EP0318831B1 - Electric power connectors - Google Patents
Electric power connectors Download PDFInfo
- Publication number
- EP0318831B1 EP0318831B1 EP88119564A EP88119564A EP0318831B1 EP 0318831 B1 EP0318831 B1 EP 0318831B1 EP 88119564 A EP88119564 A EP 88119564A EP 88119564 A EP88119564 A EP 88119564A EP 0318831 B1 EP0318831 B1 EP 0318831B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- electric power
- power connector
- gold
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 136
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 64
- 229910052737 gold Inorganic materials 0.000 claims abstract description 44
- 239000010931 gold Substances 0.000 claims abstract description 44
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 20
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910001020 Au alloy Inorganic materials 0.000 claims description 6
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 5
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 5
- VRUVRQYVUDCDMT-UHFFFAOYSA-N [Sn].[Ni].[Cu] Chemical compound [Sn].[Ni].[Cu] VRUVRQYVUDCDMT-UHFFFAOYSA-N 0.000 claims description 5
- 229910001369 Brass Inorganic materials 0.000 claims description 4
- 239000010951 brass Substances 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- -1 copper-nickel-aluminium Chemical compound 0.000 claims description 3
- 239000002659 electrodeposit Substances 0.000 claims description 3
- 229910000545 Nickel–aluminium alloy Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 15
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000003483 aging Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003353 gold alloy Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZBTDWLVGWJNPQM-UHFFFAOYSA-N [Ni].[Cu].[Au] Chemical compound [Ni].[Cu].[Au] ZBTDWLVGWJNPQM-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/03—Contact members characterised by the material, e.g. plating, or coating materials
Definitions
- the present invention is concerned with electrical connectors or contacts and, more particularly, with electrical connectors useful in carrying substantial currents at voltages in excess of, perhaps, 10 volts, according to the first part of the claims 1 or 9 and as known from the document GB-A-2 203 450.
- the electronic contacts tend to degrade if exposed to temperatures elevated above 25°C even as low as 100°C.
- Gradually atoms of copper and silver migrate to the gold surface.
- Migrated copper makes the contact surface subject to sulfidation and oxidation while migrated silver is particularly detrimental when the contact surface is used in sulfidizing atmospheres as mild as ordinary room air.
- the present invention contemplates an electric power connector adapted to provide an interruptible conductive path for electrical current (for example, current of at least about 0.1 ampere) comprising at least two components adapted to be placed in surface contact one with another. At least one of the components has a fayable surface of contact made of an alloy of gold and nickel. At the fayable contact surface the alloy contains about 1 to about 10% by weight of nickel. The amount of nickel in the gold generally increases with distance from the fayable contact surface to an underlying metallurgically bonded layer preferably of essentially pure nickel. However, the alloy which is made by diffusing nickel from an underlayer into a gold overlayer usually exhibits a particular structure when examined by sputtering and Auger analysis.
- the immediate surface exhibits a relatively high nickel content.
- the nickel content falls somewhat and remains relatively constant for perhaps up to two-thirds of the thickness of the gold layer which ranges from 0.3 to 2 micrometers. Over the remaining thickness of the gold-containing layer, the nickel content rises rapidly to the nickel content of the underlying metal.
- Auger analysis sometimes produces results at the surface of an object being examined which may be surface artifacts and may not represent or be significant with respect to properties of the bulk material. Accordingly, it appears safe to say that in the gold layer of the contact structure of the present invention, the nickel content near the outer surface is at a relatively low level. It remains at that low level until, at some point remote from the surface the nickel content of the gold rapidly increases.
- the electrical power connector can be in any conventional contact form such as male and female plug components, pins, threaded structures or the like.
- the connectors are of such configuration that they can be made from composite, electrical contact material in strip form.
- Such contact material which is also within the contemplation of the present invention comprises a strip-form structural base of electrically conductive material, e.g. metal having at least one major surface comprised of nickel or nickel-rich alloy underlying a layer of gold about 0.1 to 2 micrometers thick metallurgically bonded to the nickel or nickel-rich alloy. This diffusion is such as to provide about 1 to about 10% by weight of nickel at the outer major surface.
- nickel-rich alloy means an alloy containing at least about 90% nickel advantageously at least 95% or 99% nickel and includes commercially pure nickel and nickel-cobalt alloys.
- contact materials of the present invention include copper, copper-base alloys such as brass, cupro-nickel, beryllium copper, copper-nickel-tin alloy and copper-nickel-aluminium alloy, nickel, cobalt or nickel-cobalt alloy particularly in strip form.
