-08 2020-10-02 Эгг-Чик Отомейтед Текнолоджиз Устройство и способ для обнаружения перевернутых яиц
WO2024033187A1 (en) * 2022-08-09 2024-02-15 Shell Internationale Research Maatschappij B.V. An electrically heated apparatus and a method of heating a fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519255A (en) * 1969-03-27 1970-07-07 Hal B H Cooper Structure and method for heating gases
US3519064A (en) * 1968-07-17 1970-07-07 Hal B H Cooper Method for heating gases
US3550919A (en) * 1968-11-13 1970-12-29 Hal B H Cooper Furnace structure

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA473553A (en) * 1951-05-15 Samuel James George Electric fires
US1652438A (en) * 1924-11-14 1927-12-13 Hicks William Wesley Convection heater
US1705812A (en) * 1927-01-27 1929-03-19 Fanaire Heater Company Heating apparatus
US1713013A (en) * 1928-08-25 1929-05-14 Franklin W Wandless Electric heater
US1923083A (en) * 1930-03-13 1933-08-22 Ernest F Fisher Heating apparatus
US1926473A (en) * 1931-04-06 1933-09-12 Clarence E Dunlap Heating stove
GB504722A (en) * 1937-10-26 1939-04-26 Cecil Wheatley Stancliffe Improvements relating to the heating of rooms and other spaces by currents of air
US2379705A (en) * 1943-11-19 1945-07-03 Graves Frederick Portable electric heater
US2476492A (en) * 1944-12-04 1949-07-19 Harry G Hersh Heater
US2476913A (en) * 1948-04-30 1949-07-19 Upjohn Co 1-alkyl-4-(beta-hydroxyethyl-amino)-piperidine benzoates
US2683796A (en) * 1952-10-10 1954-07-13 Koff Alexander Electrical heating system
US2863978A (en) * 1955-01-21 1958-12-09 Richard B Young Electrical space heater
US2938101A (en) * 1958-02-07 1960-05-24 Andrew C Borzner Electric space heaters
US2919338A (en) * 1958-04-01 1959-12-29 Darrell W Covault Electric furnace
US3077531A (en) * 1958-09-02 1963-02-12 John J Wompey Electric heater
DE1186156B (de) * 1958-09-20 1965-01-28 Kern & Sprenger K G Dr Infrarotstrahlereinheit
FR1311081A (fr) * 1962-01-22 1962-11-30 Hindrichs Auffermann A G Radiateur électrique à convection et à rayonnement
US3180972A (en) * 1962-03-08 1965-04-27 Darrell W Covault End table heater
US3471681A (en) * 1966-04-29 1969-10-07 Russell Arthur Miller Mobile electric heating implement for applying heat to a horizontal surface
FR1502839A (fr) * 1966-09-27 1967-11-24 Appareil de chauffage
US3575582A (en) * 1968-08-27 1971-04-20 Darrell W Covault Electric furnace
US3506249A (en) * 1969-03-03 1970-04-14 New Jersey Zinc Co Structure and method for heating corrosive fluids
US3623712A (en) * 1969-10-15 1971-11-30 Applied Materials Tech Epitaxial radiation heated reactor and process
US3807366A (en) * 1971-10-06 1974-04-30 J Murtland Heat exchanger
US3906188A (en) * 1971-11-08 1975-09-16 Joseph A Gamell Radiant heat boiler
US3862397A (en) * 1972-03-24 1975-01-21 Applied Materials Tech Cool wall radiantly heated reactor
US4042334A (en) * 1972-07-13 1977-08-16 Thagard Technology Company High temperature chemical reactor
FR2212736B1 (de) * 1972-12-28 1978-06-02 Uziel Victor
US4055165A (en) * 1974-12-19 1977-10-25 Scragg Robert L Carbonaceous boiler
US4197447A (en) * 1977-05-16 1980-04-08 Jones John P Modular infrared space heater device
US4310747A (en) * 1978-07-26 1982-01-12 The Fluorocarbon Company Method and apparatus utilizing a porous vitreous carbon body particularly for fluid heating
FR2442409A1 (fr) * 1978-11-27 1980-06-20 Ribette Alche Desplanels Rene Aile creuse convective
US4309594A (en) * 1979-09-24 1982-01-05 Jones John P Modular infrared space heater device
GB2089840B (en) * 1980-12-20 1983-12-14 Cambridge Instr Ltd Chemical vapour deposition apparatus incorporating radiant heat source for substrate
CH661976A5 (de) * 1983-05-09 1987-08-31 Sulzer Ag Empfaenger zur nutzung von sonnenenergie.
US4680448A (en) * 1986-03-07 1987-07-14 Fester Earl L Infrared space heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519064A (en) * 1968-07-17 1970-07-07 Hal B H Cooper Method for heating gases
US3550919A (en) * 1968-11-13 1970-12-29 Hal B H Cooper Furnace structure
US3519255A (en) * 1969-03-27 1970-07-07 Hal B H Cooper Structure and method for heating gases

Also Published As

Publication number Publication date
US5014339A (en) 1991-05-07
CA1309311C (en) 1992-10-27
JPH01297139A (ja) 1989-11-30
EP0322627A1 (de) 1989-07-05
ATE74419T1 (de) 1992-04-15
DE3744498C1 (de) 1989-03-16

Similar Documents

Publication Publication Date Title
EP0471707B1 (de) Festkörperlaser mit pump-laserdioden
EP1284390A1 (de) Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
EP0144579A2 (de) Kühlkörper zur Flüssigkeitskühlung von Leistungshalbleiterbauelementen
EP0311898B1 (de) Bestrahlungsvorrichtung
EP0322627B1 (de) Vorrichtung zum Aufheizen eines Gasstroms
EP1319240B1 (de) Strahlungsquelle und bestrahlungsanordnung
CH655384A5 (de) Waermeabsorber, insbesondere plasmastrahlenabsorber.
DE1426622C3 (de) Durch stark staubhaltige Gase beheizter Wärmetauscher mit Rohrheizflächen
DE1801058B2 (de) Einstueckige anordnung des stabfoermigen stimulierbaren mediums eines optischen senders oder verstaerkers fuer kohaerente strahlung
DE2717209A1 (de) Waermeisolierung
DE3109558A1 (de) Waermetauscher zur kuehlung eines stroemungsmittels mit hoher temperatur
DE20020149U1 (de) Strahlungsquelle und Bestrahlungsanordnung
DE2413782B2 (de) Vorrichtung zur Atomisierung einer Probe für flammenlose Atomabsorptionsmessungen
EP1164337A1 (de) Gasbehandlungskörper
DE2532990C3 (de) Wanderfeldrohre
DE69031883T2 (de) Kühlvorrichtung mit elektrisch isoliertem Wärmerohr für Halbleiter
DE3135080A1 (de) Solarenergiekollektor mit differentiellem emissionsvermoegen
EP0627604A1 (de) Mehrloch-Keramikscheibe als Heizleiterträger eines Heizeinsatzes für die elektrische Beheizung von Industrie Öfenanlagen
EP1011178A1 (de) Leistungsverstärker zum Verstärken einer Laserstrahlung, Verfahren zur Herstellung und Verwendung des Leistungsverstärkers
WO1998050733A1 (de) Gasbrenner
DE2808210A1 (de) Vorrichtung zum heizen bzw. kuehlen eines stroemenden mediums
DD291090A5 (de) Verfahren und strahlungskuehler zur strahlungskuehlung eines aus einem vergasungsreaktor austretenden produktgasmengenstromes
DE19581852B4 (de) Strahlungsprojektor und Verfahren zu dessen Herstellung
DE681067C (de) Elektrisches Entladungsgefaess mit Gas- oder Dampffuellung
AT411116B (de) Kühldose zur flüssigkeitskühlung von elektrischen bauelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH FR GB IT LI

17P Request for examination filed

Effective date: 19890508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHR

17Q First examination report despatched

Effective date: 19900410

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI

REF Corresponds to:

Ref document number: 74419

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921213

Ref country code: AT

Effective date: 19921213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921231

Ref country code: CH

Effective date: 19921231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051213