EP0313884B1 - Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne - Google Patents

Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne Download PDF

Info

Publication number
EP0313884B1
EP0313884B1 EP88116440A EP88116440A EP0313884B1 EP 0313884 B1 EP0313884 B1 EP 0313884B1 EP 88116440 A EP88116440 A EP 88116440A EP 88116440 A EP88116440 A EP 88116440A EP 0313884 B1 EP0313884 B1 EP 0313884B1
Authority
EP
European Patent Office
Prior art keywords
combustion
knocking
combustion chamber
intensity
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88116440A
Other languages
German (de)
English (en)
Other versions
EP0313884A3 (fr
EP0313884A2 (fr
Inventor
Franz Prof. Dr. Techn. Pischinger
Hans-Peter Dipl.-Ing. Kollmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Publication of EP0313884A2 publication Critical patent/EP0313884A2/fr
Publication of EP0313884A3 publication Critical patent/EP0313884A3/fr
Application granted granted Critical
Publication of EP0313884B1 publication Critical patent/EP0313884B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/16Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by photoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines

Definitions

  • the invention relates to a method for recognizing and evaluating knocking combustion processes during operation of a spark-ignited internal combustion piston internal combustion engine, in the combustion chamber of which the electromagnetic radiation that changes when knocking combustion is detected and fed to a measuring and / or processing device.
  • knocking is an abnormal combustion phenomenon which is caused by an extremely rapid reaction of the combustible mixture to normal engine combustion and occurs in the late part of the combustion phase.
  • the exact processes of knocking combustion have not yet been clearly clarified.
  • the most widespread theory is that knocking is auto-ignition in the mixture not yet caught by the flame. After self-ignition has occurred, flame speeds occur that affect both the burned mixture and the unburned mixture Mixture can lie in the supersonic range.
  • the typical knock damage indicates shock waves that occur when knocking combustion.
  • an internal combustion engine If an internal combustion engine is operated with knocking combustion, the engine may be destroyed. In order to ensure non-destructive operation, the internal combustion engine manufacturers are therefore forced to maintain a greater distance from the knock limit or to use a knock control system, particularly because of different fuel qualities and due to deviations in the compression ratio, the ignition process, etc. that occur during series production.
  • DE-OS 31 08 460 describes a method with which the electromagnetic radiation emitted during combustion is evaluated with regard to the vibrations that occur during knocking.
  • the secondary effects of knocking combustion namely vibrations, are recorded.
  • these secondary effects depend on the design of the internal combustion engine, i.e. depending on the shape of the combustion chamber, etc., and on the measuring location, the specification of a generally applicable knock strength that can be transferred to different engines is problematic.
  • DE-OS 29 32 193 proposes a device in which ionization probes are used as flame front sensors in order to achieve high thermal efficiencies, of which at least two must always be present per cylinder in order to detect the running time of the flame and thus the flame propagation speed.
  • the disadvantage here is that the possibility of error when using two probes is very large, since the direction of propagation of the flame is not exactly known and is also not constant. When using many ion current probes, a better determination of the flame speed is possible than The disadvantage, however, is that there is a high manufacturing outlay.
  • a further disadvantage of the ion current probes is that the fine wires of the ion current probes are quickly destroyed because of the shock waves occurring when the combustion knocks, and the device is therefore very susceptible to faults.
  • DE-OS 31 10 996 describes a sensor arrangement for detecting physical parameters in the combustion chamber of an internal combustion engine, in which the end of the sensor exposed to the combustion chamber is mushroom-shaped. This measure does not limit the volume covered by the observation, but on the contrary increases it. Such an arrangement is particularly suitable for detecting secondary effects, namely the vibrations of the gas in the combustion chamber which are excited by the self-ignition. However, if the sensor has a cavity in the manner of a heat pipe, essentially only the processes in the cavity are observed, or at most via several openings in a wide area of the main combustion chamber.
  • the object of the present invention is to provide a method which enables reliable, trouble-free detection of the primary effect of knocking combustion in the operation of internal combustion engines and in particular avoids the disadvantages indicated.
