EP0314994B1 - Pumpanordnung mit Doppelpumpe - Google Patents

Pumpanordnung mit Doppelpumpe Download PDF

Info

Publication number
EP0314994B1
EP0314994B1 EP88117547A EP88117547A EP0314994B1 EP 0314994 B1 EP0314994 B1 EP 0314994B1 EP 88117547 A EP88117547 A EP 88117547A EP 88117547 A EP88117547 A EP 88117547A EP 0314994 B1 EP0314994 B1 EP 0314994B1
Authority
EP
European Patent Office
Prior art keywords
pump
stroke
piston
motor
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117547A
Other languages
English (en)
French (fr)
Other versions
EP0314994A1 (de
Inventor
Wilfried Schlinkheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graco Verfahrenstechnik GmbH
Original Assignee
Graco Verfahrenstechnik GmbH
Boellhoff Verbindungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graco Verfahrenstechnik GmbH, Boellhoff Verbindungstechnik GmbH filed Critical Graco Verfahrenstechnik GmbH
Priority to AT88117547T priority Critical patent/ATE65296T1/de
Publication of EP0314994A1 publication Critical patent/EP0314994A1/de
Application granted granted Critical
Publication of EP0314994B1 publication Critical patent/EP0314994B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/129Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers
    • F04B9/131Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members
    • F04B9/135Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members reciprocating movement of the pumping members being obtained by two single-acting elastic-fluid motors, each acting in one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/073Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • F04B43/0736Pumps having fluid drive the actuating fluid being controlled by at least one valve with two or more pumping chambers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members

