US3623712A - Epitaxial radiation heated reactor and process - Google Patents

Epitaxial radiation heated reactor and process Download PDF

Info

Publication number
US3623712A
US3623712A US866473A US3623712DA US3623712A US 3623712 A US3623712 A US 3623712A US 866473 A US866473 A US 866473A US 3623712D A US3623712D A US 3623712DA US 3623712 A US3623712 A US 3623712A
Authority
US
United States
Prior art keywords
reactor
reaction chamber
susceptor
heat source
heat energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US866473A
Inventor
Michael A Mcneilly
Walter C Benzing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Technology Ltd
Applied Materials Technologies Inc
Original Assignee
Applied Materials Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25347688&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3623712(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applied Materials Technology Ltd filed Critical Applied Materials Technology Ltd
Application granted granted Critical
Publication of US3623712A publication Critical patent/US3623712A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/006Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/071Heating, selective

Definitions

  • a gaseous reactant is introduced into a reaction chamber formed from a material, such as quartz, which is transparent and nonobstructive to radiant heat energy transmitted at a predetermined short wavelength.
  • a graphite susceptor which is opaque to and absorbs the radiant heat energy, is positioned within the reaction chamber and supports the substrates to be coated. The susceptor is heated while the walls of the reaction chamber remain cool to preclude deposition of epitaxial film on the walls. To insure uniform heating of the susceptor, the same may be moved relative to the radiant heat source which, in the preferred embodiment, comprises a bank of tungsten filament quartziodine high intensity lamps.
  • This invention relates to the field of vapor deposition of films on substrates. More particularly, the field of this invention involves the vapor deposition of expitaxial films, for example silicon dioxide and like films, on exposed surfaces of articles, such as silicon wafer substrates commonly used in the electronics industry.
  • Gaseous chemical reactants are brought into contact with a heated substrate within a reaction chamber the walls of which are transparent to radiant heat energy transmitted at a predetermined short wave length.
  • a suspector which absorbs energy at the wavelength chosen, supports the substrate to be coated and heats the same as a result of its absorption of the heat energy transmitted into the reaction chamber from the radiant heat source employed.
  • This invention relates generally to an improved procedure for coating a substrate with an epitaxial film and to an improved apparatus for effecting such procedure. More particularly, this invention relates to a vapor deposition apparatus and process for depositing an oxide, nitride, metal or other similar films in epitaxial fashion on a substrate, such as on a silicon wafer commonly employed in the electronics industry in the manufacture of integrated circuits, transistors and the like. Still more particularly this invention relates to a cold wall epitaxial reactor and process for coating substrates without utilizing radio frequency induction heating of the type heretofore employed in cold wall vapor deposition systems.
  • a reaction zone defined by an enclosed reaction chamber the walls of which are formed from a predetermined material specially selected for use in the reaction, has one or more substrates to be epitaxially coated positioned therein.
  • a susceptor is utilized to support the substrates in the reaction chamber,
  • a gaseous chemical mixture, composed of one or more suitable reactants, is introduced into the the reaction chamber into contact with the heated substrates.
  • Such substrates are heated from a radiant non-RF heat source without simultaneously heating the walls of the reaction chamber so that the substrates become coated with the epitaxial reactant material while the walls remain uncoated.
  • a gaseous reactant mixture is introduced into the reaction chamber into contact with the substrates to effect epitaxial coating thereof in known fashion.
  • any of the gaseous chemical reactants commonly used in epitaxial coating procedures may be employed with the present invention.
  • An improved heat source preferably employed with the present system comprises a high intensity, high temperature lamp which operates at a filament temperature in the range of 5000 to 6000 F., by way of example.
  • the lamp actually chosen is selected from the type which produces radiant heat energy in the short wave length range, preferably approximately 1 micron or below. Radiant energy in such short wave lengths passes through material found suitable for defining the walls of the reaction chamber, of which quartz is preferred. Quartz walls possess excellent radiant energy transmission characteristics at the wave length noted so that little or no radiation is absorbed by the walls, thus retaining the advantages of cool wall reaction system noted previously.
  • objects of this invention include the provision of an improved cold wall process for epitaxially coating a substrate with a film of a predetermined type; the provision of a gaseous deposition apparatus for vapor depositing an epitaxial film on a heated substrate; the provision of improved apparatus and process for epitaxially coating substrates by employing a radiant energy heat source which transmits heat energy in short wave lengths through the walls of a reaction chamber which are transparent and nonobstructive to such energy at the wave length chosen; the provision of an improved apparatus and method which utilizes an opaque susceptor for heating substrates supported thereon within a reaction chamber, the walls of which are
  • FIG. 5 is an isometric view of a portion of the apparatus of FIG. 4.
  • FIG. 6 is a vertical sectional view through a further modification of the apparatus.
  • FIG. 7 is a sectional view taken in the plane of line 7-7 of FIG. 6.
  • the chemical epitaxial deposition procedure within the reaction chamber is essentially the same as that employed heretofore with known coating procedures. Therefore, only briefreference herein is directed to'the concepts of epitaxial film growth which are well known and understood in the chemical vapor deposition art. By way of introductory example, however, theapparatus and process of this invention are utilizable to produce various epitaxial films on substrates, such as silicon wafers.
  • the system of this invention employs chemical reaction and/or thermal pyrolysis to deposit a variety of films, such as silicon, silicon nitride, and silicon dioxide, as well as metal films such as molybdenum, titanium, zirconium and aluminum in accordance with reactions such as the following;
  • Silicon epitaxial growth by silane or silicon tetrachloridepyrolysis at temperatures within the range of 900-l200 C. occurs as follows;
  • Heat SIH; Si +2111 SiCli 2H Si 4HCl to I200 C. can be produced in accordance with the following exemplary reaction:
  • FIGS. 1 and 2 it should be understood that the reactor structure is shown in generally schematic fashion and is intended to be enclosed within a surrounding enclosure (not shown) in and on which the necessary gaseous reactant flow controls, electrical power sources, and other attendant mechanisms are intended to be housed and mounted.
  • a surrounding enclosure not shown
  • the necessary gaseous reactant flow controls, electrical power sources, and other attendant mechanisms are intended to be housed and mounted.
  • those portions of the reactor necessary to illustrate the inventive concepts disclosed herein have been shown in the drawings. It will be understood that those portions of the reactor illustrated are intended to be supported within the aforementioned enclosure in any suitable fashion.
  • the radiation heated reactor of FIGS. 1 and 2, generally designated 1 comprises an elongated housing generally designated 2 defined as best seen in FIG. 2 by opposed sidewalls 3 and 4 and a removable top closure 6, the latter being slidable along or otherwise separable from the upper margin of the sidewalls 3 and 4 to permit access to the hollow interior 7 ofthe housing.
  • Opposite ends of the housing, designated 8 and 9, may be closed off in any suitable fashion, such as by employing end walls or the like so that the interior 7 of the housing is completely enclosed.
  • Suitable access doors (not shown) may be provided in the end wall 9 of the housing and in the reaction chamber to be described so that such access may be had to the reaction chamber.
  • each of the confining walls of the housing and of the top closure thereof are formed of a highly polished reflecting material, such as polished sheet aluminum.
  • Such reflecting surfaces are provided to permit maximum utilization of the heat generated by the heat source to be described.
  • Such heat source is designated 12 and extends laterally across the housing as seen in FIG. 2 and is secured in position by fastening the same to suitable portions of the housing sidewalls.
  • the heat source comprises at least one high intensity lamp capable of producing and transmitting radiant heat energy at a short wave length, preferably one which is approximately 1 micron or less.
  • the heat source comprises a bank of such lamps, each designated 13, which are mounted in threaded sockets I4 in a pair of side by side lamp mounting blocks I6.
  • the electrical connections for the lamps are not illustrated but such connections are conventional.
  • the upper open end of each lamp socket I4 is formed as an enlarged semispherical recess 17 which is highly polished to serve as a reflecting surface for the purpose noted.
  • the lamps preferably employed with the present apparatus and those illustrated in the drawings are high intensity tungsten filament lamps having a transparent quartz envelope and a halogen gas contained therein, preferably iodine. Such lamps are manufactured by the Aerometrics Division of Aerojet-General Corporation. Similar lamps are produced by General Electric Corporation.
  • the lamp employed in the embodiment of FIGS. 1 and 2 is constructed to be mounted upright but in another embodiment to be described hereinafter another configuration may be utilized.
  • cooling means are provided in conjunction with the housing and with the lamp mounting blocks to cool the housing walls and the areas surrounding the lamp sockets to prevent overheating of the apparatus.
  • cooling means for the walls includes a plurality of parallel cooling fluid conduits through which water or a like cooling medium is circulated. Similar cooling conduits 18 are provided in the top closure of the housing. Such conduits may be operatively connected with a supply of cooling fluid and a disposal system therefor in known fashion.
  • fluid cooling conduits 19 are provided between adjacent rows of the bank of high intensity lamps as seen best in FIG. 2. Such conduits 19 are similarly connected with the supply of the cooling medium employed and a disposal system therefor.
  • the cooling means also preferably includes air circulation means which in the embodiment shown comprises a pair of adjacent cooling air plenum chambers 21 and 21 extending through the lamp mounting blocks 16 adjacent the base thereof.
  • air circulation means which in the embodiment shown comprises a pair of adjacent cooling air plenum chambers 21 and 21 extending through the lamp mounting blocks 16 adjacent the base thereof.
  • Such plenum chambers are operatively connected directly with the sockets 14 in which the lamps are received as well as with other vertically and laterally extending channels 23 which similarly extend longitudinally of the lamp mounting blocks.
  • cooling air if forced to circulate around the lamps and through the hollow interior 7 of the housing for subsequent discharge through an exhaust port 25 in communication with an exhaust system (not shown).
  • reaction zone Positioned within the hollow interior of the housing is a structure which defines the reaction zone of the present apparatus in which the epitaxial coatings are deposited on substrates positioned therein.
  • reaction zone is generally designated 31 and comprises a reaction chamber defined by an elongated generally enclosed tubular structure selectively formed from a material which is transparent to the short wave length heat energy generated by the heat source 12 previously described.
  • reaction chamber has its walls formed from quartz which is transparent to radiation energy in the one micron and below range.
  • the tube is generally rectangular in cross-sectional construction and the dimensions thereof may vary according to particular production needs. However, one such tube having dimensions of 2 inches by 6 inches with the length being determined in accordance with production requirements may be employed.