  • an optical sensor in the form of a glass fiber bundle is arranged in the center electrode of a spark plug, it is achieved that a larger solid angle can be observed in the combustion chamber.
  • An arrangement which contains, for example, a light guide rod in the center electrode of a spark plug has a very large optical observation angle due to the total reflection processes in the light guide rod, in particular if the sensor has a convexly curved eye at the end on the combustion chamber side, which results in a large observation volume (DE-A- 3042454).
  • a signal representing the occurrence of knocking combustion is passed on to an evaluation device if the level of the emitted radiation after the first increase in knocking combustion is at least three times, preferably ten times, higher than in non-knocking combustion.
  • a further advantageous embodiment of the invention enables the arrangement of at least three optical measuring points, the measuring results of which are fed to a processing device for determining the flame speed.
  • Fig. 1 shows in the diagram the course of the intensity of the electromagnetic radiation occurring in the combustion chamber in normal, ie not knocking combustion.
  • FIG. 4 shows in longitudinal section a preferred embodiment of an optical sensor for measuring the intensity of the electromagnetic radiation occurring in the combustion chamber.
  • FIG. 5 shows a further preferred embodiment in partial longitudinal section as a modification of the object of FIG. 4.
  • 6 and 7 show in longitudinal section further advantageous embodiments of an optical sensor for measuring the intensity of the electromagnetic radiation occurring in the combustion chamber.
  • Fig. 8 shows a partial longitudinal section of an additional measure that can also be applied to the objects of Figures 4-7.
  • FIG. 9 shows a piston / cylinder arrangement of an internal combustion engine, in the cylinder head of which an optical sensor is arranged.
  • FIG. 10 shows a top view and FIG. 11 shows a side view of the arrangement of three optical measuring points in one sensor.
  • FIG 12 shows the signal flow diagram of an evaluation circuit for using the method according to the invention.
  • the gradient of the radiation intensity is represented by a straight line 3 which results from the connecting line between the first increase 1 of the radiation intensity and the first maximum 2 of the radiation intensity, if one takes the course of the radiation intensity I tracked as a function of time t.
  • FIGS. 2 and 3 show the course of the intensity I of the electromagnetic radiation in the combustion chamber as a function of the time t with knocking combustion.
  • a comparison of the signal curves shows the significantly steeper signal increase with knocking combustion.
  • 2 shows the course of the radiation intensity I from a combustion chamber area, which was initially detected by the combustion, which has not yet been knocking.
  • 3 shows the course of the radiation intensity according to line 4 from a combustion chamber area in which this is not the case.
  • An optical sensor facing the combustion chamber which has a plano-convex lens in front of a tube, the inner wall of which has a light-absorbing surface, is preferably used as the device for carrying out the described methods.
  • FIG. 4 shows an embodiment of such an optical sensor, which consists of a plano-convex lens 5 arranged on the combustion chamber side, a tube 6 and an optical fiber cable 7 which contains optical fibers 8.
  • an optical diaphragm 9 in the focal plane of the lens 5, here in the form of optical fibers.
  • the inner lateral surface of the tube 6 is provided with a light-absorbing surface 10. The light rays are focused in the focal plane by the combustion chamber-side lens 5. All light rays that strike the outer surface of the tube 6 are absorbed; thus they do not get into the light guide cable 7 and are not covered by the subsequent evaluation.
  • a sensor can also be used in which the optical fibers 8 are replaced by a light guide rod, or in which the photoelectric converter is arranged directly above the diaphragm.
  • the sensor described detects a very small combustion chamber volume.
  • the embodiment shown in FIG. 4 has an observation angle of approximately 4 degrees.
  • the small optical observation angle ensures that only a very small combustion chamber volume is detected. This small optical observation angle is achieved by the plano-convex lens 5 arranged on the combustion chamber side on the end face of the tube 6, the focus of the lens 5 at the base of the tube 6 optical aperture 9 is located.
  • plano-convex lens 5 can be replaced according to a further preferred embodiment by a thin plane-parallel observation window 5 'with the observation angle ⁇ .
  • the design of a sensor can also be advantageous, in which the sealing against the combustion chamber pressure takes place via a rod 11 or 12 made of translucent material.
  • the observation angle to be kept as small as possible can be achieved according to the representations in FIGS. 6 and 7 through a thin bore 13 which is arranged on the side facing away from the combustion chamber (FIG. 6) or on the side of the sensor facing the combustion chamber (FIG 7). In the latter case, the sealing against the internal pressure in the combustion chamber takes place through the translucent window 12 arranged behind the bore 13.