Definitions

  • the invention relates to a pump arrangement with a double pump, which has two alternatingly delivering individual pumps, in which a piston valve provided with a reversing valve, in particular a pneumatic piston motor, drives the individual pumps by means of its reciprocating piston rod.
  • the piston rod is connected to actuating elements which are each assigned to one of the two limit switch elements and actuate this in each case at the end of the motor stroke corresponding to the suction stroke of the associated individual pump and the piston engine has two pistons connected to the piston rod, the stroke volume of which is adjustable.
  • piston is used here in its general meaning. It includes all forms of engine elements that axially drive the piston rod when pressurized. This includes not only rigid pistons that can be slid in the cylinder, but also pistons designed as a membrane or combined with them.
  • a pneumatic axial piston motor is arranged between the two individual pumps.
  • the end position valves are arranged on the end walls of the engine cylinder and are actuated by the piston just before it touches the front wall.
  • the two limit switch elements designed as valves in turn control the reversing valve.
  • the pneumatic axial piston motor therefore has a constant stroke.
  • the piston rod carries along a displacement piston which is guided in a cylinder and which, during each pressure stroke, conveys pressure fluid from its displacement into a working space delimited by an axially movable pump element, namely a membrane.
  • a liquid container is provided, which is connected to the displacement at least at the end of the suction stroke by means of a valve.
  • the valve is formed in that the end face of the displacer covers a control opening in the cylinder wall.
  • a pneumatic axial piston motor with a constant stroke actuates two double pumps, the actuating rods of which can be taken from the motor piston rod via a coupling piece.
  • the actuating rod of a double pump consists of two sections which are connected to one another via a clamping device, so that the axial distance between the two rod sections is changed symmetrically to one another by turning the clamping sleeve.
  • the dead travel that each displacement piston has to travel through until the control opening in the housing-fixed cylinder is overridden, which leads to an equally large change in the stroke volume in both individual pumps leads. If the stroke volume is adjusted to lower values, the drive power is periodically fluctuating unevenly distributed among the pumps working in parallel.
  • the invention is based on the object of specifying a pump arrangement of the type described at the outset which is suitable in particular for the conveyance of two or more components and with stepless stroke adjustment, in which the pulsation can be kept lower.
  • the piston rod has two sections which are assigned to a single pump and are designed as parts and are firmly connected to the respective pistons and the actuating elements, the axial spacing of the sections being changeable by means of an adjusting device, and in that the Piston when actuating the associated limit switch element for each stroke volume set by the adjusting device is in contact with an end face of the engine displacement or somewhat in front of it.
  • the respective stroke volume of the two individual pumps is determined by the stroke of the axial piston motor. While the pistons of the motor and the pump elements of the individual pumps assume reversing positions at the end of the pressure stroke, which are dependent on the stroke setting, they reach the same end position with each stroke setting at the end of the suction stroke. Therefore, the volume of the engine displacement to be filled with pressure medium, in particular compressed air, up to the beginning of the pressure stroke of the respective individual pump is constant regardless of the stroke setting and can be achieved by appropriate design of the dead space be kept to a minimum. This results in a favorable efficiency. Since the individual pumps do not have to travel through dead paths, their pressure strokes can be connected directly to one another, so that a pressure drop caused by an idle stroke is avoided. The pump arrangement is therefore particularly suitable for the continuous supply of spray devices.
  • axial adjustment There are various options for axial adjustment.
  • a symmetrical adjustment is preferred. This is achieved in a simple manner in that the adjusting device has a coupling piece which engages with opposing threads on the two piston rod sections and is provided with a torque engagement surface.
  • the pistons are supported in their end position on the end face of the engine displacement.
  • the dead space in the engine displacement can be kept particularly small.
  • the limit switch element is protected against overload.
  • the two pistons of the axial piston motor each delimit an engine displacement with their sides facing one another and each with a space under ambient pressure with their sides facing away from one another.
  • the two pistons of the axial piston motor each limit an engine displacement with their sides facing one another and a pump chamber of an individual pump with their sides facing away from each other.
  • the piston rod carries a displacement piston in a cylinder for each individual pump, which conveys pressure fluid from its displacement into a working space delimited by an axially movable pump element for each pressure stroke, and a liquid container is provided which is connected to the displacement by means of a valve at least at the end of the suction stroke is connected, one can arrange the cylinders for both displacement pistons fixed to the housing due to the end position of the displacement pistons which is independent of the stroke setting.
  • the displacer guided in the cylinder bore is axially displaceable relative to the piston rod by a limited amount, that the drive of the displacer during the pressure stroke by contacting an end face of the piston rod on the end face of the displacer facing away from the displacement and the drive during the suction stroke by means of two oppositely directed driving surfaces on the piston rod and displacement piston, and that the valve is formed between the end faces of the piston rod and displacement piston lying against one another during the pressure stroke and is connected to the displacement space via at least one longitudinal channel running through the displacement piston.