  • one end of the reaction tube is operatively connected at 24 with an exhaust hood 26 which in turn is connected with the aforementioned exhaust system so that spent reaction gases may be withdrawn from the the reactor.
  • the gaseous reactants to be employed in the coating procedure are introduced into the reaction chamber through means which, in the embodiment illustrated, comprises a pair of conduits 32 and 33 which pass through a portion 34 of the end wall 8 of the reactor and terminate within a mixing chamber 36 defined by a baffle plate 37 and the end wall portion 34.
  • the gaseous reactants emanate from tube 32 through a series of openings 38 provided there in adjacent the baffle plate while the end 39 of the other tube 37 is open directly into the mixing chamber.
  • an elongated slablike susceptor 42 on which a series of silicon or like wafers 43 are supported in spaced relationship.
  • the size of the susceptor is correlated to the size of the quartz reaction chamber and may vary to meet particular commercial needs. It should also be understood that in commercial reactors, more than one reactor station may be provided so that treatment of one batch of wafers in one reaction chamber may be progressing while another reaction chamber is being loaded or unloaded.
  • susceptor 42 is supported above the bottom wall of the reaction chamber and for that purpose a supporting stand of any suitable construction may be provided, such as the elongated I-I-shaped stand 44 illustrated in FIG. 2.
  • a supporting stand of any suitable construction may be provided, such as the elongated I-I-shaped stand 44 illustrated in FIG. 2.
  • a stand is transparent to the radiant energy emitted by the heat source and as such may be formed of quartz. While it is a requirement that the susceptor material employed be opaque to the radiant energy emitted from the heat source, various materials may be employed in that regard.
  • such susceptor preferably is produced from graphite which readily absorbs radiant heat energy at the short wave length noted. However, it is not a requirement that the susceptor be electrically or thermally conducted. By utilizing a susceptor, uniform heating of the wafers positioned thereon is insured.
  • the wafers may be directly heated in the reaction chamber without a susceptor by supporting the wafers directly on the bottom wall of the chamber.
  • a susceptor such a procedure is less desirable but, because of the opaque nature of the wafers, such a procedure will produce acceptable results although utilization of a susceptor as noted is highly preferable.
  • the reaction chamber 31 may be supported in any suitable fashion within the housing.
  • a series of projecting supports, designated 46 are positioned at intervals along the length of the reactor as best seen in FIG. 2 and the reaction chamber rests upon such supports.
  • Such supports may be fonned from quartz to prevent their interferring with effective heat transmission.
  • FIG. 3 The alternate embodiment shown in FIG. 3 is in all important respects the same as that described previously in FIGS. 1 and 2 with modifications being evident in conjunction with the heat source, generally designated 51, in FIG. 3.
  • heat source comprises at least one and preferably a bank of high intensity lamps 52 which generate radiant heat energy of the type described previously.
  • the individual lamps 52 differ from those lamps 13 described previously in that each comprises an elongated tubular configuration which extends through opposite sidewalls thereof to be received within opposite spring mounting means 53 and 54 each defined by a socket 56 in which an end of the lamp is positioned.
  • a pair of springs 57 and 58 are suitably anchored at 59 and 61 in brackets secured to a housing wall.
  • the electrical connections for the lamps 52 have not been illustrated but such connections are of conventional construction.
  • lamps 52 are mounted as noted in generally parallel relationship and extend at spaced intervals across the housing at longitudinally spaced positions therealong.
  • Cooling water and cooling air means are provided for the purposes noted previously.
  • the cooling water conduits 18 and 20 are arranged essentially the same as described previously with respect to FIG. 2.
  • some modification in the cooling air arrangement is necessitated because of the different construction of the lamps 52.
  • an enlarged plenum chamber 62 extends along the base of the housing and a series of air passages 63 extend through the bottom wall 64 of the housing defined by a polished metal plate so that cooling air my pass upwardly around the respective lamps and pass from the hollow interior of the housing into the exhaust system in the manner noted previously.
  • Lamps of the type shown at 52 are produced by General Electric as illustrated in their brochure No. TP-l l0 entitled Incandescent Lamps and marketed under the trademark Quartzline.”
  • FIGS. 4 and 5 illustrate a further modification of the subject radiation heated reactor in which the reactor construction is substantially different from that described previously but in which the epitaxial coating procedure corresponds to that described previously.
  • the reactor includes a support 66 to be positioned within and supported within a housing enclosure (not shown).
  • the heat source, generally designated 67, in this embodiment comprises a cylindrical lamp mounting block 68 having a hollow interior 69 as best seen in FIG. 5.
  • In the upper surface of the lamp mounting block are a series of semispherical recesses 71 in which high intensity lamps 70 of the type shown and described previously with respect to FIG. 1 are positioned.
  • the number of lamps 70 chosen depends upon the scope of the commercial operation intended for the reactor. It should be understood that suitable socket openings communicate with the semispherical recesses to accommodate the lamps therein in generally the same manner as shown in FIG. 1.
  • the upper surface 72 of the lamp mounting block, as well as the surfaces of the socket recesses 71 are highly polished so as to be highly heat reflective.
  • the lamp mounting block is supported above the support plate 66 in any suitable fashion.
  • conduits 73 and 74 are spacedly secured to the base of the lamp mounting block and pass through the support plate 66 and are rigidly connected with the support plate so as to position the lamp mounting block above the support plate as noted in FIG. 4.
  • the respective conduits 73 and 74 provide water cooling inlets an outlets which communicate with internal circulating channels 75 formed within the mounting block.
  • air cooling means may be provided in conjunction with the respective lamp sockets also, in the fashion described herein previously. 7
  • the reaction chamber of this embodiment is defined by an outer bell jar 76 of conventional configuration and construction which rests upon the supporting plate 66 and completely encloses the heat source and the remaining reactor structure to be described.
  • the inner portion of the reaction chamber is defined by a quartz shroud 77 which is hollow cylindrical in configuration, and donut shaped so that an inner portion 78 thereof fits within the bore 69 of the lamp mounting block as best seen in FIG. 4.
  • the shroud completely separates the lamps and the lamp mounting block and associated structure from the hollow interior of the reaction chamber defined by the shroud and the surrounding bell jar.
  • This embodiment also uses an opaque susceptor of graphite or the like and such susceptor is in the form of a circular ring' plate 81 secured in any suitable fashion to and supported by a hollow shaft 82 which projects upwardly through the support plate 66 of the reactor as seen in FIG. 4.
  • Shaft 82 is rotatable at relatively slow speeds, e.g., to revolutions per minute, by means of any suitable gearing or motor drive (not shown) so that the susceptor and a supply of wafers 83 supported thereon are carried in a moving path above the heat source defined by the bank of lamps shown.
  • the purpose of such movement relative to the heat source is to insure uniform heating of the susceptor and the wafers carried thereby. Access to the susceptor is had by lifting the bell jar.
  • the hollow shaft 82 further defines conduit means for introducing gaseous re reactants into the reaction chamber for epitaxial reaction therein with the wafers 83.
  • the spent reaction gases pass from the reaction chamber through a vent port 84 provided in the support plate 66 from which they pass into any suitable exhaust system (not shown).
  • FIGS. 6 and 7 A further embodiment of the subject radiation heated reactor is illustrated in FIGS. 6 and 7.
  • Such arrangement comprises a supporting plate 91 which is mounted within an enclosure (not shown) in any suitable manner. Projecting upwardly through the supporting plate 91 is a shaft 92 designed to be rotated by any suitable means (not shown).
  • a generally cylindrical opaque susceptor of graphite or the like Supported upon the upper end of shaft 92 is a generally cylindrical opaque susceptor of graphite or the like, designated 93.
  • the outer periphery of the susceptor is provided with a series of recesses 94 in which wafers to be epitaxially coated are positioned in generally vertical orientation.
  • the inner wall 97 (FIG. 7) of each recess is inwardly inclined away from the vertical to insure retention of a wafer therein during rotation of the susceptor. In that regard, relatively slow rotation in the range of approximately [0 to 15 revolutions per minute is utilized. Rotation of the susceptor is provided to insure uniform heating of the susceptor by the heat source.
  • the reaction, chamber is defined by a quartz bell jar 98 of conventional construction and configuration which surrounds the susceptor and rests on the supporting plate 91 as seen in FIG. 6. Access to the susceptor is had by raising the bell jar.
  • the heat source, generally designated 99, employed in this embodiment comprises a cylindrical ring-shaped lamp mounting block 101 in which a series of high intensity lamps 102 are positioned in vertically spaced rows in the manner shown.
  • the semispherical sockets from which the lamps project and inner periphery of the lamp block 101 are highly polished for the purpose noted previously.
  • the illustrated lamp bank surrounds the susceptor and is operatively separated therefrom by the reaction chamber defined by the bell jar 98.
  • the lamp block 101 is provided with means for cooling the same in the form of a helical coil 103 which surrounds the same through which a cooling fluid such as water may enter at one end 104 thereof and exit at the other end 106 thereof. Cooling air also may be introduced through the lamp mounting block if desired.
  • the gaseous reactants are introduced through a suitable port structure 107 provided in plate 91 and the spend reaction gases exit from the reaction chamber through a port structure 108 for passage into a suitable exhaust system.
  • a cool wall radiation heated reactor for effecting epitaxial and like chemical vapor deposition reactions therein on a heated substrate positioned therein and heated thereby, comprising a. a radiant heat source for producing and transmitting radiant heat energy of short wave length,
  • reaction chamber for receiving therein a substrate to be coated, positioned adjacent said heat source
  • At least that portion of a wall of said reaction chamber which is positioned adjacent said heat source being formed from a material which is transparent to heat energy at the wave length produced by said heat source so that such heat energy is transmitted through said wall without absorption thereby, whereby said wall remains cool and substantially free of film deposits during operation of said reactor, and
  • said susceptor means including a susceptor body formed from a material which is opaque to said heat energy and which absorbs the same and is heated thereby,
  • reaction chamber comprises a quartz enclosure separating said heat source from said substrate, the walls of said enclosure being generally unobstructive of heat energy radiated at said wave length.
  • said susceptor means further includes comprises a bank of high intensity tungsten filament quartz lamps each of which generates heat energy having a wave length of approximately one micron or below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Apparatus and process for vapor depositing epitaxial films on substrates. A gaseous reactant is introduced into a reaction chamber formed from a material, such as quartz, which is transparent and nonobstructive to radiant heat energy transmitted at a predetermined short wavelength. A graphite susceptor, which is opaque to and absorbs the radiant heat energy, is positioned within the reaction chamber and supports the substrates to be coated. The susceptor is heated while the walls of the reaction chamber remain cool to preclude deposition of epitaxial film on the walls. To insure uniform heating of the susceptor, the same may be moved relative to the radiant heat source which, in the preferred embodiment, comprises a bank of tungsten filament quartz-iodine high intensity lamps.