  • the translucent part of the sensor can be installed in a heat-insulated manner, as shown in FIG. 8, so that heating by the combustion chamber gases takes place in such a way that combustion residues are burned off.
  • the heat insulation can be done by embedding the radiation-permeable window 5 'in an insulating material 14.
  • valves 17 and 18 and a spark plug 19 are arranged in the usual way.
  • the optical sensor with light guide cable 7 and tube 6 is arranged above the left part of the combustion chamber 20, in such a way that it detects combustion chamber regions that are far away from the spark plug 19.
  • the optical sensor By arranging the sensor in such a way that only combustion chamber areas are detected which are far away from the spark plug and are therefore not yet detected by the flame at the start of knocking, the steep increase in radiation intensity can be observed in a particularly pure form. It is therefore advantageous to arrange the optical sensor in a spark-ignition internal combustion engine in such a way that regions of the open combustion chamber are detected that are far away from the ignition device.
  • the method according to the invention has the further advantage that, in addition to evaluating the radiation intensity over time, an exact determination of the flame speed is possible regardless of its direction of propagation.
  • three optical measuring points 21 face the combustion chamber, which transfer the observation results to the outside for further evaluation via three light guide cables 22.
  • the flame speeds with knocking combustion are significantly higher than with non-knocking combustion, and an exact determination of the flame speed is possible in the application of the invention in that the volume detected by the measurement in the upper piston dead center is less than 0.04% of the stroke volume is.
  • the flame speed can be determined with the aid of a corresponding computational evaluation without the direction of propagation being known beforehand. This is not possible with only two measuring points, as would be the case, for example, when measuring with two ion current probes.
  • FIG. 12 shows the signal flow diagram of an exemplary embodiment of an evaluation circuit for applying the method according to FIG the invention.
  • the electromagnetic radiation emitted during combustion in the combustion chamber of an engine 31 is converted in an opto-electrical converter 32 into a voltage signal proportional to the radiation intensity.
  • Components that work according to the external photo effect (photomultiplier) and components that use the internal photo effect (photodiodes) can be used for this.
  • the signals are amplified in a subsequent amplifier circuit 33. Because of the increases in intensity that occur during knocking combustion, this amplifier circuit 33 will have a cutoff frequency that is far above the lower combustion chamber resonance frequencies.
  • the signal processing takes place in an evaluation unit 34.
  • an evaluation unit 34 For a multi-cylinder engine, if a cylinder-specific evaluation is to take place, information about the crankshaft position must flow into the evaluation unit 34. This can be done with the aid of a reference marker 35.
  • the information determined by the evaluation unit 34 namely whether knocking or not knocking engine operation is present, can be fed to a conventional electronic engine control (ECU) 36, by means of which operating parameters are adjusted during knocking operation in such a way that the engine again operates in non-knocking operation.
  • ECU electronic engine control
  • the evaluation unit 34 can be implemented both in analog technology and in digital technology. An arrangement is also conceivable in which the actual signal evaluation takes place in the electronic motor control itself.
  • a signal normalization can take place in the evaluation unit 34.
  • This standardization can be carried out, for example, integrally via one or more work cycles or via the maximum values of the electrical signals representing the radiation intensity. Standardization with a weighting factor according to a stored function is also conceivable, so that the past work cycles are weighted differently.
  • the determination of the radiation intensity increases can e.g. by differentiation across the entire waveform or between thresholds. In particular, the fictitious signal increase (cf. claim 7) can be determined.
  • the criteria described can be used separately or in combination to decide whether engine operation is knocking or not.
  • the result of such a signal evaluation can also be output via a display device 37 and / or fed to a data processing 38.
  • Such an evaluation unit can thus be used both in series production vehicles and in laboratory operation.
  • FIGS. 4-7, 10 and 11 and the associated text parts are not part of the claimed invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Claims (10)