  • a particularly useful application of the invention is the promotion of two or more components. This is done by at least one second, two alternately delivering single pumps having double pump, the axial piston motor runs through a stroke determined by stationary limit switch elements, and by a reversing valve circuit that operates the double pumps in the same or push-pull mode. In this way, with mix two or more components with high accuracy.
  • a preferred application is the supply of two-component paints to a spraying device.
  • the second double pump can have a fixed stroke or also an adjustable stroke. Any mixing ratio can be set in a wide range.
  • the synchronous reversal ensures that each stroke of one double pump corresponds to one stroke of the other double pump.
  • a common start of stroke can be achieved in a very simple manner in that two series connections, each with a limit switch element of each double pump, are provided for reversing the double pumps.
  • the reversal of the double pumps only takes place when both or all double pumps have reached their end position.
  • a common reversing valve can be provided for at least two double pumps. This simplifies the structure.
  • Three or more double pumps can also be provided and their limit switch elements connected in series.
  • the double pump 1 illustrated in FIG. 1 comprises two single pumps 2 and 3.
  • the single pump 2 has a pump chamber 4 which is delimited on the one hand by an end wall 5 and on the other hand by a piston 6 designed as a membrane.
  • the pump chamber 4 is connected to a suction line via a suction valve 7 and to a pressure line via a pressure valve 8.
  • the individual pump 3 has a pump chamber 9 which is delimited by an end wall 10 and a piston 11 designed as a membrane.
  • the pump chamber 9 is also connected to a suction valve 12 and a pressure valve 13.
  • the two individual pumps 2 and 3 are driven with the aid of an axial piston motor 14, which has two engine displacements 15 and 16, which are limited on the one hand by a housing wall 17 and 18 and on the other hand by the pistons 6 and 11, which act here as engine pistons .
  • the two pistons 6 and 11 are connected via a piston rod 19 which has a first section 20 which is connected to the piston 6 and a second section 21 which is connected to the piston 11.
  • the two sections are connected to one another by an adjusting device 22 in the form of a coupling piece which engages with two opposing threads 23 and 24 in the two piston sections 20 and 21 and with a torque engagement surface 25 is provided. After loosening two lock nuts 26 and 27, the axial distance between the two sections 20 and 21 can be changed.
  • a reversing valve 28 designed as a 5/2-way valve has a flat slide 29 which connects a compressed air inlet 30 optionally via a duct 31 to the engine displacement 15 or via a duct 32 to the engine displacement 16.
  • the respective other engine displacement is connected to the ambient air via the interior of this reversing valve 28 and an outlet 33.
  • the flat slide 29 is displaced by an actuating slide 34 when the one of the two control pressure spaces 35 and 36 on the front side is supplied with compressed air.
  • Two fixed end position valves 37 and 38 are provided as end position switching elements.
  • An actuating element 39 for the end position valve 37 is firmly connected to the piston rod section 21
  • an actuating element 40 for the end position switching valve 38 is firmly connected to the piston rod section 20.
  • the position of the actuating elements 39 and 40 is such that, shortly after actuation of the end position valves, the associated piston 11 on an end face 41 or the piston 6 on an end face 42 of the respective engine displacement 15 or 16 for abutment or somewhat in front of it to hold can come.
  • the double pump 1 with the two single pumps 2 and 3 and the two-part motor 14 is illustrated schematically.
  • the two end position valves 37 and 38 are connected via control lines L1 and L2 to the control pressure chambers 35 and 36 of the reversing valve 28.
  • the inlet 44 feeds the two end position valves 37 and 38 with compressed air.
  • the axial piston motor 14 goes back and forth continuously, each pump 2 and 3 alternately delivering the same stroke volume.
  • the distance between the two pistons 6 and 11 can be changed.
  • the distance between the actuating elements 39 and 40 is changed at the same time. This leads to a variation in the engine and pump stroke, but the position of the pistons remains unchanged at the end of the suction stroke.
  • the first difference is that the axial piston motor has two rigid pistons 106 and 111. They limit the engine displacement 115 and 116 on the sides facing each other. The spaces 146 and 147 delimited by the opposite piston sides are connected to the atmosphere via channels 148 and 148 '.
  • the single pump 102 has a pump chamber which is delimited by a pump element 149 in the form of a membrane. This rests under the influence of a return spring 150 against a support plate 152 provided with holes 151.
  • a displacement piston 153 is pushed to the left by the piston rod 119 in the cylinder 154 fixed to the housing, pressure fluid is displaced from the displacement 155 into a working space 156 between the support plate 152 and the pump element 149.
  • the pump element 149 returns under the influence of the return spring 150 back to the illustrated resting position.
  • the displacer piston 153 has a circumferential seal 163 and an inner channel 157. In the rest position, it is supported by a spring 158 with its seal End face 159 pressed against an end face 160 of the piston rod 119. There are stops 161 outside the piston rod. Therefore, when the piston rod 119 is pulled back further, a valve opens, which is formed between the end face 159 and the end face 160. Liquid can then flow from a liquid container 162 into the displacement 155 if this is necessary.