- copper, copper-base alloys and cobalt the basic metal has an electrodeposited layer of nickel about 3 to 10 micrometers thick on at least one major surface.
- the outer portion of that at least one major surface comprises a layer of electroplated gold or a gold alloy containing up to about 1% total nickel and/or cobalt about 0.1 to about 2 micrometers thick which layer of electroplated gold or gold alloy is heat bonded to the nickel so as to provide diffusion of nickel to the gold surface in an amount at or near the surface of about 1% to about 10% total nickel.
- the strip can be faced on all surfaces with gold or, on the two major surfaces, i.e. the top and bottom or on one major surface.
- Nickel and nickel-rich alloy strip can be made by conventional metallurgical melt technology wherein a charge of metal is melted, then cast and then hot- and/or cold-worked to strip form.
- a particularly advantageous method of making nickel, cobalt or nickel-rich alloy strip is to roll compact metal powder, sinter bond and interdiffuse the roll-compacted metal powder and thereafter or simultaneously roll the bonded powder product to strip form and thickness.
- Strip of metal other than nickel or nickel-rich alloy which can form the principal structural element of the connectors of the present invention is generally made in a conventional manner and is commercially available from many sources.
- the present invention contemplates use of commercially available strip of copper, brass, aluminium bronze, cupro-nickel, beryllium copper, copper-nickel-tin alloy and any other metal or other electrically conductive material useful in the electrical contact art.
- This strip is thoroughly cleaned by conventional means such as alkaline cleaning baths, solvent and vapor degreasing, etc. and then electroplated to provide a layer of nickel about 5 to about 10 micrometers thick.
- One of the electroplating baths set forth in Electroplating Engineering Handbook, 3rd Ed., A. Kenneth Graham, Van Nostrand Reinhold Company, Copyright, 1971 at page 247 can be used to electroplate nickel.
- Gold is electrodeposited over either the nickel strip or plated nickel from a cyanide-type, citrate-type or other type of bath adapted to produce a pure soft gold electro-deposit.
- the strip is then heat treated at about 350°C to 600°C for times ranging from 2 hours to 10 seconds so as to diffuse nickel into the gold to reach a level of from 1 to 10% nickel at the gold outer surface.
- the electrical connector materials and electrical contacts made therefrom as contemplated in the present invention are advantageous with respect to contacts made of base metals in that they are and remain through their useful lives essentially free of corrosion products and thus give reliable, stable contact service.
- the contacts and contact materials of the present invention are advantageous when the contact must be broken periodically. In these situations, a pure gold surface becomes galled or roughened, gold-on-gold contacting surfaces tend to sinter or fuse together and the contact cannot readily be separated.
- the present invention is based upon the discovery that when gold contacting surfaces contain 1 to 10% nickel such modified gold-on-modified gold contacts do not exhibit the fusing or sintering character of pure gold and thus the contacts can always be easily broken, provided of course, that the circuit including the contact has not been overloaded beyond design capacity.
- heat treatment time will normally vary with temperatures such that longer times will be used at lower temperatures and vice versa with a given thickness of gold. Lower temperatures and shorter times at a given temperature will be employed with thinner gold layers than with thicker gold layers.
- diffusion of nickel into gold can be carried out simultaneously with age-hardening of an age-hardenable substrate. Normally, this age-hardening of, for example, copper-base-alloys such as beryllium copper or a copper-nickel-tin alloy or a copper-nickel aluminium alloy will be carried out after the contact material is in final form as an electrical contact.
- strip form of beryllium copper is blanked and shaped to contact configuration.
- the thus shaped contacts are then electroplated sequentially with nickel and gold and then heat treated at a temperature and time combination selected in consideration of the thickness of electroplated gold so as to achieve both age-hardening of the substrate and proper gold-nickel interdiffusion at the same time.
- contacts may be blanked out of composite gold-nickel-copper beryllium strip, formed and then heat treated.
- the annealing heat treatment which produces diffusion of nickel and gold can be carried out simultaneously with hot rerolling of plated strip material.
- nickel strip made by roll compacting and then sintering and rolling nickel powder can be electroplated with gold and then rerolled at a temperature in the range of 350°C to 500°C to enhance the metallurgical bond between the nickel and gold and effectuate the diffusion of the nickel.
- the metallurgical bond and diffusion can be accomplished by the annealing heat treatment as described hereinbefore and the composite can be cold rolled either before or after annealing so as to enhance mechanical characteristics.