  1. Procédé de détection et d'interprétation de combustions avec cognement pendant le fonctionnement d'un moteur à combustion interne à pistons à allumage commandé, l'intensité du rayonnement électromagnétique, laquelle augmente lors d'une combustion avec cognement par rapport à un déroulement de combustion normal, étant détectée dans la chambre de combustion (20) de ce moteur par au moins un capteur optique, au point mort haut du piston, dans un volume de la chambre de combustion ouverte qui est inférieur à 0,04 % de la cylindrée unitaire, et transmise à un dispositif de mesure et/ou de traitement.
  2. Procédé selon la revendication 1, caractérisé en ce que le volume de la chambre de combustion ouverte qui est balayé par le capteur au point mort haut du piston est inférieur à 0,004 % de la cylindrée unitaire.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal représentant une apparition de combustion avec cognement est transmis à un dispositif d'interprétation si la croissance de l'intensité du rayonnement en fonction du temps dans le volume de mesure est au moins 3 fois plus importante lors d'une combustion avec cognement que lors d'une combustion sans cognement.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'un signal représentant l'apparition de combustion avec cognement est transmis à un dispositif d'interprétation si la croissance de l'intensité du rayonnement en fonction du temps dans le volume de mesure est au moins 20 fois plus importante lors d'une combustion avec cognement que lors d'une combustion sans cognement.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'un signal représentant l'apparition de combustion avec cognement est transmis à un dispositif d'interprétation si le niveau du rayonnement émis à la suite de la première augmentation lors d'une combustion avec cognement est au moins 3 fois plus élevé que lors d'une combustion sans cognement.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'un signal représentant l'apparition de combustion avec cognement est transmis à un dispositif d'interprétation si le niveau du rayonnement émis à la suite de la première augmentation lors d'une combustion avec cognement est au moins 10 fois plus élevé que lors d'une combustion sans cognement.
  7. Procédé selon l'une des revendications 3 à 6, caractérisé en ce que la croissance de l'intensité du rayonnement est représentée par une droite qui s'obtient à partir de la ligne de jonction entre la première augmentation de l'intensité du rayonnement et le maximum de l'intensité du rayonnement.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que seule est interprétée la réponse en fréquence, du signal représentant l'émission du rayonnement électromagnétique en fonction du temps, qui est supérieure à 10 kHz.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que seule est interprétée la réponse en fréquence, du signal représentant l'émission du rayonnement électromagnétique en fonction du temps, qui est supérieure à 50 kHz.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'intensité croissante du rayonnement électromagnétique est détectée par trois capteurs optiques.
EP88116440A 1987-10-26 1988-10-05 Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne Expired - Lifetime EP0313884B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3736160 1987-10-26
DE19873736160 DE3736160A1 (de) 1987-10-26 1987-10-26 Verfahren zum erkennen und auswerten klopfender verbrennung