  • the piston rod 119 takes the displacer piston along by abutting the end faces 159 and 160.
  • the spring 158 is sufficient between two opposing driving surfaces in order to return the displacement piston 153. Further details can be found in DE-OS 35 42 926. Also in this context, it is of interest that the piston rod always assumes the same end position regardless of any stroke volume adjustment, in which the valve between the end faces 159 and 160 is just slightly open is.
  • the double pump 101 is constructed symmetrically.
  • the parts of the second individual pump correspond to those of the first individual pump 102.
  • the double pump 101 has the single pumps 102 and 103, which are of the two-part axial piston motor 144 are driven.
  • the double pump 101a has the single pumps 102a and 103a, which are driven by the two-part axial piston motor 114a.
  • a reversing valve 128 is common to both double pumps.
  • the channel 131 therefore leads to one engine cubic capacity each and the channel 132 likewise leads to one engine cubic capacity each of the two double pumps 101 and 101a.
  • the end position valve 137 supplied with compressed air at the inlet 144 is connected in series with the end position valve 137a and only this series connection acts on one control pressure chamber of the reversing valve 128.
  • the end position valves 138 and 138a which are in series with one another are connected to the other control pressure chamber of the reversing valve 128 connected.
  • the series circuits therefore form a reversing valve circuit S in conjunction with the reversing valve 128 designed as a 5/2-way valve, which operates both double pumps in the same or push-pull mode.
  • the series connections each contain an end position valve of all double pumps. If each double pump is equipped with its own reversing valve, the series connection of FIG. 5 can still be used, in which case a series connection in each case acts on the similar control pressure spaces of both reversing valves.
  • electrical ones can also be used as end position switching elements Limit switches are used, for example, when the reversing valves are actuated electromagnetically.
  • the series connection can then also be constructed electrically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine Pumpenanordnung mit einer zwei abwechselnd fördernde Einzelpumpen aufweisenden Doppelpumpe, bei der ein mit einem Umsteuerventil versehener, insbesondere pneumatischer Kolbenmotor mittels seiner hin- und hergehenden Kolbenstange die Einzelpumpen antreibt, zwei ortsfest angeordnete Endlagenschaltelemente jeweils am Ende des Motorhubs betätigbar sind, die Kolbenstange mit Betätigungselementen verbunden ist, die jeweils einem der beiden Endlagenschaltelemente zugeordnet sind und dieses jeweils am Ende des dem Saughub der zugehörigen Einzelpumpe entsprechenden Motorhubs betätigen und der Kolbenmotor zwei mit der Kolbenstange verbundene Kolben aufweist, deren Hubvolumen verstellbar ist.
  • Der Begriff "Kolben" wird hierbei in seiner allgemeinen Bedeutung verwendet. Er umfaßt alle Formen von Motorelementen, die bei Druckbeaufschlagung die Kolbenstange axial antreiben. Hierzu gehören nicht nur im Zylinder gleitend verschiebbare, starre Kolben, sondern auch als Membran ausgebildete oder damit kombinierte Kolben.
  • Bei einer bekannten Pumpenanordnung dieser Art (US-A-43 81 180) sind zwei annähernd parallele Membranen vorgesehen, die je einen Pumpenraum und einen Motorraum voneinander trennen, wobei sich die Motorräume auf den einander zugewandten Seiten der Membranen befinden. Die Membranen sind durch eine einteilige, durchgehende Kolbenstange verbunden, auf der die Betätigungselemente zur Änderung des wirksamen Pumpenhubs verstellbar sind. Jede Verstellung führt aber auch zu einer Größenänderung des zu Beginn des Druckhubes vorhandenen Hubraums des pneumatisch betriebenen Motors. Dementsprechend ergeben sich unterschiedlich lange Druckaufbauzeiten. Die Förderhübe der beiden Einzelpumpen können einen erheblichen zeitlichen Abstand voneinander erhalten, was störende Pulsationen ergibt.
  • Bei einer weiteren bekannten Pumpenanordnung (DE-OS 30 31 067) ist ein pneumatischer Axialkolbenmotor zwischen den beiden Einzelpumpen angeordnet. Die Endlagenventile sind an den Stirnwänden des Motorzylinders angeordnet und werden vom Kolben betätigt, kurz bevor dieser an der Stirnwand anliegt. Die beiden als Ventile ausgebildeten Endlagenschaltelemente steuern ihrerseits das Umsteuerventil. Der pneumatische Axialkolbenmotor hat daher einen konstanten Hub. Die Kolbenstange nimmt für jede Einzelpumpe einen in einem Zylinder geführten Verdrängerkolben mit, der bei jedem Druckhub aus seinem Hubraum Druckflüssigkeit in einen von einem axial bewegbaren Pumpelement, nämlich einer Membran, begrenzten Arbeitsraum fördert. Hierbei ist ein Flüssigkeitsbehälter vorgesehen, der mittels eines Ventils zumindest am Ende des Saughubs mit dem Hubraum in Verbindung steht. Das Ventil wird dadurch gebildet, daß die Stirnseite des Verdrängerkolbens eine Steueröffnung in der Zylinderwand überdeckt. Zur Änderung des Pumpen-Hubvolumens können die Zylinder und damit die Steueröffnungen mittels eines Drehknopfes axial verschoben werden. Durch diese Verlagerung ändert sich der Totweg bis zur Überdeckung der Steueröffnung und damit das wirksame Hubvolumen. Die Verstellung muß für jede Einzelpumpe gesondert vorgenommen werden. Bei beiden Pumpen die gleiche Volumenänderung vorzunehmen, ist schwierig.
  • Bei einer anderen bekannten Pumpenanordnung (DE-OS 35 44 016) betätigt ein pneumatischer Axialkolbenmotor mit konstantem Hub zwei Doppelpumpen, deren Betätigungsstangen über ein Kupplungsstück von der Motorkolbenstange mitnehmbar sind. Die Betätigungsstange der einen Doppelpumpe besteht aus zwei Abschnitten, die über eine Spannvorrichtung miteinander verbunden sind, so daß durch Verdrehen der Spannhülse der axiale Abstand der beiden Stangenabschnitte symmetrisch zueinander verändert wird. Hierdurch wird der Totweg, den jeder Verdrängerkolben bis zum Übersteuern der Steueröffnung im gehäusefesten Zylinder durchlaufen muß, verändert, was zu einer gleichgroßen Änderung der Hubvolumen in beiden Einzelpumpen führt. Wenn das Hubvolumen auf geringere Werte verstellt wird, verteilt sich die Antriebsleistung periodisch schwankend ungleichmäßig auf die parallel arbeitenden Pumpen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine insbesondere für die Förderung von zwei oder mehr Komponenten geeignete Pumpenanordnung der eingangs beschriebenen Art mit stufenloser Hubverstellung anzugeben, bei der die Pulsation geringer gehalten werden kann.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Kolbenstange zwei je einer Einzelpumpe zugeordnete als Teile ausgebildete Abschnitte, die mit den jeweiligen Kolben und den Betätigungselementen fest verbunden sind, aufweist, wobei der axiale Abstand der Abschnitte mittels einer Verstellvorrichtung ändebar ist, und daß sich die Kolben bei Betätigung des zugehörigen Endlagenschaltelements für jedes durch die Verstell vorrichtung eingestelle Hubvolumen in Anlage an einer stirnseitigen Endfläche des Motorhubraums oder etwas davor befinden.