- a nickel strip made from roll compacted and sintered nickel powder about 0.5 mm thick, about 30 mm wide and about 70 meters long is thoroughly cleaned, mildly etched and electroplated with gold from a citrate-base electroplating bath to provide a uniform, pure gold deposit about 0.5 micrometer thick.
- the plated strip is thoroughly rinsed to remove any trace of electrolyte, dried and then heat treated by being passed through a furnace.
- the furnace is held at 480°C and contains an atmosphere of 10 volume percent hydrogen, balance nitrogen. Cool strip is fed to the furnace and passes through with a residence time of six minutes. As the strip exits the furnace it is cooled under the same reducing conditions and then coiled.
- the composite nickel-gold contact material made in this way gives excellent results in electric contact service composite material to composite material.
- the contacts exhibit essentially no detrimental behavior over time when exposed to normal service.
- the contacts do not corrode, gall or pit in service and can be disconnected hundreds of times without difficulty even when exposed in use to temperatures up to about 200°C.
Landscapes
- Contacts (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
- Cable Accessories (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT88119564T ATE80501T1 (de) | 1987-12-02 | 1988-11-24 | Elektrische leistungsverbinder. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA553333 | 1987-12-02 | ||
| CA000553333A CA1331325C (en) | 1987-12-02 | 1987-12-02 | Electric power connectors |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0318831A2 EP0318831A2 (en) | 1989-06-07 |
| EP0318831A3 EP0318831A3 (en) | 1990-09-26 |
| EP0318831B1 true EP0318831B1 (en) | 1992-09-09 |
Family
ID=4136987
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP88119564A Expired - Lifetime EP0318831B1 (en) | 1987-12-02 | 1988-11-24 | Electric power connectors |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP0318831B1 (enExample) |
| JP (1) | JPH067452B2 (enExample) |
| AT (1) | ATE80501T1 (enExample) |
| CA (1) | CA1331325C (enExample) |
| DE (1) | DE3874492T2 (enExample) |
| ES (1) | ES2034127T3 (enExample) |
| GR (1) | GR3005728T3 (enExample) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2069390A1 (en) * | 1991-09-05 | 1993-03-06 | James Alexander Evert Bell | Corrosion resistant high temperature contacts or electrical connectors and method of fabrication thereof |
| US5533915A (en) * | 1993-09-23 | 1996-07-09 | Deans; William S. | Electrical connector assembly |
| JP2002017073A (ja) * | 2000-02-11 | 2002-01-18 | Litton Systems Inc | 貴金属クラッドブラシワイヤーおよびスリップリング組立体 |
| WO2007083769A1 (ja) | 2006-01-19 | 2007-07-26 | Advantest Corporation | 接点装置およびその製造方法 |
| JP2008078061A (ja) * | 2006-09-25 | 2008-04-03 | Alps Electric Co Ltd | 弾性接触子及びその製造方法、ならびに前記弾性接触子を用いた接続装置及びその製造方法 |
| US7374460B1 (en) | 2007-04-17 | 2008-05-20 | Traxxas Lp | Electrical connector assembly |
| USD573536S1 (en) | 2007-04-17 | 2008-07-22 | Traxxas Lp | Electrical connector |
| USD933014S1 (en) | 2020-03-16 | 2021-10-12 | Traxxas Lp | Electrical connector for a model vehicle |
| USD939442S1 (en) | 2020-03-16 | 2021-12-28 | Traxxas Lp | Electrical connector for a model vehicle |
| US11569589B2 (en) | 2020-04-07 | 2023-01-31 | Traxxas, L.P. | Electrical power tap connector |
| USD1054382S1 (en) | 2022-09-07 | 2024-12-17 | Traxxas, L.P. | Electrical connector |
| USD1054383S1 (en) | 2022-09-07 | 2024-12-17 | Traxxas, L.P. | Electrical connector |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3214989A1 (de) * | 1982-04-22 | 1983-11-10 | Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim | Mit edelmetall oder einer edelmetallegierung beschichtetes elektrisches kontaktstueck |
| JPS61233912A (ja) * | 1985-04-09 | 1986-10-18 | 田中貴金属工業株式会社 | 電気接触子材料 |
| CA1270408A (en) * | 1987-04-07 | 1990-06-19 | James Alexander Evert Bell | Coated article having a base of age-hardened metal |
-
1987
- 1987-12-02 CA CA000553333A patent/CA1331325C/en not_active Expired - Fee Related
-
1988
- 1988-11-24 EP EP88119564A patent/EP0318831B1/en not_active Expired - Lifetime
- 1988-11-24 DE DE8888119564T patent/DE3874492T2/de not_active Expired - Fee Related
- 1988-11-24 ES ES198888119564T patent/ES2034127T3/es not_active Expired - Lifetime
- 1988-11-24 AT AT88119564T patent/ATE80501T1/de not_active IP Right Cessation
- 1988-12-01 JP JP63305126A patent/JPH067452B2/ja not_active Expired - Fee Related
-
1992
- 1992-09-17 GR GR920402051T patent/GR3005728T3/el unknown