Description

United States Patent [72] Inventors Michael A. McNeilly;
Walter C. Benzing, both of Saratoga, Calif.
[21] App1.N0. 866,473
[22] Filed Oct. 15, 1969 [45] Patented Nov. 30, 1971 [73] Assignee Applied Materials Technology, Inc.
Santa Clara, Calif.
[54] EPITAXIAL RADIATION HEATED REACTOR AND PROCESS 9 Claims, 7 Drawing Figs.
[52] US. Cl 263/41, 34/4 [51] Int. Cl F27b 5/00 [50] Field otSearch 263/4l,42; 34/4 [5 6] References Cited UNITED STATES PATENTS 2,864,932 12/1958 Forrer 34/4 X 3,020,032 2/1962 Casey. 263/42 3,043,575 7/1962 Emeis 263/41 1 Primary Examiner1ohn .l. Camby Attorney-Flehr, Hohbach, Test, Albritton and Herbert ABSTRACT: Apparatus and process for vapor depositing epitaxial films on substrates. A gaseous reactant is introduced into a reaction chamber formed from a material, such as quartz, which is transparent and nonobstructive to radiant heat energy transmitted at a predetermined short wavelength. A graphite susceptor, which is opaque to and absorbs the radiant heat energy, is positioned within the reaction chamber and supports the substrates to be coated. The susceptor is heated while the walls of the reaction chamber remain cool to preclude deposition of epitaxial film on the walls. To insure uniform heating of the susceptor, the same may be moved relative to the radiant heat source which, in the preferred embodiment, comprises a bank of tungsten filament quartziodine high intensity lamps.
PATENTEfl ridvsolsn I SHEET 3 UF 3 mer.
Finer/W 3 Pena 72w T FOG-5 wuam wflw 6 M I WWW. 1N w? in 16 v m MW T /07 P54: 777N715 ml PEACTAN EPITAXIAL RADIATION HEATED REACTOR AND I PROCESS BACKGROUND OF THE INVENTION Field of the invention This invention relates to the field of vapor deposition of films on substrates. More particularly, the field of this invention involves the vapor deposition of expitaxial films, for example silicon dioxide and like films, on exposed surfaces of articles, such as silicon wafer substrates commonly used in the electronics industry. Gaseous chemical reactants are brought into contact with a heated substrate within a reaction chamber the walls of which are transparent to radiant heat energy transmitted at a predetermined short wave length. A suspector, which absorbs energy at the wavelength chosen, supports the substrate to be coated and heats the same as a result of its absorption of the heat energy transmitted into the reaction chamber from the radiant heat source employed.
Description of the Prior Art While substrates, such as silicon wafers, have been coated heretofore with epitaxial films, such as silicon dioxide or like films, so far as is known, the specific and improved vapor deposition procedure and apparatus disclosed herein are novel. The apparatus and process of this invention are effective to produce uniform film coatings on substrates under controlled conditions so that coasted substrates of high quality and excellent film thickness uniformity are producible within closely controlled limits.
In chemical deposition systems, it is highly desirable to carry out the deposition reaction in a cold wall-type reaction chamber. By maintaining the reaction chamber walls in the unheated state, such walls received little or no film deposition during substrate coating Cold wall systems are additionally desirable because they permit the deposition of high purity films, such as silicon dioxide films. Impurities can be evolved from or permeate through heated reaction chamber walls. Because such impurities would interfere with and adversely affect the purity of the substrate coasting cold wall reaction chambers are employed to preclude such impurity evolution or permeation.
To avoid such problems chemical deposition processes have been developed heretofore which permit heating of a substrate positioned within a reaction chamber without simultaneously heating the reaction chamber walls. I-Ieretofore, the most successful of such processes involved the use of radio frequency (RF) induction heating of a conducting susceptor positioned within the reaction chamber, the walls of which were formed of nonconducting or insulating material. For example, RF heating of a graphite susceptor within a quartz reaction chamber for depositing epitaxial silicon films has been known generally heretofore.
However, such an RF heating technique, while it generally produces the stated objective in a cold wall reaction chamber, has several inherent and important disadvantages which make the same undesirable under many circumstances. For example, an expensive and bulky RF generator is required which is very space consuming and which must be located close to the epitaxial reactor. Also, the high voltages required with the RF coils produce substantial personnel hazards, and RF radiation from the RF coils can and frequently does interfere with adjacent electrical equipment. Furthermore, such an RF procedure requires the utilization of an electrically conducting susceptor for supporting the substrates to be heated. Also, RF systems are considerably more expensive overall than the simplified radiation heated system disclosed herein which were designed to replace the RF systems utilized heretofore.
SUMMARY OF THE INVENTION This invention relates generally to an improved procedure for coating a substrate with an epitaxial film and to an improved apparatus for effecting such procedure. More particularly, this invention relates to a vapor deposition apparatus and process for depositing an oxide, nitride, metal or other similar films in epitaxial fashion on a substrate, such as on a silicon wafer commonly employed in the electronics industry in the manufacture of integrated circuits, transistors and the like. Still more particularly this invention relates to a cold wall epitaxial reactor and process for coating substrates without utilizing radio frequency induction heating of the type heretofore employed in cold wall vapor deposition systems.
In the subject procedure, a reaction zone, defined by an enclosed reaction chamber the walls of which are formed from a predetermined material specially selected for use in the reaction, has one or more substrates to be epitaxially coated positioned therein. In the preferred embodiment, a susceptor is utilized to support the substrates in the reaction chamber, A gaseous chemical mixture, composed of one or more suitable reactants, is introduced into the the reaction chamber into contact with the heated substrates. Such substrates are heated from a radiant non-RF heat source without simultaneously heating the walls of the reaction chamber so that the substrates become coated with the epitaxial reactant material while the walls remain uncoated.
Disadvantages inherent with prior known RF induction heated systems are overcome with the more compact radiation heated system of this invention which transmits heat from a radiation heat source positioned outside the reaction chamber. The frequencies of the radiated heat energy and of the material from which the reactor walls are formed are selected so that the radiant heat energy is transmitted at a wave length which passes through the walls of the reaction chamber without being absorbed by the same so that the walls remain cool and essentially unheated.
When the substrates to be coated are suitably heated by the energy absorbed by the susceptor, a gaseous reactant mixture is introduced into the reaction chamber into contact with the substrates to effect epitaxial coating thereof in known fashion. In that regard, any of the gaseous chemical reactants commonly used in epitaxial coating procedures may be employed with the present invention.
An improved heat source preferably employed with the present system comprises a high intensity, high temperature lamp which operates at a filament temperature in the range of 5000 to 6000 F., by way of example. The lamp actually chosen is selected from the type which produces radiant heat energy in the short wave length range, preferably approximately 1 micron or below. Radiant energy in such short wave lengths passes through material found suitable for defining the walls of the reaction chamber, of which quartz is preferred. Quartz walls possess excellent radiant energy transmission characteristics at the wave length noted so that little or no radiation is absorbed by the walls, thus retaining the advantages of cool wall reaction system noted previously.
From the foregoing it should be understood that objects of this invention include the provision of an improved cold wall process for epitaxially coating a substrate with a film of a predetermined type; the provision of a gaseous deposition apparatus for vapor depositing an epitaxial film on a heated substrate; the provision of improved apparatus and process for epitaxially coating substrates by employing a radiant energy heat source which transmits heat energy in short wave lengths through the walls of a reaction chamber which are transparent and nonobstructive to such energy at the wave length chosen; the provision of an improved apparatus and method which utilizes an opaque susceptor for heating substrates supported thereon within a reaction chamber, the walls of which are These and other objects of this invention will become apparent from a study of the following description in which reference is directed to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS embodiment of the apparatus.
FIG. 5 is an isometric view of a portion of the apparatus of FIG. 4.
FIG. 6 is a vertical sectional view through a further modification of the apparatus.
FIG. 7 is a sectional view taken in the plane of line 7-7 of FIG. 6.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Several embodiments of apparatus designed to carry out the improved epitaxial deposition procedure of this invention are disclosed herein. Each of such embodiments employs the same basic concepts characteristic of the improved features of this invention, namely the utilization of a cold wall reaction chamber in which a substrate to be epitaxially coated is positioned preferably upon a susceptor which is opaque and ab sorbs radiant heat energy transmitted through the walls of the reaction chamber without absorption by such walls. The source for such radiant heat comprises a high intensity lamp, or bank of such lamps which produces and transmits high temperature heat energy at a wave length which is not interferred with by the walls of the reaction chamber.