  • Bei dieser Konstruktion ist das jeweilige Hubvolumen der beiden Einzelpumpen durch den eingestellten Hub des Axialkolbenmotors vorgegeben. Während die Kolben des Motors und die Pumpelemente der Einzelpumpen am Ende des Druckhubes Umkehrpositionen einnehmen, die von der Hubeinstellung abhängig sind, erreichen sie bei jeder Hubeinstellung am Ende des Saughubes jeweils die gleiche Endlage. Daher ist das bis zum Beginn des Druckhubes der jeweiligen Einzelpumpe mit Druckmedium, insbesondere Druckluft, zu füllende Volumen des Motorhubraums unabhängig von der Hubeinstellung konstant und kann durch entsprechende Ausgestaltung des Totraums minimal gehalten werden. Dies ergibt einen günstigen Wirkungsgrad. Da bei den Einzelpumpen keine Totwege durchlaufen werden müssen, können sich deren Druckhübe unmittelbar aneinander anschließen, so daß ein durch Leerhub hervorgerufener Druckabfall vermieden wird. Daher eignet sich die Pumpenanordnung insbesondere für die kontinuierliche Versorgung von Spritzeinrichtungen.
  • Für die axiale Verstellung gibt es verschiedene Möglichkeiten. Bevorzugt wird eine symmetrische Verstellung. Diese wird auf einfache Weise dadurch erreicht, daß die Verstellvorrichtung ein Kupplungsstück aufweist, das mit gegenläufigen Gewinden an den beiden Kolbenstangenabschnitten angreift und mit einer Drehmoment-Angriffsfläche versehen ist.
  • Besonders vorteilhaft ist es, daß die Kolben sich in ihrer Endlage an der stirnseitigen Endfläche der Motorhubraums abstützen. Hierdurch läßt sich der Totraum im Motorhubraum besonders klein halten. Außerdem wird das Endlagenschaltelement gegen Überlastung geschützt.
  • Bei einer bevorzugten Ausführung begrenzen die beiden Kolben des Axialkolbenmotors mit ihren einander zugewandten Seiten je einen Motorhubraum und mit ihren einander abgewandten Seiten je einen unter Umgebungsdruck stehenden Raum.
  • Bei einer Alternative begrenzen die beiden Kolben des Axialkolbenmotors mit ihren einander zugewandten Seiten je einen Motorhubraum und mit ihren einander abgewandten Seiten je eine Pumpenkammer einer Einzelpumpe.
  • Wenn die Kolbenstange für jede Einzelpumpe einen Verdrängerkolben in einem Zylinder mitnimmt, der bei jedem Druckhub aus seinem Hubraum Druckflüssigkeit in einen von einem axial bewegbaren Pumpelement begrenzten Arbeitsraum fördert, und ein Flüssigkeitsbehälter vorgesehen ist, der mittels eines Ventils zumindest am Ende des Saughubs mit dem Hubraum in Verbindung steht, kann man infolge der von der Hubeinstellung unabhängigen Endlage der Verdrängerkolben die Zylinder für beide Verdrängerkolben gehäusefest anordnen.
  • In diesem Zusammenhang ist es günstig, daß der abgedichtet in der Zylinderbohrung geführte Verdrängerkolben relativ zur Kolbenstange um ein begrenztes Stück axial verschiebbar ist, daß der Antrieb des Verdrängerkolbens beim Druckhub durch Anlage einer Stirnfläche der Kolbenstange an der dem Hubraum abgewandten Stirnfläche des Verdrängerkolbens und der Antrieb beim Saughub mittels zweier entgegengesetzt gerichteter Mitnahmeflächen an Kolbenstange und Verdrängerkolben erfolgt und daß das Ventil zwischen den beim Druckhub aneinanderliegenden Stirnflächen von Kolbenstange und Verdrängerkolben gebildet und über mindestens einen durch den Verdrängerkolben verlaufenden Längskanal mit dem Hubraum verbunden ist. Bei dieser Weiterbildung ist ein Ausgleich bei Flüssigkeitsmangel im Arbeitsraum möglich. Dadurch werden Leckverluste und damit verbundene Nachteile vermindert.
  • Eine besonders sinnvolle Anwendung der Erfindung besteht in der Förderung von zwei oder mehr Komponenten. Dies erfolgt durch mindestens eine zweite, zwei abwechselnd fördernde Einzelpumpen aufweisende Doppelpumpe, deren Axialkolbenmotor einen durch ortsfeste Endlagenschaltelemente bestimmten Hub durchläuft, und durch eine Umsteuerventil-Schaltung, die die Doppelpumpen im Gleich- oder Gegentakt betreibt. Auf diese Weise lassen sich mit hoher Genauigkeit zwei oder mehr Komponenten mischen. Ein bevorzugter Anwendungszweck ist die Zufuhr von Zwei-Komponenten-Lacken zu einer Spritzvorrichtung.
  • Hierbei kann die zweite Doppelpumpe einen festen Hub oder ebenfalls einen einstellbaren Hub haben. Es lassen sich in weiten Bereichen beliebige Mischungsverhältnisse einstellen. Durch die synchrone Umsteuerung ist dafür gesorgt, daß jedem Hub der einen Doppelpumpe ein Hub der anderen Doppelpumpe entspricht.
  • Ein gemeinsamer Hubanfang läßt sich auf sehr einfache Weise dadurch erzielen, daß zur Umsteuerung der Doppelpumpen zwei Reihenschaltungen aus je einem Endlagenschaltelement jeder Doppelpumpe vorgesehen sind. Erst wenn beide bzw. alle Doppelpumpen in ihre Endlage gelangt sind, erfolgt die Umsteuerung der Doppelpumpen.
  • Desweiteren kann für mindestens zwei Doppelpumpen ein gemeinsames Umsteuerventil vorgesehen werden. Dies vereinfacht den Aufbau.
  • Es können auch drei oder mehr Doppelpumpen vorgesehen und ihre Endlagenschaltelemente in Reihe geschaltet sein.
  • Die Erfindung wird nachstehend in der Zeichnung dargestellter, bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:
  • Fig. 1
    einen Längsschnitt durch eine erfindungsgemäße Niederdruck-Pumpenanordnung,
    Fig. 2
    schematisch die Pumpenanordnung der Fig. 1 mit einem Schaltbild,
    Fig. 3
    einen Teillängsschnitt durch eine erfindungsgemäße Hochdruck-Pumpenanordnung,
    Fig. 4
    einen Teillängsschnitt durch eine dritte Ausführungsform und
    Fig. 5
    zwei Doppelpumpen mit zugehörigem Schaltbild.

  • Die in Fig. 1 veranschaulichte Doppelpumpe 1 umfaßt zwei Einzelpumpen 2 und 3. Die Einzelpumpe 2 besitzt eine Pumpenkammer 4, die einerseits durch eine Stirnwand 5 und andererseits durch einen als Membran ausgebildeten Kolben 6 begrenzt wird. Die Pumpenkammer 4 steht über ein Saugventil 7 mit einer Saugleitung und über ein Druckventil 8 mit einer Druckleitung in Verbindung. In gleicher Weise besitzt die Einzelpumpe 3 eine Pumpenkammer 9, die durch eine Stirnwand 10 und einen als Membran ausgebildeten Kolben 11 begrenzt ist. Die Pumpenkammer 9 ist ebenfalls mit einem Saugventil 12 und einem Druckventil 13 verbunden.
  • Der Antrieb der beiden Einzelpumpen 2 und 3 erfolgt mit Hilfe eines Axialkolbenmotors 14, der zwei Motorhubräume 15 und 16 aufweist, die einerseits von einer Gehäusewand 17 bzw. 18 und andererseits von den Kolben 6 bzw. 11, solche hier als Motorkolben wirken, begrenzt sind.
  • Die beiden Kolben 6 und 11 sind über eine Kolbenstange 19 verbunden, die einen ersten Abschnitt 20, der mit dem Kolben 6 verbunden ist, und einen zweiten Abschnitt 21, der mit dem Kolben 11 verbunden ist, aufweist. Die beiden Abschnitte sind miteinander durch eine Verstellvorrichtung 22 in der Form eines Kupplungsstückes verbunden, das mit zwei gegenläufigen Gewinden 23 und 24 in die beiden Kolbenabschnitte 20 und 21 eingreift und mit einer Drehmoment-Angriffsfläche 25 versehen ist. Nach Lösen von zwei Kontermuttern 26 und 27 kann der axiale Abstand zwischen den beiden Abschnitten 20 und 21 geändert werden.
  • Ein als 5/2-Wegeventil ausgebildetes Umsteuerventil 28 weist einen Flachschieber 29 auf, der einen Drucklufteingang 30 wahlweise über einen Kanal 31 mit dem Motorhubraum 15 oder über einen Kanal 32 mit dem Motorhubraum 16 verbindet. Der jeweils andere Motorhubraum steht über den Innenraum dieses Umsteuerventils 28 und einen Ausgang 33 mit der Umgebungsluft in Verbindung. Der Flachschieber 29 wird durch einen Betätigungsschieber 34 verlagert, wenn jeweils der eine der beiden stirnseitigen Steuerdruckräume 35 bzw. 36 mit Druckluft versorgt wird.
  • Als Endlagenschaltelemente sind zwei ortsfeste Endlagenventile 37 und 38 vorgesehen. Ein Betätigungselement 39 für das Endlagenventil 37 ist mit dem Kolbenstangenabschnitt 21, ein Betätigungselement 40 für das Endlagenschaltventil 38 ist mit dem Kolbenstangenabschnitt 20 fest verbunden. Die Lage der Betätigungselemente 39 und 40 ist so getroffen, daß kurz nach Betätigung der Endlagenventile der zugehörige Kolben 11 an einer stirnseitigen Endfläche 41 bzw. der Kolben 6 an einer stirnseitigen Endfläche 42 des jeweiligen Motorhubraumes 15 bzw. 16 zur Anlage oder etwas davor zum Halten kommen kann.
  • In Fig. 2 ist schematisch die Doppelpumpe 1 mit den beiden Einzelpumpen 2 und 3 sowie dem zweiteiligen Motor 14 veranschaulicht. Die beiden Endlagenventile 37 und 38 sind über Steuerleitungen L1 bzw. L2 mit den Steuerdruckräumen 35 bzw. 36 des Umsteuerventils 28 verbunden. Der Eingang 44 speist die beiden Endlagenventile 37 und 38 mit Druckluft. Der Axialkolbenmotor 14 geht kontinuierlich hin und her, wobei abwechselnd jede Einzelpumpe 2 und 3 das gleiche Hubvolumen fördert.
  • Durch Verstellen der Verstellvorrichtung 22 kann der Abstand zwischen den beiden Kolben 6 und 11 geändert werden. Hierdurch wird gleichzeitig der Abstand zwischen den Betätigungselementen 39 und 40 geändert. Dies führt zu einer Variation des Motor- und Pumpenhubs, wobei jedoch die Lage der Kolben am Ende des Saughubes jeweils unverändert bleibt.
  • Bei der Ausführungsform nach Fig. 3 werden für entsprechende Teile um 100 erhöhte Bezugszeichen verwendet.
  • Unterschiedlich ist zunächst, daß der Axialkolbenmotor zwei steife Kolben 106 und 111 besitzt. Sie begrenzen auf den einander zugewandten Seiten die Motorhubräume 115 und 116. Die von den abgewandten Kolbenseiten begrenzten Räume 146 und 147 sind über Kanäle 148 und 148′ mit der Atmosphäre verbunden.
  • Die Einzelpumpe 102 besitzt eine Pumpenkammer, die von einem Pumpelement 149 in Form einer Membran begrenzt ist. Diese liegt unter dem Einfluß einer Rückstellfeder 150 gegen eine mit Löchern 151 versehene Stützplatte 152 an. Wenn von der Kolbenstange 119 ein Verdrängerkolben 153 im gehäusefesten Zylinder 154 nach links geschoben wird, verlagert sich Druckflüssigkeit aus dem Hubraum 155 in einen Arbeitsraum 156 zwischen Stützplatte 152 und Pumpelement 149. Beim Saughub des Verdrängerkolbens 153 kehrt das Pumpelement 149 unter dem Einfluß der Rückstellfeder 150 in die veranschaulichte Ruhelage zurück.
  • Der Verdrängerkolben 153 besitzt eine Umfangsdichtung 163 und einen Innenkanal 157. In der Ruhestellung wird er durch eine Feder 158 mit seiner eine Dichtung aufweisenden Stirnfläche 159 gegen eine Stirnfläche 160 der Kolbenstange 119 gedrückt. Außerhalb der Kolbenstange befinden sich Anschläge 161. Daher öffnet sich beim weiteren Zurückziehen der Kolbenstange 119 ein Ventil, das zwischen der Stirnfläche 159 und der Stirnfläche 160 gebildet wird. Es kann dann Flüssigkeit aus einem Flüssigkeitsbehälter 162 in den Hubraum 155 nachströmen, wenn dies erforderlich ist. Beim Druckhub nimmt die Kolbenstange 119 den Verdrängerkolben durch Anlage der Stirnflächen 159 und 160 aneinander mit. Beim Saughub, bei dem geringere Kräfte erforderlich sind, reicht die Feder 158 zwischen zwei einander entgegengerichteten Mitnahmeflächen aus, um den Verdrängerkolben 153 zurückzuführen. Weitere Einzelheiten ergeben sich aus der DE-OS 35 42 926. Auch in diesem Zusammenhang ist es von Interesse, daß die Kolbenstange unabhängig von jeder Hubvolumen-Verstellung immer die gleiche Endlage einnimmt, in der das Ventil zwischen den Stirnflächen 159 und 160 gerade etwas geöffnet ist.
  • Die Doppelpumpe 101 ist symmetrisch aufgebaut. Die Teile der zweiten Einzelpumpe entsprechen denjenigen der ersten Einzelpumpe 102.
  • Für die Ausführungsform nach Fig. 4 werden für entsprechende Teile um 200 erhöhte Bezugszeichen benutzt. Von der Doppelpumpe 201 ist lediglich die Einzelpumpe 202 veranschaulichte Der Abschnitt 220 der Kolbenstange 219 ist fest mit einem Verdrängerkolben 253 verbunden, der unter Zwischenlage einer Dichtung 263 im gehäusefesten Zylinder 254 geführt ist. Der Verdrängerkolben 253 wirkt daher als Pumpelement unmittelbar in der Pumpenkammer 204.
  • In Fig. 5 sind zwei Doppelpumpen 101 und 101a schematisch veranschaulicht. Die Doppelpumpe 101 weist die Einzelpumpen 102 und 103 auf, die von dem zweiteiligen Axialkolbenmotor 144 angetrieben werden. Die Doppelpumpe 101a weist die Einzelpumpen 102a und 103a auf, die von dem zweiteiligen Axialkolbenmotor 114a angetrieben werden. Beiden Doppelpumpen ist ein Umsteuerventil 128 gemeinsam. Der Kanal 131 führt daher zu je einem Motorhubraum und der Kanal 132 ebenfalls zu je einem Motorhubraum beider Doppelpumpen 101 und 101a.
  • Das mit Druckluft am Eingang 144 versorgte Endlagenventil 137 ist in Reihe mit dem Endlagenventil 137a geschaltet und lediglich diese Reihenschaltung wirkt auf den einen Steuerdruckraum des Umsteuerventils 128. In gleicher Weise sind die in Reihe miteinander liegenden Endlagenventile 138 und 138a mit dem anderen Steuerdruckraum des Umsteuerventils 128 verbunden. Dies hat zur Folge, daß das Umschalten beider Doppelpumpen erst erfolgt, wenn die langsamere der beiden parallel arbeitenden Einzelpumpen bzw. die den größeren Hub zurücklegende Einzelpumpe ihre Endlage erreicht hat. Alsdann erfolgt die Umschaltung, so daß anschließend wieder ein gemeinsamer Hub beider Doppelpumpen erfolgt. Die Reihenschaltungen bilden daher in Verbindung mit dem als 5/2-Wegeventil ausgebildeten Umsteuerventil 128 eine Umsteuerventil-Schaltung S, die beide Doppelpumpen im Gleichoder Gegentakt betreibt.
  • Die Schaltung der Fig. 5 kann auf mehr als zwei Doppelpumpen ausgedehnt werden, wobei dann die Reihenschaltungen je ein Endlagenventil aller Doppelpumpen enthalten. Wenn jede Doppelpumpe mit einem eigenen Umsteuerventil ausgestattet ist, kann trotzdem die Reihenschaltung der Fig. 5 angewendet werden, wobei dann jeweils eine Reihenschaltung auf die gleichartigen Steuerdruckräume beider Umsteuerventile wirkt. Statt der Endlagenventile können als Endlagenschaltelemente auch elektrische Endlagenschalter verwendet werden, beispielsweise wenn die Umsteuerventile elektromagnetisch betätigt werden. Auch die Reihenschaltung kann dann elektrisch aufgebaut sein.