Also Published As
| Publication number | Publication date |
|---|---|
| DE3874492D1 (de) | 1992-10-15 |
| JPH01194218A (ja) | 1989-08-04 |
| ES2034127T3 (es) | 1993-04-01 |
| EP0318831A2 (en) | 1989-06-07 |
| DE3874492T2 (de) | 1993-02-25 |
| JPH067452B2 (ja) | 1994-01-26 |
| ATE80501T1 (de) | 1992-09-15 |
| EP0318831A3 (en) | 1990-09-26 |
| GR3005728T3 (enExample) | 1993-06-07 |
| CA1331325C (en) | 1994-08-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1284301B1 (en) | Tin-silver coatings | |
| US5097100A (en) | Noble metal plated wire and terminal assembly, and method of making the same | |
| EP0318831B1 (en) | Electric power connectors | |
| EP2267187A1 (en) | Connecting component metal material and manufacturing method thereof | |
| JP2007247060A (ja) | めっき材料および前記めっき材料が用いられた電気電子部品 | |
| JP2000504784A (ja) | 電気接点素子 | |
| JP4771316B2 (ja) | 電気プラグ接点とその製造のための半製品 | |
| JP3519731B1 (ja) | 端子、それを有する部品および製品 | |
| US20050124233A1 (en) | Contact terminal with doped coating | |
| JP4986499B2 (ja) | Cu−Ni−Si合金すずめっき条の製造方法 | |
| Braunović et al. | Power connections | |
| US3175181A (en) | Electrical connector | |
| JP2021075772A (ja) | 電気接点用材料およびその製造方法、コネクタ端子、コネクタならびに電子部品 | |
| KR19980071423A (ko) | 구리기 합금 및 그것을 이용하는 단자 | |
| Lindborg et al. | Intermetallic growth and contact resistance of tin contacts after aging | |
| Sato et al. | Palladium with a thin gold layer as a sliding contact material | |
| JP2009263786A (ja) | 接続部品用金属材料およびその製造方法 | |
| JP2722401B2 (ja) | 耐マイグレーション性に優れた高導電性電気・電子部品配線用銅合金 | |
| JPH10223290A (ja) | 接続用端子 | |
| EP0531099A2 (en) | Corrosion resistant high temperature contacts or electrical connectors and method of fabrication thereof | |
| Antler | Gold in electronic components: New research findings | |
| Guancial et al. | Qualification of connectors manufactured with diffused gold R156 inlay contacts | |
| Koeppen et al. | Alloys C17400 and C17410-New beryllium copper alloys for connector applications | |
| Blackler et al. | Preliminary studies of tin and tin rich coatings as electrical contact materials | |
| Mab et al. | Power Connectors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| 17P | Request for examination filed |
Effective date: 19901126 |
|
| 17Q | First examination report despatched |
Effective date: 19911213 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| REF | Corresponds to: |
Ref document number: 80501 Country of ref document: AT Date of ref document: 19920915 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 3874492 Country of ref document: DE Date of ref document: 19921015 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3005728 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2034127 Country of ref document: ES Kind code of ref document: T3 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| EPTA | Lu: last paid annual fee | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19941001 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19941013 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19941025 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19941104 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19941130 Year of fee payment: 7 |
|
| EAL | Se: european patent in force in sweden |
Ref document number: 88119564.8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951124 Ref country code: AT Effective date: 19951124 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19951125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19951130 Ref country code: CH Effective date: 19951130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960601 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960601 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19971024 Year of fee payment: 10 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010201 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20041010 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20041014 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20041020 Year of fee payment: 17 Ref country code: DE Payment date: 20041020 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20041125 Year of fee payment: 17 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051124 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051124 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060601 |
|
| EUG | Se: european patent has lapsed | ||
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051124 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060731 |
|
| BERE | Be: lapsed |
Owner name: *INCO LTD Effective date: 20051130 |