Publications (3)

Publication Number Publication Date
EP0313884A2 EP0313884A2 (fr) 1989-05-03
EP0313884A3 EP0313884A3 (fr) 1991-01-09
EP0313884B1 true EP0313884B1 (fr) 1995-07-12

Family

ID=6339076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88116440A Expired - Lifetime EP0313884B1 (fr) 1987-10-26 1988-10-05 Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne

Country Status (3)

Country Link
EP (1) EP0313884B1 (fr)
AT (1) ATE125041T1 (fr)
DE (2) DE3736160A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403323B (de) * 1995-08-24 1998-01-26 Jenbacher Energiesysteme Ag Verfahren und einrichtung zum ermitteln eines klopfintensitätssignals eines verbrennungsmotors
DE19710654C2 (de) * 1997-03-14 2003-03-20 Iav Gmbh Optische Sonde zum Erfassen der Strahlung von Verbrennungsvorgängen, vorzugsweise in Brennräumen von Verbrennungsmotoren
AT2910U1 (de) 1998-07-09 1999-06-25 Avl List Gmbh Optoelektronische messeinrichtung zur erfassung von verbrennungsvorgängen
AT5153U1 (de) 2001-03-22 2002-03-25 Avl List Gmbh Optischer sensor zur erfassung von verbrennungsvorgängen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841979A (en) * 1955-05-16 1958-07-08 Phillips Petroleum Co Combustion study device
DE2443413C2 (de) * 1974-09-11 1983-11-17 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Einrichtung zur Regelung des Betriebszustands einer Brennkraftmaschine
GB1491622A (en) * 1975-01-31 1977-11-09 Ford Motor Co Internal combustion engine
FR2432097A1 (fr) * 1978-07-26 1980-02-22 Inst Francais Du Petrole Methode et dispositif de reglage automatique de l'allumage d'un moteur a allumage commande
US4393687A (en) * 1980-01-18 1983-07-19 Robert Bosch Gmbh Sensor arrangement
DE3110996A1 (de) * 1980-01-18 1982-09-30 Robert Bosch Gmbh, 7000 Stuttgart Sensoranordnung
DE3011570A1 (de) * 1980-01-18 1982-01-07 Robert Bosch Gmbh, 7000 Stuttgart Sensoranordnung
DE3042454A1 (de) * 1980-01-18 1982-06-16 Robert Bosch Gmbh, 7000 Stuttgart Sensoranordnung
DE3139000C2 (de) * 1980-10-17 1986-03-06 Michael G. Dipl.-Ing. ETH Rolle May Verfahren und Regeleinrichtung zur Zündzeitpunktverstellung bei einer fremdgezündteten Brennkraftmaschine
DE3108460A1 (de) * 1981-02-13 1982-11-04 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen Verfahren zum erkennen klopfender verbrennung sowie vorrichtung zur durchfuehrung des verfahrens

Also Published As

Publication number Publication date
DE3854146D1 (de) 1995-08-17
DE3736160A1 (de) 1989-05-03
EP0313884A3 (fr) 1991-01-09
EP0313884A2 (fr) 1989-05-03
ATE125041T1 (de) 1995-07-15

Similar Documents

Publication Publication Date Title
EP0635122B1 (fr) Procede et dispositif permettant la detection de cliquetis dans un moteur a combustion interne
DE4126782C2 (de) Gerät und Verfahren zur Erfassung von Fehlzündungen bei einem Verbrennungsmotor
DE3727018C2 (fr)
EP0058390B1 (fr) Procédé et dispositif pour la reconnaissance du cliquetis
DE102008015849A1 (de) Verbrennungszustandserfassungsvorrichtung und Verbrennungszustandserfassungsverfahren für einen Verbrennungsmotor
DE19734039C2 (de) Verbrennungszustands-Erfassungseinrichtung für eine Brennkraftmaschine
DE112013001438T5 (de) Steuervorrichtung für einen Verbrennungsmotor
DE3001711A1 (de) Sensoranordnung
DE10300204A1 (de) Verfahren und Vorrichtung zur Klopferkennung
EP0898065B1 (fr) Méthode pour déterminer un paramètre de fonctionnement d'un moteur à combustion interne
EP0313884B1 (fr) Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne
DE4042025C2 (de) Vorrichtung und Verfahren zur Auswertung des Verbrennungszustands in einer Brennkraftmaschine
EP1706719B1 (fr) Capteur optique
DE3128027A1 (de) "vorrichtung zum erkennen des klopfens bei brennkraftmaschinen"
EP3588051B1 (fr) Procédé de visualisation d'un procédé de combustion d'un mélange air-carburant
EP1174697A1 (fr) Détection de cliquetis dans un moteur à combustion interne avec une normalisation du courant d'ions
DE3042454C2 (fr)
DE3620733A1 (de) Verfahren zum erkennen und auswerten klopfender verbrennung und einrichtung zur durchfuehrung des verfahrens
AT520434B1 (de) Verfahren zur erkennung und detektion von vorzündungsereignissen
DE3045721A1 (de) Sensoranordnung
DE102007060905B4 (de) Verfahren zur Ermittlung des lokalen Luftverhältnisses
DE3042399A1 (de) Sensoranordnung
DE4207495A1 (de) Vorrichtung zur feststellung anormaler verbrennungsvorgaenge bei brennkraftmaschinen
DE19955619B4 (de) Vorrichtung zur Überwachung der Verbrennung in Verbrennungsmotoren
DE3106993A1 (de) Sensoranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19910508

17Q First examination report despatched

Effective date: 19920103

19U Interruption of proceedings before grant

Effective date: 19921228

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 19930128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950712

Ref country code: GB

Effective date: 19950712

REF Corresponds to:

Ref document number: 125041

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3854146

Country of ref document: DE

Date of ref document: 19950817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951012

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001109

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST