EP0309481B1 - Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen - Google Patents

Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen Download PDF

Info

Publication number
EP0309481B1
EP0309481B1 EP87904578A EP87904578A EP0309481B1 EP 0309481 B1 EP0309481 B1 EP 0309481B1 EP 87904578 A EP87904578 A EP 87904578A EP 87904578 A EP87904578 A EP 87904578A EP 0309481 B1 EP0309481 B1 EP 0309481B1
Authority
EP
European Patent Office
Prior art keywords
boron
composition
substituted
nitrogen
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP87904578A
Other languages
English (en)
French (fr)
Other versions
EP0309481A1 (de
Inventor
James J. Schwind
Stephen A. Di Biase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26664443&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0309481(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to AT87904578T priority Critical patent/ATE102989T1/de
Publication of EP0309481A1 publication Critical patent/EP0309481A1/de
Application granted granted Critical
Publication of EP0309481B1 publication Critical patent/EP0309481B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • This invention relates to lubricating oil and functional fluid compositions having improved high temperature stability and which are useful for lubricating relatively moving metal surfaces. More particularly, the invention relates to lubricating compositions useful in automotive transmissions and axles.
  • lubricating compositions useful as gear lubricants generally will contain pour point depressants, extreme pressure agents, oxidation inhibitors, corrosion inhibitors, foam inhibitors, and friction modifiers.
  • Lubricating compositions have been suggested containing various nitrogen-containing and phosphorus-containing compositions to impart desirable properties to lubricating compositions.
  • U.S. Patent 3,513,093 describes lubricant compositions containing substituted polyamines which comprise the reaction product of an alkylene amine with a substantially hydrocarbon-substituted succinic acid and at least about 0.001 mole of a phosphorus acid-producing compound selected from the group consisting of phosphoric acids, phosphorous acids, phosphonyl acids, phosphinyl acids, and the esters; the halides and the anhydrides thereof.
  • the substituted polyamines are useful as anti-wear agents, anti-rust agents, detergents, etc.
  • Patent 4,338,205 describes a lubricating oil with improved diesel dispersancy.
  • the lubricating oils contain an acid-treated, oil-soluble alkenyl succinimide or a borated alkenyl succinimide which has been treated at an elevated temperature with an oil-soluble strong acid such as an alkyl sulfonic acid, or a phosphoric acid.
  • the oil-soluble organic acids are generally classified as those acids containing a hydrogen-phosphorus moiety which has a pK of -10 to about +5.0.
  • aliphatic amine salts of partially esterified phosphoric acids particularly 2-ethylhexyl acid phosphate coconut amine salt
  • reaction products of boron compounds with N-substituted alkenylsuccinimide derivatives particularly polybutenylsuccinimide-borate
  • ii) being present as dispersants and improving the durability of the lubricating compositions to high temperatures.
  • This invention is directed to lubricating oil and functional fluid compositions having improved high temperature stability and which contain at least one phosphorus-containing product and at least one soluble nitrogen-containing product. More particularly, the lubricating and functional fluid compositions of the present invention comprise
  • the invention provides a lubricating or functional fluid composition having improved high temperature stability comprising
  • the lubricating and functional fluid compositions of the present invention are based on diverse oils of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof. These lubricating compositions containing the phosphorus-containing and nitrogen-containing compositions of the invention, are effective in a variety of applications including crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines, including automobile and truck engines, two-cycle engines, aviation piston engines, marine and low-load diesel engines, and the like. Also, automatic transmission fluids, transaxle lubricants, gear lubricants, metal-working lubricants, hydraulic fluids, and other lubricating oil and grease compositions can benefit from the incorporation of the compositions of this invention. The lubricating compositions are particularly effective as gear lubricants.
  • Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful.
  • Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.); poly(1-hexenes), poly(1-octenes), poly(1-decenes), etc.
  • polymerized and interpolymerized olefins e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.
  • poly(1-hexenes), poly(1-octenes), poly(1-decenes) e.g., poly(1-hexenes), poly(1-octenes), poly(1-decenes), etc.
  • alkylbenzenes e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)-benzenes, etc.
  • polyphenyls e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils that can be used. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters, or the C13Oxo acid diester of tetraethylene glycol.
  • the oils prepared through polymerization of ethylene oxide or propylene oxide the
  • esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.
  • alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl -alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.
  • these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azel
  • Eaters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-hexyl)silicate, tetra-(p-tert-butylphenyl) silicate, hexyl-(4-methyl-2-pentoxy)disiloxane, poly(methyl) siloxanes, poly(methylphenyl)siloxanes, etc.).
  • synthetic lubricants e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-he
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decane phosphonic acid, etc.), polymeric tetrahydrofurans and the like.
  • Unrefined, refined and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the lubricants of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
  • Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • the amine salts of substituted phosphoric acid used in the lubricants of the present invention are characterized by the formula wherein R1 is hydrogen or an aliphatic hydrocarbon group, R2 is a aliphatic hydrocarbon group, wherein R1 and R2 contain from 4 to 60 carbon atoms, and both X groups are either O or S.
  • the wine salts are either oil-soluble or soluble in the oil-containing compositions of the present invention.
  • a preferred method of preparing compounds containing (I) comprises reacting at least one hydroxy compound of the formula ROH with a phosphorus compound of the formula P2X5 wherein R is an aliphatic hydrocarbon group and X is O or S. Mixtures of phosphorus compounds are obtained in this manner and are generally mixtures of mono- and dihydrocarbyl-substituted phosphoric and/or dithophosphoric acids depending on a choice of phosphorus reactant (i.e., P2O5 or P2S5).
  • hydrocarbyl or “hydrocarbon-based” denote a group having a carbon atom directly attached to the remainder of the molecule and having predominately hydrocarbon character within the context of this invention.
  • hydrocarbon-based denote a group having a carbon atom directly attached to the remainder of the molecule and having predominately hydrocarbon character within the context of this invention.
  • groups include the following:
  • alkyl-based group aryl-based group
  • terms such as “alkyl-based group”, “aryl-based group” and the like have meaning analogous to the above with respect to alkyl and aryl groups and the like.
  • the hydroxy compound used in the preparation of the phosphorus-containing compositions of this invention are characterized by the formula ROH wherein R is an aliphatic hydrocarbon group.
  • the hydroxy compound reacted with the phosphorus compound may comprise a mixture of hydroxy compounds of the formula ROH wherein the hydrocarbon group R contains from about 4 to 60 carbon atoms. It is necessary, however, that the amine salt of the substituted phosphoric acid composition ultimately prepared is soluble in the lubricating compositions of the present invention.
  • the R group will contain at least about 8 carbon atoms.
  • the R group is aliphatic such as alkyl, or aryl.
  • ROH aliphatic such as alkyl, or aryl.
  • useful hydroxy compounds of the formula ROH includes, for example, n-butyl alcohol, hexyl alcohol, 2-ethyl-hexyl alcohol, nonyl alcohol, dodecyl alcohol, and stearyl alcohol.
  • the preferred alcohols, ROH are primary aliphatic alcohols containing at least about 4 carbon atoms, and more generally at least about 8 carbon atoms. Accordingly, examples of the preferred monohydric alcohols ROH which are useful in the present invention include, 1-octanol, 1-decanol, 1-dodecanol, 1-tetradecanol, 1-hexadecanol, 1-octadecanol, oleyl alcohol, linoleyl alcohol, linolenyl alcohol, phytol, myricyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol and behenyl alcohol.
  • Alfol 810 is a mixture containing alcohols consisting essentially of straight chain, primary alcohols having from 8 to 10 carbon atoms.
  • Alfol 12 is a mixture comprising mostly C12 fatty alcohols.
  • Alfol 1218 is a mixture of synthetic primary straight chain alcohols having 12 to 18 carbon atoms.
  • the Alfol 20+ alcohols are mixtures of C18-C28 primary alcohols having mostly, on an alcohol basis, C20 alcohols as determined by GLC (gas-liquid-chromatography).