Claims (11)

1. Pumpenanordnung mit einer zwei abwechselnd fördernde Einzelpumpen aufweisenden Doppelpumpe, bei der ein mit einem Umsteuerventil versehener, insbesondere pneumatischer kolbenmotor mittels seiner hin- und hergehenden Kolbenstange die Einzelpumpen antreibt, zwei ortsfest angeordnete Endlagenschaltelemente jeweils am Ende des Motorhubs betätigbar sind, die Kolbenstange mit Betätigungselementen verbunden ist, die jeweils einem der beiden Endlagenschalselemente zugeordnet sind und dieses jeweils am Ende des dem Saughub der zugehörigen Einzelpumpe entsprechenden Motorhubs betätigen und der Kolbenmotor zwei mit der Kolbenstange verbundene Kolben aufweist, deren Hubvolumen verstellbar ist, dadurch gekennzeichnet, daß die Kolbenstange (19; 119; 219) zwei je einer Einzelpumpe (2, 3; 102; 202) zugeordnete als Teile ausgebildete Abschnitte (20, 21; 120, 121; 220), die mit den jeweiligen Kolben (6, 11; 106, 111) und den Betätigungselementen (39, 40; 139, 140) fest verbunden sind, aufweist, wobei der axiale Abstand der Abschnitte (20, 21; 120, 121; 220, 221) mittels einer Verstellvorrichtung (22; 122) änderbar ist, und daß sich die Kolben (6, 11; 106, 111) bei Betätigung des zugehörigen Endlagenschaltelements (37, 38; 137, 138) für jedes durch die Verstellvorrichtung (22; 122) eingestellte Hubvolumen in Anlage an einer stirnseitigen Endfläche (41, 42; 141, 142) des Motorhubraums (15, 16; 115, 116) oder etwas davor befinden.
2. Pumpenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Verstellvorrichtung (22) ein Kupplungsstück aufweist, das mit gegenläufigen Gewinden (23, 24) an den beiden Kolbenstangenabschnitten (20, 21) angreift und mit einer Drehmoment-Angriffsfläche (25) versehen ist.
3. Pumpenanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kolben (6, 11; 106, 111) sich in ihrer Endlage an der stirnseitigen Endfläche (41, 42; 141, 142) des Motorhubraums (15, 16; 115, 116) abstützen.
4. Pumpenanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden Kolben (106, 111) des Axialkolbenmotors (114) mit ihren einander zugewandten Seiten je einen Motorhubraum (115, 116) und mit ihren einander abgewandten Seiten je einen unter Umgebungsdruck stehenden Raum (146, 147) begrenzen.
5. Pumpenanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden Kolben (6, 11) des Axialkolbenmotors (14) mit ihren einander zugewandten Seiten je einen Motorhubraum (15, 16) und mit ihren einander abgewandten Seiten je eine Pumpkammer (4, 9) einer Einzelpumpe begrenzen.
6. Pumpenanordnung nach einem der Ansprüche 1 bis 4, bei der die Kolbenstange für jede Einzelpumpe einen Verdrängerkolben in einem Zylinder mitnimmt, der bei jedem Druckhub aus seinem Hubraum Druckflüssigkeit in einen von einem axial bewegbaren Pumpelement begrenzten Arbeitsraum fördert, und ein Flüssigkeitsbehälter vorgesehen ist, der mittels eines Ventils zumindest am Ende des Saughubs mit dem Hubraum in Verbindung steht, dadurch gekennzeichnet, daß die Zylinder (154) für beide Verdrängerkolben (153) gehäusefest angeordnet sind.
7. Pumpenanordnung nach Anspruch 6, dadurch gekennzeichnet, daß der abgedichtet in der Zylinderbohrung geführte Verdrängerkolben (153) relativ zur Kolbenstange (119) um ein begrenztes Stück axial verschiebbar ist, daß der Antrieb des Verdrängerkolbens beim Druckhub durch Anlage einer Stirnfläche (160) der Kolbenstange an der dem Hubraum (155) abgewandten Stirnfläche (159) des Verdrängerkolbens und der Antrieb beim Saughub mittels zweier entgegengesetzt gerichteter Mitnahmeflächen an Kolbenstange und Verdrängerkolben erfolgt und daß das Ventil zwischen den beim Druckhub aneinanderliegenden Stirnflächen (159, 160) von Kolbenstange und Verdrängerkolben gebildet und über mindestens einen durch den Verdrängerkolben verlaufenden Längskanal (157) mit dem Hubraum (155) verbunden ist.
8. Pumpenanordnung nach einem der Ansprüche 1 bis 7, gekennzeichnet durch mindestens eine zweite, zwei abwechselnd fördernde Einzelpumpen (102a, 103a) aufweisende Doppelpumpe (101a), deren Axialkolbenmotor (114a) einen durch ortsfeste Endlagenschaltelemente bestimmten Hub durchläuft, und durch eine Umsteuerventil-Schaltung (S), die die Doppelpumpen (101, 101a) im Gleich- oder Gegentakt betreibt.
9. Pumpenanordnung nach Anspruch 8, dadurch gekennzeichnet, daß zur Umsteuerung der Doppelpumpen (101, 101a) zwei Reihenschaltungen aus je einem Endlagenschaltelement (137, 137a, 138, 138a) jeder Doppelpumpe vorgesehen sind.
10. Pumpenanordnung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß für mindestens zwei Doppelpumpen (101, 101a) ein gemeinsames Umsteuerventil (128) vorgesehen ist.
11. Pumpenanordnung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß drei oder mehr Doppelpumpen vorgesehen und ihre Endlagenschaltelemente in Reihe geschaltet sind.
EP88117547A 1987-11-04 1988-10-21 Pumpanordnung mit Doppelpumpe Expired - Lifetime EP0314994B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88117547T ATE65296T1 (de) 1987-11-04 1988-10-21 Pumpanordnung mit doppelpumpe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873737350 DE3737350A1 (de) 1987-11-04 1987-11-04 Pumpenanordnung mit doppelpumpe
DE3737350 1987-11-04

Publications (2)

Publication Number Publication Date
EP0314994A1 EP0314994A1 (de) 1989-05-10
EP0314994B1 true EP0314994B1 (de) 1991-07-17

Family

ID=6339719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117547A Expired - Lifetime EP0314994B1 (de) 1987-11-04 1988-10-21 Pumpanordnung mit Doppelpumpe

Country Status (3)

Country Link
EP (1) EP0314994B1 (de)
AT (1) ATE65296T1 (de)
DE (1) DE3737350A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368452A (en) * 1993-07-20 1994-11-29 Graco Inc. Double diaphragm pump having two-stage air valve actuator
GB2296534B (en) * 1993-07-20 1996-12-04 Graco Inc A two-stage air valve actuator for a double-diaphragm pump
DE19622266C1 (de) * 1996-06-03 1998-01-22 Ivan Dipl Ing Rupert Arbeitsluft-Steuerventil
JP3083275B2 (ja) * 1997-09-18 2000-09-04 株式会社ワイ・テイ・エス ダブルダイヤフラム式ポンプ
US7807118B2 (en) 2004-09-07 2010-10-05 Tristel Plc Decontamination system
US8642054B2 (en) 2004-09-07 2014-02-04 Tristel Plc Sterilant system
DE102004045687A1 (de) * 2004-09-17 2006-03-23 Almatec Maschinenbau Gmbh Membranpumpe für den Transport von Flüssigkeiten
DE102010013108A1 (de) * 2010-03-26 2011-09-29 Promera Gmbh & Co. Kg Doppelmembranpumpe
FI128135B (fi) * 2017-10-20 2019-10-31 Pneumaxpert Oy Oskillointisylinterijärjestely
JP2019183839A (ja) 2018-04-02 2019-10-24 グラコ ミネソタ インコーポレーテッド ダイアフラムポンプキャビティ内の減圧シフト

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1267093B (de) * 1956-05-29 1968-04-25 Weyburn Engineering Company Lt Membranmesspumpenaggregat
FR1350149A (fr) * 1962-12-15 1964-01-24 Pompage de fluides
US3782863A (en) * 1971-11-16 1974-01-01 Rupp Co Warren Slide valve apparatus
GB2059516B (en) * 1979-09-19 1983-09-07 Seeger Corp Two-component metering pumps
US4381180A (en) * 1981-07-13 1983-04-26 Sell John R Double diaphragm pump with controlling slide valve and adjustable stroke
IL68647A (en) * 1983-05-10 1988-03-31 Tmb Fertilizer Pumps Diaphragm double pump installation
GB2140097A (en) * 1983-05-19 1984-11-21 Kenneth Ian Fitzsimmonds Valve system
DE3542926A1 (de) * 1985-12-04 1987-06-11 Kopperschmidt Mueller & Co Pumpe
DE3544016A1 (de) * 1985-12-13 1987-06-19 Kopperschmidt Mueller & Co Pumpenanordnung zur dosierten abgabe von mindestens zwei komponenten

Also Published As

Publication number Publication date
DE3737350A1 (de) 1989-05-24
EP0314994A1 (de) 1989-05-10
ATE65296T1 (de) 1991-08-15
DE3737350C2 (de) 1990-03-29

Similar Documents

Publication Publication Date Title
DE3785207T2 (de) Pumpvorrichtung zur abgabe von fluessigkeit bei hohem druck.
DE3876169T2 (de) Doppel-membranpumpe.
DE3112434C2 (de)
EP0314994B1 (de) Pumpanordnung mit Doppelpumpe
DE2444844C3 (de) Hochdruckpumpe mit hydrostatisch betriebenem doppelwirkendem Einzylindermotor
DE2264014C2 (de) Hydrostatische Antriebs- und Lenkeinrichtung für ein Kettenfahrzeug oder dergleichen
DE4218714A1 (de) Hydraulischer kreis zur versorgung zumindest eines hydromotors mit "ausschaltbaren" kolben
EP0226070B1 (de) Pumpenanordnung zur dosierten Abgabe von mindestens zwei Komponenten
DE19959300A1 (de) Motor
DE19616191A1 (de) Steuerventil für eine Membranpumpe
DE2363143A1 (de) Hydraulischer linearantrieb
DE2823667C2 (de) Druckluftmotor
EP0561185A1 (de) Hydraulische Schiebersteuerung für Arbeitszylinder mit ungleichen Kolbengeschwindigkeiten
DE3542926C2 (de)
DE1528419C3 (de) Flüssigkeitspumpe
DE19757157C2 (de) Hydraulischer Linearantrieb
EP0311792A2 (de) Pumpvorrichtung zum gleichzeitigen Zuführen von zwei Zerstäuberflüssigkeiten zu einer Spritzvorrichtung
DE3609744A1 (de) Einrichtung zum wechselweisen ueberfuehren eines druckmediums zwischen reservoiren unterschiedlichen druckniveaus
DE2626971A1 (de) Kolbenpumpe zur verwendung mit einer druckoel fuehrenden hydraulikanlage
DE3112487A1 (de) Kraftstoff-einspritzverteilerpumpe
DE4300190A1 (de) Gerät zum Setzen von Gewindenietmuttern
DE3720674C2 (de)
EP0481208A1 (de) Druckluftmotor
DE3635042C2 (de) Hydraulik- oder Pneumatikzylinder
DE141018C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE FR GB IT NL SE

17P Request for examination filed

Effective date: 19890603

17Q First examination report despatched

Effective date: 19900410

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOELLHOFF VERFAHRENSTECHNIK GMBH & CO. KG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT NL SE

REF Corresponds to:

Ref document number: 65296

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931011

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931029

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941011

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941018

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941031

EAL Se: european patent in force in sweden

Ref document number: 88117547.5

BERE Be: lapsed

Owner name: BOLLHOFF VERFAHRENSTECHNIK G.M.B.H. & CO. K.G.

Effective date: 19941031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 88117547.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051021