The chemical epitaxial deposition procedure within the reaction chamber is essentially the same as that employed heretofore with known coating procedures. Therefore, only briefreference herein is directed to'the concepts of epitaxial film growth which are well known and understood in the chemical vapor deposition art. By way of introductory example, however, theapparatus and process of this invention are utilizable to produce various epitaxial films on substrates, such as silicon wafers. The system of this invention employs chemical reaction and/or thermal pyrolysis to deposit a variety of films, such as silicon, silicon nitride, and silicon dioxide, as well as metal films such as molybdenum, titanium, zirconium and aluminum in accordance with reactions such as the following;
Silicon epitaxial growth by silane or silicon tetrachloridepyrolysis at temperatures within the range of 900-l200 C. occurs as follows;
Heat SIH; Si +2111 SiCli 2H Si 4HCl to I200 C. can be produced in accordance with the following exemplary reaction:
2MoCl az5H, 2Mo+70HCl Corresponding reactions for producing other exemplary metal and nonmetal films as noted above also can be employed in accordance with known procedures. The above reactions are intended as examples of procedures for which a cold wall deposition system is highly effective and alternative uses of such a system by those skilled in the chemical deposition art will become apparent from the following detailed description. Apparatus of the type described herein has been effectively used for producing silicon nitride and silicon dioxide dielectric films with film thickness uniformity of 15 percent from wafer to wafer within a run. Highly effective results can be insured because operating temperatures can be closely controlled and uniformly held due to use of the novel heat source employed herewith.
Referring first to the apparatus embodiment shown in FIGS. 1 and 2, it should be understood that the reactor structure is shown in generally schematic fashion and is intended to be enclosed within a surrounding enclosure (not shown) in and on which the necessary gaseous reactant flow controls, electrical power sources, and other attendant mechanisms are intended to be housed and mounted. For purposes of clarity of illustration, only those portions of the reactor necessary to illustrate the inventive concepts disclosed herein have been shown in the drawings. It will be understood that those portions of the reactor illustrated are intended to be supported within the aforementioned enclosure in any suitable fashion.
The radiation heated reactor of FIGS. 1 and 2, generally designated 1 comprises an elongated housing generally designated 2 defined as best seen in FIG. 2 by opposed sidewalls 3 and 4 and a removable top closure 6, the latter being slidable along or otherwise separable from the upper margin of the sidewalls 3 and 4 to permit access to the hollow interior 7 ofthe housing. Opposite ends of the housing, designated 8 and 9, may be closed off in any suitable fashion, such as by employing end walls or the like so that the interior 7 of the housing is completely enclosed. However, access into the hollow interior through one end of the housing is necessary so that substrates to be coated can be loaded and unloaded therefrom prior to and following deposition coating thereof. Suitable access doors (not shown) may be provided in the end wall 9 of the housing and in the reaction chamber to be described so that such access may be had to the reaction chamber.
Preferably the inner surfaces 11 of each of the confining walls of the housing and of the top closure thereof are formed of a highly polished reflecting material, such as polished sheet aluminum. Such reflecting surfaces are provided to permit maximum utilization of the heat generated by the heat source to be described.
Such heat source is designated 12 and extends laterally across the housing as seen in FIG. 2 and is secured in position by fastening the same to suitable portions of the housing sidewalls. The heat source comprises at least one high intensity lamp capable of producing and transmitting radiant heat energy at a short wave length, preferably one which is approximately 1 micron or less.
In the embodiment illustrated, the heat source comprises a bank of such lamps, each designated 13, which are mounted in threaded sockets I4 in a pair of side by side lamp mounting blocks I6. The electrical connections for the lamps are not illustrated but such connections are conventional. The upper open end of each lamp socket I4 is formed as an enlarged semispherical recess 17 which is highly polished to serve as a reflecting surface for the purpose noted.
The lamps preferably employed with the present apparatus and those illustrated in the drawings are high intensity tungsten filament lamps having a transparent quartz envelope and a halogen gas contained therein, preferably iodine. Such lamps are manufactured by the Aerometrics Division of Aerojet-General Corporation. Similar lamps are produced by General Electric Corporation.
The lamp employed in the embodiment of FIGS. 1 and 2 is constructed to be mounted upright but in another embodiment to be described hereinafter another configuration may be utilized.
Because of the substantial temperatures at which such lamps operate e.g., 50006000 F., means are provided in conjunction with the housing and with the lamp mounting blocks to cool the housing walls and the areas surrounding the lamp sockets to prevent overheating of the apparatus. As noted best from FIG. 2, such cooling means for the walls includes a plurality of parallel cooling fluid conduits through which water or a like cooling medium is circulated. Similar cooling conduits 18 are provided in the top closure of the housing. Such conduits may be operatively connected with a supply of cooling fluid and a disposal system therefor in known fashion.
Also, preferably fluid cooling conduits 19 are provided between adjacent rows of the bank of high intensity lamps as seen best in FIG. 2. Such conduits 19 are similarly connected with the supply of the cooling medium employed and a disposal system therefor.
The cooling means also preferably includes air circulation means which in the embodiment shown comprises a pair of adjacent cooling air plenum chambers 21 and 21 extending through the lamp mounting blocks 16 adjacent the base thereof. Such plenum chambers are operatively connected directly with the sockets 14 in which the lamps are received as well as with other vertically and laterally extending channels 23 which similarly extend longitudinally of the lamp mounting blocks. Thus, cooling air if forced to circulate around the lamps and through the hollow interior 7 of the housing for subsequent discharge through an exhaust port 25 in communication with an exhaust system (not shown).
Positioned within the hollow interior of the housing is a structure which defines the reaction zone of the present apparatus in which the epitaxial coatings are deposited on substrates positioned therein. Such reaction zone is generally designated 31 and comprises a reaction chamber defined by an elongated generally enclosed tubular structure selectively formed from a material which is transparent to the short wave length heat energy generated by the heat source 12 previously described. In its preferred form, such reaction chamber has its walls formed from quartz which is transparent to radiation energy in the one micron and below range. The tube is generally rectangular in cross-sectional construction and the dimensions thereof may vary according to particular production needs. However, one such tube having dimensions of 2 inches by 6 inches with the length being determined in accordance with production requirements may be employed.
As seen in FIG. 1, one end of the reaction tube is operatively connected at 24 with an exhaust hood 26 which in turn is connected with the aforementioned exhaust system so that spent reaction gases may be withdrawn from the the reactor. At its opposite ends, the gaseous reactants to be employed in the coating procedure are introduced into the reaction chamber through means which, in the embodiment illustrated, comprises a pair of conduits 32 and 33 which pass through a portion 34 of the end wall 8 of the reactor and terminate within a mixing chamber 36 defined by a baffle plate 37 and the end wall portion 34. The gaseous reactants emanate from tube 32 through a series of openings 38 provided there in adjacent the baffle plate while the end 39 of the other tube 37 is open directly into the mixing chamber. Following thorough mixing of the various reactants in the mixing chamber, the same pass beneath the bafile plate through a slotted passageway 41 provided therebetween and the bottom wall of the reaction chamber as seen in FIG. 1. It should be understood, of course, that the particular means chosen for introducing the gaseous reactants into the reaction chamber may be varied to meet particular manufacturing and production requirements.
Supported within the reaction chamber in the preferred embodiment shown is an elongated slablike susceptor 42 on which a series of silicon or like wafers 43 are supported in spaced relationship. The size of the susceptor is correlated to the size of the quartz reaction chamber and may vary to meet particular commercial needs. It should also be understood that in commercial reactors, more than one reactor station may be provided so that treatment of one batch of wafers in one reaction chamber may be progressing while another reaction chamber is being loaded or unloaded.
Preferably susceptor 42 is supported above the bottom wall of the reaction chamber and for that purpose a supporting stand of any suitable construction may be provided, such as the elongated I-I-shaped stand 44 illustrated in FIG. 2. Preferably such a stand is transparent to the radiant energy emitted by the heat source and as such may be formed of quartz. While it is a requirement that the susceptor material employed be opaque to the radiant energy emitted from the heat source, various materials may be employed in that regard. In the preferred embodiment, such susceptor preferably is produced from graphite which readily absorbs radiant heat energy at the short wave length noted. However, it is not a requirement that the susceptor be electrically or thermally conducted. By utilizing a susceptor, uniform heating of the wafers positioned thereon is insured.
In certain embodiments of this apparatus it is visualized that the wafers may be directly heated in the reaction chamber without a susceptor by supporting the wafers directly on the bottom wall of the chamber. However, such a procedure is less desirable but, because of the opaque nature of the wafers, such a procedure will produce acceptable results although utilization of a susceptor as noted is highly preferable.
The reaction chamber 31 may be supported in any suitable fashion within the housing. In the generally schematically embodiment shown, a series of projecting supports, designated 46, are positioned at intervals along the length of the reactor as best seen in FIG. 2 and the reaction chamber rests upon such supports. Such supports may be fonned from quartz to prevent their interferring with effective heat transmission.
The alternate embodiment shown in FIG. 3 is in all important respects the same as that described previously in FIGS. 1 and 2 with modifications being evident in conjunction with the heat source, generally designated 51, in FIG. 3. Such heat source comprises at least one and preferably a bank of high intensity lamps 52 which generate radiant heat energy of the type described previously. However, the individual lamps 52 differ from those lamps 13 described previously in that each comprises an elongated tubular configuration which extends through opposite sidewalls thereof to be received within opposite spring mounting means 53 and 54 each defined by a socket 56 in which an end of the lamp is positioned. A pair of springs 57 and 58 are suitably anchored at 59 and 61 in brackets secured to a housing wall. The electrical connections for the lamps 52 have not been illustrated but such connections are of conventional construction.
It should be understood that a series of such lamps 52 are mounted as noted in generally parallel relationship and extend at spaced intervals across the housing at longitudinally spaced positions therealong.
Cooling water and cooling air means are provided for the purposes noted previously. The cooling water conduits 18 and 20 are arranged essentially the same as described previously with respect to FIG. 2. However, some modification in the cooling air arrangement is necessitated because of the different construction of the lamps 52. In that regard, an enlarged plenum chamber 62 extends along the base of the housing and a series of air passages 63 extend through the bottom wall 64 of the housing defined by a polished metal plate so that cooling air my pass upwardly around the respective lamps and pass from the hollow interior of the housing into the exhaust system in the manner noted previously.
Lamps of the type shown at 52 are produced by General Electric as illustrated in their brochure No. TP-l l0 entitled Incandescent Lamps and marketed under the trademark Quartzline."
FIGS. 4 and 5 illustrate a further modification of the subject radiation heated reactor in which the reactor construction is substantially different from that described previously but in which the epitaxial coating procedure corresponds to that described previously. As seen in FIG. 4, the reactor includes a support 66 to be positioned within and supported within a housing enclosure (not shown). The heat source, generally designated 67, in this embodiment comprises a cylindrical lamp mounting block 68 having a hollow interior 69 as best seen in FIG. 5. In the upper surface of the lamp mounting block are a series of semispherical recesses 71 in which high intensity lamps 70 of the type shown and described previously with respect to FIG. 1 are positioned.
The number of lamps 70 chosen depends upon the scope of the commercial operation intended for the reactor. It should be understood that suitable socket openings communicate with the semispherical recesses to accommodate the lamps therein in generally the same manner as shown in FIG. 1. The upper surface 72 of the lamp mounting block, as well as the surfaces of the socket recesses 71 are highly polished so as to be highly heat reflective.
The lamp mounting block is supported above the support plate 66 in any suitable fashion. In that regard, conduits 73 and 74 are spacedly secured to the base of the lamp mounting block and pass through the support plate 66 and are rigidly connected with the support plate so as to position the lamp mounting block above the support plate as noted in FIG. 4. The respective conduits 73 and 74 provide water cooling inlets an outlets which communicate with internal circulating channels 75 formed within the mounting block. Although not shown, if desired, air cooling means may be provided in conjunction with the respective lamp sockets also, in the fashion described herein previously. 7 The reaction chamber of this embodiment is defined by an outer bell jar 76 of conventional configuration and construction which rests upon the supporting plate 66 and completely encloses the heat source and the remaining reactor structure to be described. The inner portion of the reaction chamber is defined by a quartz shroud 77 which is hollow cylindrical in configuration, and donut shaped so that an inner portion 78 thereof fits within the bore 69 of the lamp mounting block as best seen in FIG. 4. Thus, the shroud completely separates the lamps and the lamp mounting block and associated structure from the hollow interior of the reaction chamber defined by the shroud and the surrounding bell jar.
This embodiment also uses an opaque susceptor of graphite or the like and such susceptor is in the form of a circular ring' plate 81 secured in any suitable fashion to and supported by a hollow shaft 82 which projects upwardly through the support plate 66 of the reactor as seen in FIG. 4. Shaft 82 is rotatable at relatively slow speeds, e.g., to revolutions per minute, by means of any suitable gearing or motor drive (not shown) so that the susceptor and a supply of wafers 83 supported thereon are carried in a moving path above the heat source defined by the bank of lamps shown. The purpose of such movement relative to the heat source is to insure uniform heating of the susceptor and the wafers carried thereby. Access to the susceptor is had by lifting the bell jar.
The hollow shaft 82 further defines conduit means for introducing gaseous re reactants into the reaction chamber for epitaxial reaction therein with the wafers 83. The spent reaction gases pass from the reaction chamber through a vent port 84 provided in the support plate 66 from which they pass into any suitable exhaust system (not shown).
A further embodiment of the subject radiation heated reactor is illustrated in FIGS. 6 and 7. Such arrangement comprises a supporting plate 91 which is mounted within an enclosure (not shown) in any suitable manner. Projecting upwardly through the supporting plate 91 is a shaft 92 designed to be rotated by any suitable means (not shown).
Supported upon the upper end of shaft 92 is a generally cylindrical opaque susceptor of graphite or the like, designated 93. As seen in FIG. 7, the outer periphery of the susceptor is provided with a series of recesses 94 in which wafers to be epitaxially coated are positioned in generally vertical orientation. The inner wall 97 (FIG. 7) of each recess is inwardly inclined away from the vertical to insure retention of a wafer therein during rotation of the susceptor. In that regard, relatively slow rotation in the range of approximately [0 to 15 revolutions per minute is utilized. Rotation of the susceptor is provided to insure uniform heating of the susceptor by the heat source.
With this embodiment, the reaction, chamber is defined by a quartz bell jar 98 of conventional construction and configuration which surrounds the susceptor and rests on the supporting plate 91 as seen in FIG. 6. Access to the susceptor is had by raising the bell jar.
The heat source, generally designated 99, employed in this embodiment comprises a cylindrical ring-shaped lamp mounting block 101 in which a series of high intensity lamps 102 are positioned in vertically spaced rows in the manner shown. The semispherical sockets from which the lamps project and inner periphery of the lamp block 101 are highly polished for the purpose noted previously.
Thus, the illustrated lamp bank surrounds the susceptor and is operatively separated therefrom by the reaction chamber defined by the bell jar 98. The lamp block 101 is provided with means for cooling the same in the form of a helical coil 103 which surrounds the same through which a cooling fluid such as water may enter at one end 104 thereof and exit at the other end 106 thereof. Cooling air also may be introduced through the lamp mounting block if desired.
The gaseous reactants are introduced through a suitable port structure 107 provided in plate 91 and the spend reaction gases exit from the reaction chamber through a port structure 108 for passage into a suitable exhaust system.
Having thus made a full disclosure of various embodiments of improved apparatus and process for epitaxially coating substrates, reference is directed to the appended claims for the scope of protection to be afforded thereto.
What is claimed is:
l. A cool wall radiation heated reactor for effecting epitaxial and like chemical vapor deposition reactions therein on a heated substrate positioned therein and heated thereby, comprising a. a radiant heat source for producing and transmitting radiant heat energy of short wave length,
means defining a reaction chamber, for receiving therein a substrate to be coated, positioned adjacent said heat source,
1. at least that portion of a wall of said reaction chamber which is positioned adjacent said heat source being formed from a material which is transparent to heat energy at the wave length produced by said heat source so that such heat energy is transmitted through said wall without absorption thereby, whereby said wall remains cool and substantially free of film deposits during operation of said reactor, and
C. susceptor means to be heated by said heat source positioned within said reaction chamber for supporting said substrate thereon during operation of said reactor,
1. said susceptor means including a susceptor body formed from a material which is opaque to said heat energy and which absorbs the same and is heated thereby,
2. said susceptor body maintaining the temperature of said substrate substantially constant during operation of said reactor 2. The reactor of claim 1 in which all walls of said reaction chamber are formed from said heat transparent material.
3. The reactor of claim 1 in which said heat source comprises at least one high intensity lamp which radiates heat energy having a wave length of approximately 1 micron or below.
4. The reactor of claim 3 in which said reaction chamber comprises a quartz enclosure separating said heat source from said substrate, the walls of said enclosure being generally unobstructive of heat energy radiated at said wave length.
5. The reactor of claim 1 in which said susceptor means further includes comprises a bank of high intensity tungsten filament quartz lamps each of which generates heat energy having a wave length of approximately one micron or below.
9. The reactor of claim 1 in which said susceptor means is separable from said reaction chamber so that said substrate may be positioned on said susceptor body outside said reaction chamber and thereafter introduced on said susceptor body into said reaction chamber.
i t i t

Claims (11)

1. A cool wall radiation heated reactor for effecting epitaxial and like chemical vapor deposition reactions therein on a heated substrate positioned therein and heated thereby, comprising A. a radiant heat source for producing and transmitting radiant heat energy of short wave length, B. means defining a reaction chamber, for receiving therein a substrate to be coated, positioned adjacent said heat source, 1. at least that portion of a wall of said reaction chamber which is positioned adjacent said heat source being formed from a material which is transparent to heat energy at the wave length produced by said heat source so that such heat energy is transmitted through said wall without absorption thereby, whereby said wall remains cool and substantially free of film deposits during operation of said reactor, and C. susceptor means to be heated by said heat source positioned within said reaction chamber for supporting said substrate thereon during operation of said reactor, 1. said susceptor means including a susceptor body formed from a material which is opaque to said heat energy and which absorbs the same and is heated thereby, 2. said susceptor body maintaining the temperature of said substrate substantially constant during operation of said reactor
2. said susceptor body maintaining the temperature of said substrate substantially constant during operation of said reactor
2. The reactor of claim 1 in which all walls of said reaction chamber are formed from said heat transparent material.
3. The reactor of claim 1 in which said heat source comprises at least one high intensity lamp which radiates heat energy having a wave length of approximately 1 micron or below.
3. structure for moving said susceptor body relative to said heat source to insure substantially uniform heating of said susceptor body and the substrate supported thereby.
4. The reactor of claim 3 in which said reaction chamber comprises a quartz enclosure separating said heat source from said substrate, the walls of said enclosure being generally unobstructive of heat energy radiated at said wave length.
5. The reactor of claim 1 in which said susceptor means further includes
6. The reactor of claim 1, which further includes means for cooling said radiant heat source.
7. The reactor of claim 1 in which said radiant heat source comprises a high intensity tungsten filament quartz lamp which generates heat energy having a wave length of approximately one micron or below.
8. The reactor of claim 1 in which said radiant heat source comprises a bank of high intensity tungsten filament quartz lamps, each of which generates heat energy having a wave length of approximately one micron or below.
9. The reactor of claim 1 in which said susceptor means is separable from said reaction chamber so that said substrate may be positioned on said susceptor body outside said reaction chamber and thereafter introduced on said susceptor body into said reaction chamber.
US866473A 1969-10-15 1969-10-15 Epitaxial radiation heated reactor and process Expired - Lifetime US3623712A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86647369A 1969-10-15 1969-10-15

Publications (1)

Publication Number Publication Date
US3623712A true US3623712A (en) 1971-11-30

Family

ID=25347688

Family Applications (1)

Application Number Title Priority Date Filing Date
US866473A Expired - Lifetime US3623712A (en) 1969-10-15 1969-10-15 Epitaxial radiation heated reactor and process

Country Status (1)

Country Link
US (1) US3623712A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862397A (en) * 1972-03-24 1975-01-21 Applied Materials Tech Cool wall radiantly heated reactor
JPS508473A (en) * 1972-11-29 1975-01-28
US3956611A (en) * 1973-12-17 1976-05-11 Ushio Electric Inc. High pressure radiant energy image furnace
JPS5275176A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Method for vapor phase epitaxial growth
US4041278A (en) * 1975-05-19 1977-08-09 General Electric Company Heating apparatus for temperature gradient zone melting
US4094269A (en) * 1974-06-14 1978-06-13 Zlafop Pri Ban Vapor deposition apparatus for coating continuously moving substrates with layers of volatizable solid substances
JPS5694750A (en) * 1979-12-28 1981-07-31 Nippon Instr Kk Heating treatment device
WO1983002314A1 (en) * 1981-12-31 1983-07-07 Chye, Patrick, W. Method for reducing oxygen precipitation in silicon wafers
US4421786A (en) * 1981-01-23 1983-12-20 Western Electric Co. Chemical vapor deposition reactor for silicon epitaxial processes
US4481406A (en) * 1983-01-21 1984-11-06 Varian Associates, Inc. Heater assembly for thermal processing of a semiconductor wafer in a vacuum chamber
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
WO1985002417A1 (en) * 1983-11-23 1985-06-06 Gemini Research, Inc. Method and apparatus for chemical vapor deposition
AT381122B (en) * 1974-11-29 1986-08-25 Lohja Ab Oy METHOD FOR GROWING CONNECTIVE THIN LAYERS
US4640224A (en) * 1985-08-05 1987-02-03 Spectrum Cvd, Inc. CVD heat source
US4649261A (en) * 1984-02-28 1987-03-10 Tamarack Scientific Co., Inc. Apparatus for heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4678432A (en) * 1984-11-26 1987-07-07 Dainippon Screen Mfg. Co., Ltd. Heat treatment method
US4698486A (en) * 1984-02-28 1987-10-06 Tamarack Scientific Co., Inc. Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4746316A (en) * 1976-12-07 1988-05-24 Kabushiki Kaisha Toshiba Method for manufacturing a luminous tube for discharge lamp
US4778559A (en) * 1986-10-15 1988-10-18 Advantage Production Technology Semiconductor substrate heater and reactor process and apparatus
US4891335A (en) * 1986-10-15 1990-01-02 Advantage Production Technology Inc. Semiconductor substrate heater and reactor process and apparatus
US4920918A (en) * 1989-04-18 1990-05-01 Applied Materials, Inc. Pressure-resistant thermal reactor system for semiconductor processing
US4938815A (en) * 1986-10-15 1990-07-03 Advantage Production Technology, Inc. Semiconductor substrate heater and reactor process and apparatus
US4949669A (en) * 1988-12-20 1990-08-21 Texas Instruments Incorporated Gas flow systems in CCVD reactors
US4956046A (en) * 1986-10-15 1990-09-11 Advantage Production Technology, Inc. Semiconductor substrate treating method
US4981102A (en) * 1984-04-12 1991-01-01 Ethyl Corporation Chemical vapor deposition reactor and process
US5014339A (en) * 1987-12-30 1991-05-07 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Device for heating up a flow of gas
US5042423A (en) * 1988-12-20 1991-08-27 Texas Instruments Incorporated Semiconductor wafer carrier design
US5044314A (en) * 1986-10-15 1991-09-03 Advantage Production Technology, Inc. Semiconductor wafer processing apparatus
US5052886A (en) * 1988-12-20 1991-10-01 Texas Instruments Incorporated Semiconductor wafer orientation device
US5053247A (en) * 1989-02-28 1991-10-01 Moore Epitaxial, Inc. Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
US5074736A (en) * 1988-12-20 1991-12-24 Texas Instruments Incorporated Semiconductor wafer carrier design
US5155336A (en) * 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5207835A (en) * 1989-02-28 1993-05-04 Moore Epitaxial, Inc. High capacity epitaxial reactor
US5332442A (en) * 1991-11-15 1994-07-26 Tokyo Electron Kabushiki Kaisha Surface processing apparatus
US5518549A (en) * 1995-04-18 1996-05-21 Memc Electronic Materials, Inc. Susceptor and baffle therefor
US5587019A (en) * 1992-02-26 1996-12-24 Nec Corporation Apparatus for use in epitaxial crystal growth
EP0811709A2 (en) 1996-06-03 1997-12-10 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US5775416A (en) * 1995-11-17 1998-07-07 Cvc Products, Inc. Temperature controlled chuck for vacuum processing
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6121581A (en) * 1999-07-09 2000-09-19 Applied Materials, Inc. Semiconductor processing system
US6122440A (en) * 1999-01-27 2000-09-19 Regents Of The University Of Minnesota Optical heating device for rapid thermal processing (RTP) system
US6188044B1 (en) 1998-04-27 2001-02-13 Cvc Products, Inc. High-performance energy transfer system and method for thermal processing applications
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6594446B2 (en) 2000-12-04 2003-07-15 Vortek Industries Ltd. Heat-treating methods and systems
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6863735B1 (en) * 1998-07-27 2005-03-08 Super Silicon Crystal Research Institute Corp. Epitaxial growth furnace
US7445382B2 (en) 2001-12-26 2008-11-04 Mattson Technology Canada, Inc. Temperature measurement and heat-treating methods and system
US7501607B2 (en) 2003-12-19 2009-03-10 Mattson Technology Canada, Inc. Apparatuses and methods for suppressing thermally-induced motion of a workpiece
US7789965B2 (en) 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
US7871937B2 (en) 2008-05-16 2011-01-18 Asm America, Inc. Process and apparatus for treating wafers
US20110262120A1 (en) * 2008-09-01 2011-10-27 Kurita Water Industries Ltd. Liquid heating apparatus and liquid heating method
US8434341B2 (en) 2002-12-20 2013-05-07 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
US8454356B2 (en) 2006-11-15 2013-06-04 Mattson Technology, Inc. Systems and methods for supporting a workpiece during heat-treating
US9070590B2 (en) 2008-05-16 2015-06-30 Mattson Technology, Inc. Workpiece breakage prevention method and apparatus
US20200102653A1 (en) * 2018-10-01 2020-04-02 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11434032B2 (en) 2017-12-11 2022-09-06 Glaxosmithkline Intellectual Property Development Limited Modular aseptic production system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864932A (en) * 1954-08-19 1958-12-16 Walter O Forrer Infrared cooking oven
US3020032A (en) * 1959-04-06 1962-02-06 Selas Corp Of America Vacuum furnace
US3043575A (en) * 1959-11-24 1962-07-10 Siemens Ag Apparatus for producing electric semiconductor devices by joining area electrodes with semiconductor bodies
US3130293A (en) * 1959-07-31 1964-04-21 Bukata Stephen Brazing furnace
US3493220A (en) * 1968-03-07 1970-02-03 Us Navy Furnace for treating material in a gas atmosphere
US3519255A (en) * 1969-03-27 1970-07-07 Hal B H Cooper Structure and method for heating gases
US3519064A (en) * 1968-07-17 1970-07-07 Hal B H Cooper Method for heating gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864932A (en) * 1954-08-19 1958-12-16 Walter O Forrer Infrared cooking oven
US3020032A (en) * 1959-04-06 1962-02-06 Selas Corp Of America Vacuum furnace
US3130293A (en) * 1959-07-31 1964-04-21 Bukata Stephen Brazing furnace
US3043575A (en) * 1959-11-24 1962-07-10 Siemens Ag Apparatus for producing electric semiconductor devices by joining area electrodes with semiconductor bodies
US3493220A (en) * 1968-03-07 1970-02-03 Us Navy Furnace for treating material in a gas atmosphere
US3519064A (en) * 1968-07-17 1970-07-07 Hal B H Cooper Method for heating gases
US3519255A (en) * 1969-03-27 1970-07-07 Hal B H Cooper Structure and method for heating gases

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862397A (en) * 1972-03-24 1975-01-21 Applied Materials Tech Cool wall radiantly heated reactor
JPS508473A (en) * 1972-11-29 1975-01-28
US3956611A (en) * 1973-12-17 1976-05-11 Ushio Electric Inc. High pressure radiant energy image furnace
US4094269A (en) * 1974-06-14 1978-06-13 Zlafop Pri Ban Vapor deposition apparatus for coating continuously moving substrates with layers of volatizable solid substances
AT381122B (en) * 1974-11-29 1986-08-25 Lohja Ab Oy METHOD FOR GROWING CONNECTIVE THIN LAYERS
US4041278A (en) * 1975-05-19 1977-08-09 General Electric Company Heating apparatus for temperature gradient zone melting
JPS5275176A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Method for vapor phase epitaxial growth
US4746316A (en) * 1976-12-07 1988-05-24 Kabushiki Kaisha Toshiba Method for manufacturing a luminous tube for discharge lamp
JPS5694750A (en) * 1979-12-28 1981-07-31 Nippon Instr Kk Heating treatment device
JPS5745054B2 (en) * 1979-12-28 1982-09-25
US4421786A (en) * 1981-01-23 1983-12-20 Western Electric Co. Chemical vapor deposition reactor for silicon epitaxial processes
WO1983002314A1 (en) * 1981-12-31 1983-07-07 Chye, Patrick, W. Method for reducing oxygen precipitation in silicon wafers
US4432809A (en) * 1981-12-31 1984-02-21 International Business Machines Corporation Method for reducing oxygen precipitation in silicon wafers
US4481406A (en) * 1983-01-21 1984-11-06 Varian Associates, Inc. Heater assembly for thermal processing of a semiconductor wafer in a vacuum chamber
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
WO1985002417A1 (en) * 1983-11-23 1985-06-06 Gemini Research, Inc. Method and apparatus for chemical vapor deposition
US4649261A (en) * 1984-02-28 1987-03-10 Tamarack Scientific Co., Inc. Apparatus for heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4698486A (en) * 1984-02-28 1987-10-06 Tamarack Scientific Co., Inc. Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4981102A (en) * 1984-04-12 1991-01-01 Ethyl Corporation Chemical vapor deposition reactor and process
US4678432A (en) * 1984-11-26 1987-07-07 Dainippon Screen Mfg. Co., Ltd. Heat treatment method
US4640224A (en) * 1985-08-05 1987-02-03 Spectrum Cvd, Inc. CVD heat source
US4956046A (en) * 1986-10-15 1990-09-11 Advantage Production Technology, Inc. Semiconductor substrate treating method
US4938815A (en) * 1986-10-15 1990-07-03 Advantage Production Technology, Inc. Semiconductor substrate heater and reactor process and apparatus
US4891335A (en) * 1986-10-15 1990-01-02 Advantage Production Technology Inc. Semiconductor substrate heater and reactor process and apparatus
US4778559A (en) * 1986-10-15 1988-10-18 Advantage Production Technology Semiconductor substrate heater and reactor process and apparatus
US5044314A (en) * 1986-10-15 1991-09-03 Advantage Production Technology, Inc. Semiconductor wafer processing apparatus
US5014339A (en) * 1987-12-30 1991-05-07 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Device for heating up a flow of gas
US4949669A (en) * 1988-12-20 1990-08-21 Texas Instruments Incorporated Gas flow systems in CCVD reactors
US5042423A (en) * 1988-12-20 1991-08-27 Texas Instruments Incorporated Semiconductor wafer carrier design
US5052886A (en) * 1988-12-20 1991-10-01 Texas Instruments Incorporated Semiconductor wafer orientation device
US5074736A (en) * 1988-12-20 1991-12-24 Texas Instruments Incorporated Semiconductor wafer carrier design
US5053247A (en) * 1989-02-28 1991-10-01 Moore Epitaxial, Inc. Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
US5207835A (en) * 1989-02-28 1993-05-04 Moore Epitaxial, Inc. High capacity epitaxial reactor
US4920918A (en) * 1989-04-18 1990-05-01 Applied Materials, Inc. Pressure-resistant thermal reactor system for semiconductor processing
US5790751A (en) * 1990-01-19 1998-08-04 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of light pipes and a pyrometer for measuring substrate temperature
US6122439A (en) * 1990-01-19 2000-09-19 Applied Materials, Inc. Rapid thermal heating apparatus and method
US6434327B1 (en) 1990-01-19 2002-08-13 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US5683173A (en) * 1990-01-19 1997-11-04 Applied Materials, Inc. Cooling chamber for a rapid thermal heating apparatus
US5689614A (en) * 1990-01-19 1997-11-18 Applied Materials, Inc. Rapid thermal heating apparatus and control therefor
US5840125A (en) * 1990-01-19 1998-11-24 Applied Materials, Inc. Rapid thermal heating apparatus including a substrate support and an external drive to rotate the same
US5708755A (en) * 1990-01-19 1998-01-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5743643A (en) * 1990-01-19 1998-04-28 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5767486A (en) * 1990-01-19 1998-06-16 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of radiant energy sources and a source of processing gas
US5155336A (en) * 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5332442A (en) * 1991-11-15 1994-07-26 Tokyo Electron Kabushiki Kaisha Surface processing apparatus
US5587019A (en) * 1992-02-26 1996-12-24 Nec Corporation Apparatus for use in epitaxial crystal growth
US5518549A (en) * 1995-04-18 1996-05-21 Memc Electronic Materials, Inc. Susceptor and baffle therefor
US5950723A (en) * 1995-11-17 1999-09-14 Cvc Products, Inc. Method of regulating substrate temperature in a low pressure environment
US5775416A (en) * 1995-11-17 1998-07-07 Cvc Products, Inc. Temperature controlled chuck for vacuum processing
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
EP0811709A2 (en) 1996-06-03 1997-12-10 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
EP0811709B1 (en) * 1996-06-03 2005-06-01 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US6188044B1 (en) 1998-04-27 2001-02-13 Cvc Products, Inc. High-performance energy transfer system and method for thermal processing applications
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US6863735B1 (en) * 1998-07-27 2005-03-08 Super Silicon Crystal Research Institute Corp. Epitaxial growth furnace
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6727474B2 (en) 1998-12-10 2004-04-27 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6610967B2 (en) 1998-12-10 2003-08-26 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US7608802B2 (en) 1999-01-06 2009-10-27 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US8138451B2 (en) 1999-01-06 2012-03-20 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US7038174B2 (en) 1999-01-06 2006-05-02 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6771895B2 (en) 1999-01-06 2004-08-03 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US20050008351A1 (en) * 1999-01-06 2005-01-13 Arnon Gat Heating device for heating semiconductor wafers in thermal processing chambers
US6122440A (en) * 1999-01-27 2000-09-19 Regents Of The University Of Minnesota Optical heating device for rapid thermal processing (RTP) system
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US6121581A (en) * 1999-07-09 2000-09-19 Applied Materials, Inc. Semiconductor processing system
US6941063B2 (en) 2000-12-04 2005-09-06 Mattson Technology Canada, Inc. Heat-treating methods and systems
US6963692B2 (en) 2000-12-04 2005-11-08 Vortek Industries Ltd. Heat-treating methods and systems
US6594446B2 (en) 2000-12-04 2003-07-15 Vortek Industries Ltd. Heat-treating methods and systems
US20030206732A1 (en) * 2000-12-04 2003-11-06 Camm David Malcolm Heat-treating methods and systems
US7445382B2 (en) 2001-12-26 2008-11-04 Mattson Technology Canada, Inc. Temperature measurement and heat-treating methods and system
US7616872B2 (en) 2001-12-26 2009-11-10 Mattson Technology Canada, Inc. Temperature measurement and heat-treating methods and systems
US9627244B2 (en) 2002-12-20 2017-04-18 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
US8434341B2 (en) 2002-12-20 2013-05-07 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
US7501607B2 (en) 2003-12-19 2009-03-10 Mattson Technology Canada, Inc. Apparatuses and methods for suppressing thermally-induced motion of a workpiece
US7789965B2 (en) 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
US8454356B2 (en) 2006-11-15 2013-06-04 Mattson Technology, Inc. Systems and methods for supporting a workpiece during heat-treating
US9070590B2 (en) 2008-05-16 2015-06-30 Mattson Technology, Inc. Workpiece breakage prevention method and apparatus
US7871937B2 (en) 2008-05-16 2011-01-18 Asm America, Inc. Process and apparatus for treating wafers
US20110262120A1 (en) * 2008-09-01 2011-10-27 Kurita Water Industries Ltd. Liquid heating apparatus and liquid heating method
US9485807B2 (en) * 2008-09-01 2016-11-01 Kurita Water Industries Ltd. Liquid heating apparatus and liquid heating method
US11434032B2 (en) 2017-12-11 2022-09-06 Glaxosmithkline Intellectual Property Development Limited Modular aseptic production system
US12043436B2 (en) 2017-12-11 2024-07-23 Glaxosmithkline Intellectual Property Development Limited Modular aseptic production system
US20200102653A1 (en) * 2018-10-01 2020-04-02 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885023B2 (en) * 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US20240133035A1 (en) * 2018-10-01 2024-04-25 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same

Similar Documents

Publication Publication Date Title
US3623712A (en) Epitaxial radiation heated reactor and process
US4496609A (en) Chemical vapor deposition coating process employing radiant heat and a susceptor
US4047496A (en) Epitaxial radiation heated reactor
US4081313A (en) Process for preparing semiconductor wafers with substantially no crystallographic slip
US3796182A (en) Susceptor structure for chemical vapor deposition reactor
US5108792A (en) Double-dome reactor for semiconductor processing
US3293074A (en) Method and apparatus for growing monocrystalline layers on monocrystalline substrates of semiconductor material
US4653428A (en) Selective chemical vapor deposition apparatus
US5279986A (en) Method for epitaxial deposition
US6113984A (en) Gas injection system for CVD reactors
US5891251A (en) CVD reactor having heated process chamber within isolation chamber
US4545327A (en) Chemical vapor deposition apparatus
US3862397A (en) Cool wall radiantly heated reactor
US4640223A (en) Chemical vapor deposition reactor
US4421786A (en) Chemical vapor deposition reactor for silicon epitaxial processes
US3854443A (en) Gas reactor for depositing thin films
US5418885A (en) Three-zone rapid thermal processing system utilizing wafer edge heating means
US6352593B1 (en) Mini-batch process chamber
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
US4858558A (en) Film forming apparatus
GB2181458A (en) Apparatus and method for an axially symmetric chemical vapor deposition reactor
US20090065486A1 (en) Plasma treatment apparatus, and substrate heating mechanism to be used in the apparatus
EP0823491A2 (en) Gas injection system for CVD reactors
US7381926B2 (en) Removable heater
US4547404A (en) Chemical vapor deposition process