  • the Alfol 22+ alcohols are C18-C28 primary alcohols having mostly, on an alcohol basis, C22 alcohols. These Alfol alcohols can contain a fairly large percentage (up to 40% by weight) of paraffinic compounds which can be removed before the reaction if desired.
  • Adol 60 which comprises about 75% by weight of a straight chain C22 primary alcohol, about 15% of a C20 primary alcohol and about 8% of C18 and C24 alcohols.
  • Adol 320 comprises predominantly oleyl alcohol.
  • the Adol alcohols are marketed by Ashland Chemical.
  • a variety of mixtures of monohydric fatty alcohols derived from naturally occurring triglycerides and ranging in chain length of from C8 to C18 are available from Procter & Gamble Company. These mixtures contain various amounts of fatty alcohols containing mainly 12, 14, 16, or 18 carbon atoms.
  • CO-1214 is a fatty alcohol mixture containing 0.5% of C10 alcohol, 66.0% of C12 alcohol, 26.0% of C14 alcohol and 6.5% of C16 alcohol.
  • Neodol 23 is a mixture of C12 -and C13 alcohols
  • Neodol 25 is a mixture of C12 and C15 alcohols
  • Neodol 45 is a mixture of C14 to C15 linear alcohols
  • Neodol 91 is a mixture of C9, C10 and C11 alcohols.
  • Fatty vicinal diols also are useful and these include those available from Ashland Oil under the general trade designation Adol 114 and Adol 158.
  • the former is derived from a straight chain alpha olefin fraction of C11-C14, and the latter is derived from a C15-C18 fraction.
  • the molar ratio of the hydroxy compound ROH to phosphorus reactant P2X5 in the reaction should be within the range of from about 1:1 to about 4:1, the preferred ratio being 3:1.
  • the reaction may be effected simply by mixing the two reactants at an elevated temperature such as temperatures above about 50°C up to the composition temperature of any of the reactants or the desired product. Preferably, the temperature is between about 50°C and 150°C, and is most often below about 100°C.
  • the reaction may be carried out in the presence of a solvent which facilitates temperature control and mixing of the reactants.
  • the solvent may be any inert fluid substance in which either one or both reactants are soluble, or the product is soluble.
  • Such solvents include benzene, toluene, xylene, n-hexane, cyclohexane, naphtha, diethyl ether carbitol, dibutyl ether dioxane, chlorobenzene, nitrobenzene, carbon tetrachloride or chloroform.
  • the product of the above reaction is acidic, but its chemical constitution is not precisely known. Evidence indicates, however, that the product is a mixture of acidic phosphates consisting predominantly of the mono- and di-esters of phosphoric acid (or thio- or dithiophosphoric acid), the ester group being derived from the alcohol ROH.
  • Another method for preparing the substituted phosphoric acid useful in the preparation of the amine salts (B-1) Comprises the reaction of a suitable alcohol such as those illustrated above with phosphoric acid at an elevated temperature, generally above 50°C, and more generally, at a temperature between about 50°C and 150°C.
  • the molar ratio of the alcohol to phosphoric acid to be used in the reaction may range from about 1:1 to 3:1.
  • Still another method for preparing useful substituted phosphoric acids involves the reaction of a phosphorus halide or phosphorus oxy halide with a suitable alcohol or an epoxide such as 1,2-butene oxide, or 1,2-octene oxide.
  • reaction of a phosphorus halide such as phosphorus trichloride or tribromide with an epoxide proceeds to form a halogen-containing intermediate, usually a partially esterified phosphorus halide.
  • the intermediate can be converted to the corresponding partially esterified phosphoric acid by reaction with water and oxygen.
  • the amine salts (B-1) of the present invention can be prepared by reaction of the above-described substituted phosphoric acids such as represented by Formula I with at least one tertiary aliphatic primary amine, containing from about 4 to about 30 carbon atoms (and more preferably from about 8 to about 20 carbon atoms).
  • the hydrocarbyl group may be saturated or unsaturated though usually with no more than one double bond per 10 carbon atoms.
  • tertiary aliphatic primary amines are monoamines represented by the formula wherein R is a hydrocarbyl group containing from one to about 30 carbon atoms.
  • R is a hydrocarbyl group containing from one to about 30 carbon atoms.
  • Such amines are illustrated by tertiary-butyl amine, tertiary-hexyl primary amine, 1-methyl-1-amino-cyclohexane, tertiary-octyl primary amine, tertiary-decyl primary amine, tertiary-dodecyl primary amine, tertiary-tetradecyl primary amine, tertiary-hexadecyl primary amine, tertiary-octadecyl primary amine, tertiary-tetracosanyl primary amine, tertiary-octacosanyl primary amine.
  • amines are also useful for the purposes of this invention.
  • Illustrative of amine mixtures of this type are "Primene 81R” which is a mixture of C11-C14 tertiary alkyl primary amines and "Primene JM-T” which is a similar mixture of C18-C22 tertiary alkyl primary amines (both are available from Rohm and Haas Company).
  • the tertiary alkyl primary amines and methods for their preparation are well known to those of ordinary skill in the art and, therefore, further discussion is unnecessary.
  • the tertiary alkyl primary amine useful for the purposes of this invention and methods for their preparation are described in U.S. Patent 2,945,749 which is hereby incorporated by reference for its teaching in this regard.
  • the oil-soluble amine salts (B-1) are prepared by mixing the above-described substituted phosphoric acid compositions with the above-described amines at room temperature or above. Generally, mixing at room temperature for a period of from up to about one hour is sufficient.
  • the amount of amine reacted with the substituted phosphoric acid compositions to form the salts of the invention is at least about one equivalent weight of the amine (based on nitrogen) per equivalent of phosphoric acid, and the ratio of equivalents generally is about one.
  • a salt is prepared by the procedure of Example B-1-A except that the partially esterified phosphoric acid is derived from a mixture of equimolar amounts of the alcohol reactant and phosphorus pentoxide.
  • a salt is prepared by the procedure of Example B-1-A except that the amine used is tertiary-octyl primary amine.
  • a salt is prepared by the procedure of Example B-1-A except that the partially esterified phosphoric acid used is derived from a mixture of 2 moles of octacontanyl alcohol and 1 mole of phosphorus pentoxide.
  • a salt is prepared by the procedure of Example B-1-A except that the partially esterified phosphoric acid used is derived from a mixture of 3 moles of primary-pentyl alcohol and 1 mole of phosphorus pentoxide.
  • Alfol 8-10 (2628 parts, 18 moles) is heated to a temperature of about 45°C whereupon 852 parts (6 moles) of phosphorus pentoxide are added over a period of 45 minutes while maintaining the reaction temperature between about 45-65°C.
  • the mixture is stirred an additional 0.5 hour at this temperature, and is thereafter heated at 70°C for about 2-3 hours.
  • Primene 81-R (2362 parts, 12.6 moles) is added dropwise to the reaction mixture while maintaining the temperature between about 30-50°C.
  • the reaction mixture is filtered through a filter aid, and the filtrate is the desired amine salt containing 7.4% phosphorus (theory, 7.1%).
  • a reaction vessel is charged with 793.4 parts (9 moles) of n-amyl alcohol, and 426 parts (3 moles) of phosphorus pentoxide is added over a period of 1.5 hours incrementally while maintaining the reaction temperature between about 55-70°C. After all of the phosphorus pentoxide has been added, the mixture is stirred for 0.5 hour. The reaction mixture then is maintained at 70°C for 3 hours. Primene 81-R (1597.9 parts, 5.93 moles) is added dropwise to the reaction mixture while maintaining the temperature between 50-70°C. After all of the Primene 81-R has been added, the reaction mixture is filtered through a filter aid to yield the desired amine salt containing 6.1% phosphorus (theory, 5.8%).
  • n-Amyl alcohol (793.4 parts, 9.0 moles), is heated to 45°C whereupon 426 parts (3 moles) of phosphorus pentoxide is added incrementally over a period of 1.5 hours while maintaining the reaction temperature between 60-80°C.
  • the mixture is stirred an additional 0.5 hour after all of the phosphorus pentoxide is added and thereafter at a temperature of 70°C for 3 hours.
  • Primene 81-R (1261.3 parts, 6.75 moles) is added dropwise while maintaining the temperature between 50-70°C.
  • the mixture is filtered through a filter aid to yield the desired amine salt containing 4.5% phosphorus (theory, 3.7%) under nitrogen content of 3.6% (theory, 3.8%).
  • a mixture of 539.8 parts (3.7 moles) of Alfol 8-10 and 326 parts (3.7 moles) of n-amyl alcohol is prepared and heated to 30°C whereupon 350 parts (2.46 moles) of phosphorus pentoxide are added incrementally utilizing a cold water bath to maintain the temperature of the reaction mixture at 50-60°C. After all of the phosphorus pentoxide is added, the mixture is stirred an additional 0.5 hour and thereafter maintained at a temperature of 70°C for 3 hours. The phosphoric acid mixture is cooled to about 40°C whereupon 925.6 parts (4.95 moles) of Primene 81-R are added dropwise over a period of 2 hours. The reaction mixture is exothermic to 70°C, and after all of the amine is added, the mixture is filtered through a filter aid and the filtrate is the desired amine salt containing 5.5% phosphorus and 3.2% nitrogen (theory, 3.24%).
  • a mixture of 400 parts (2.74 moles) of Alfol 8-10 and 400 parts (4.54 moles) of n-amyl alcohol is prepared, and 344.5 parts (2.43 moles) of phosphorus pentoxide is added incrementally while maintaining the temperature of the reaction at 50-60°C with a cooling bath. After all of the phosphorus pentoxide is added, the mixture is stirred for an additional 0.5 hour and thereafter stirred at 70°C for a period of 3 hours.
  • the phosphoric acid mixture is cooled to about 40°C whereupon 897.1 parts (4.8 moles) of Primene 81-R are added dropwise over a period of 2 hours. An exothermic reaction to about 70°C is observed, and the reaction mixture is stirred an additional hour.
  • the reaction mixture then is filtered through a filter aid, and the filtrate is the desired amine salt containing 4.94% phosphorus (theory, 3.7%) and 3.3% nitrogen (theory, 3.3%).
  • a mixture of 462.8 parts (3.17 moles) of Alfol 8-10 and 323.3 parts (3.17 moles) of 2-methyl-2-amyl alcohol is heated to about 30°C whereupon 300 parts (2.11 moles) of phosphorus pentoxide is added incrementally using a cold water bath to maintain the reaction temperature between about 50-60°C.
  • the mixture is stirred an additional one-half hour after all of the phosphorus pentoxide is added and further heated at 70°C for 3 hours.
  • the phosphoric acid mixture is cooled to about 40°C, and 804.2 parts (4.29 moles) of Primene 81-R is added dropwise over a period of 2 hours.
  • a mixture of 350 parts of Alfol 8-10 alcohol (2.4 moles) and 350 parts (3.43 moles) of 2-methyl-2-amyl alcohol is prepared, and 276 parts (1.94 moles) of phosphorus pentoxide is added incrementally using a cold water bath to maintain the reaction temperature between 50-60°C with stirring.
  • the mixture is stirred an additional one-half hour after all of the phosphorus pentoxide is added, and the mixture is then heated to 70°C and maintained at this temperature for 3 hours.
  • the phosphoric acid mixture is cooled to about 40°C, and 734 parts (3.91 moles) of Primene 81-R is added dropwise over a period of 2 hours. An exotherm to 70°C is and the mixture is stirred an additional hour and filtered.
  • the filtrate is the desired amine salt containing 4.6% phosphorus (theory, 3.5%) and 3.2% nitrogen (theory, 3.2%).
  • a mixture of 322.8 parts (3.165 moles) of 4-methyl-2-amyl alcohol and 279 parts (3.165 moles) of n-amyl alcohol is prepared, and 300 parts (2.11 moles) of phosphorus pentoxide is added incrementally using a cold water bath to maintain the reaction temperature between 50-60°C.
  • the mixture is stirred an additional one-half hour after all of the phosphorus pentoxide is added, and thereafter, the mixture is heated to 70°C and maintained at this temperature for 3 hours.
  • the phosphoric acid mixture obtained is cooled to 40°C whereupon 781.2 parts (4.18 moles) of Primene 81-R is added dropwise over a period of 2 hours. Exotherm to about 70°C is observed and the material is stirred an additional hour and filtered.
  • the filtrate is the desired amine salt containing 4.3% phosphorus (theory, 3.9%) and 3.5% nitrogen (theory, 3.5%).
  • the lubricating and functional fluids of the invention also may contain at least one (B-2) dihydrocarbyl-substituted phosphite characterized by the formula (RO)2P(O)H (II) wherein each R is independently a hydrocarbyl group and the R groups may be the same or different.
  • the total number of carbon atoms in the two R groups is at least about 4 carbon atoms.
  • the phosphites (II) are known compounds and many are available commercially or easily prepared.
  • a low molecular weight dialkyl phosphite e.g., dimethyl
  • a higher molecular weight alcohol e.g., decyl alcohol
  • the decyl groups replace the methyl groups (analogous to classic transesterification) with the formation of methanol which is stripped from the reaction mixture.
  • the hydrocarbyl groups R in the phosphite (II) contain from about 1 to 30 carbon atoms.It is necessary, however, that the R groups be selected so that the phosphite is soluble in the lubricating compositions of the present invention. Generally, the R groups will contain at least about 4 carbon atoms and more preferably at least about 8 carbon atoms.
  • the R groups may be aliphatic or aromatic such as alkyl, aryl, alkaryl, aralkyl and alicyclic hydrocarbon groups.
  • R groups include, for example, ethyl, n-butyl, hexyl, 2-ethyl-hexyl, nonyl, dodecyl, stearyl, amyl phenyl, octyl phenyl, nonyl phenyl, methyl cyclohexyl, alkylated naphthyl, etc.
  • the preferred R groups are aliphatic and more particularly, primary aliphatic groups containing at least about 4 carbon atoms, and more generally at least about 8 carbon atoms. Accordingly, examples of the preferred R groups which are useful in the present invention include, 1-octyl, 1-decyl, 1-dodecyl, 1-tetradecyl, 1-hexadecyl, 1-octadecyl, oleyl, linoleyl, linolenyl, phytol, myricyl, lauryl, myristyl, cetyl, stearyl and behenyl.
  • the phosphites can be derived from commercial alcohols (including mixtures) and these commercial alcohols may comprise minor amounts of alcohols which, although not specified herein, do not detract from the major purposes of this invention.
  • Higher synthetic monohydric alcohols of the type formed by the Oxo process e.g., 2-ethyl-hexyl
  • the aldol condensation e.g., 2-ethyl-hexyl
  • organoaluminum-catalyzed oligomerization of alpha-olefins (especially ethylene) especially ethylene
  • Examples of some preferred monohydric alcohols and alcohol mixtures useful in preparing the compositions of the invention include commercially available: "Alfol” alcohols marketed by Continental Oil Corporation; the Adol alcohols are marketed by Ashland Chemical; a variety of mixtures of monohydric fatty alcohols derived from naturally occurring triglycerides and ranging in chain length of from C8 to C18 available from Procter & Gamble Company; fatty vicinal diols such as those available front Ashland Oil under the general trade designation Adol 114 and Adol 158. Specific examples of these commercially available alcohol mixtures were discussed above with respect to the preparation of the phosphoric acids.
  • a mixture of 1752 parts (12 moles) of Alfol 8-10 and 660 parts (6 moles) of dimethylphosphite is heated to about 120-130°C while sparging with nitrogen. The mixture is held at this temperature for about 8 hours while removing methanol as it is formed. The reaction mixture is vacuum stripped to 140°C at 30 mm. Hg. The residue is filtered at about room temperature, and the filtrate is the desired product containing 10.3% phosphorus (theory, 9.2).
  • the lubricating and functional fluid compositions of the present invention also contain at least one soluble nitrogen-containing and boron-containing compound prepared by the reaction of (C-1) at least one boron compound with (C-2) a hydrocarbon-substituted succinic acid-producing compound (herein sometimes referred to as the "succinic acylating agent") reacted with at least about one-half equivalent, per equivalent of acid-producing compound, of an amine containing at least one hydrogen attached to a nitrogen group.
  • the compounds (C) obtained in this manner are usually complex mixtures whose precise composition is not readily identifiable. Thus, the compounds generally are described in terms of the method of preparation.
  • the nitrogen-containing compounds are sometimes referred to herein as "acylated amines".
  • the nitrogen-containing and boron-containing compounds (C) are either oil-soluble, or they are soluble in the oil-containing lubricating and functional fluids of this invention.
  • soluble nitrogen-containing compositions useful as component (C) in the lubricating compositions of the present invention are known in the art and have been described in many U.S. patents including 3,172,892 3,341,542 3,630,904 3,215,707 3,444,170 3,632,511 3,272,746 3,454,607 3,787,374 3,316,177 3,541,012 4,234,435
  • the hydrocarbon-substituted succinic acid-producing compounds include the succinic acids, anhydrides, halides and esters.
  • the number of carbon atoms in the hydrocarbon substituent on the succinic acid-producing compound may vary over a wide range provided that the compound (C) is soluble in the lubricating compositions of the present invention.
  • the hydrocarbon substituent generally will contain an average of at least about 50 aliphatic carbon atoms.
  • the lower limit on the average number of carbon atoms in the substituent also is based upon the effectiveness of such compounds in the lubricating oil compositions of the present invention.
  • the hydrocarbyl substituent of the succinic compound may contain polar groups as indicated above, and, providing that the polar groups are not present in proportion sufficiently large to significantly alter the hydrocarbon character of the substituent.
  • the sources of the substantially hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to 30 carbon atoms.
  • the especially useful polymers are the polymers of 1-mono-olefins such as ethylene, propene, 1-butene, isobutene, 1-hexene, 1-octene, 2-methyl-1-heptene, 3-cyclohexyl-1-butene, and 2-methyl-5-propyl-1-hexene.
  • Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position likewise are useful. They are illustrated by 2-butene, 3-pentene, and 4-octene.
  • interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
  • Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; 1-hexene with 1,3-hexadiene; 1-octene with 1-hexene; 1-heptene with 1-pentene; 3-methyl-1-butene with 1-octene; 3,3-dimethyl-1-pentene with 1-hexene; isobutene with styrene and piperylene; etc.
  • the relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers.
  • the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis of units derived from the aliphatic monoolefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-to-carbon covalent linkages.
  • interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of 1-butene and 3% of 1-hexene, terpolymer of 80% of isobutene with 20% of 1-pentene and 20% of 1-octene; copolymer of 80% of 1-hexene and 20% of 1-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
  • Another source of the substantially hydrocarbon group comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
  • olefin polymers having molecular weights (Mn) of about 700-10,000 are preferred.
  • Higher molecular weight olefin polymers having molecular weights (Mn) from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention.
  • the use of such higher molecular weight olefin polymers often is desirable.
  • the substituent is derived from a polyolefin characterized by an Mn value of about 700 to about 10,000, and an Mw/Mn value of 1.0 to about 4.0.
  • one or more of the above-described polyalkenes is reacted with one or more acidic reactants selected from the group consisting of maleic or fumaric reactants such as acids or anhydrides.
  • the maleic or fumaric reactants will be maleic acid, fumaric acid, maleic anhydride, or a mixture of two or more of these.
  • the maleic reactants are usually preferred over the fumaric reactants because the former are more readily available and are, in general, more readily reacted with the polyalkenes (or derivatives thereof) to prepare the substituted succinic acid-producing compounds useful in the present invention.
  • the especially preferred reactants are maleic acid, maleic anhydride, and mixtures of these. Due to availability and ease of reaction, maleic anhydride will usually be employed.
  • maleic reactant is often used hereinafter. When used, it should be understood that the term is generic to acidic reactants selected from maleic and fumaric reactants including a mixture of such reactants. Also, the term “succinic acylating agents” is used herein to represent the substituted succinic acid-producing compounds.
  • a diluent is used in the chlorination procedure, it should be one which is not itself readily subject to further chlorination.
  • a diluent is used in the chlorination procedure, it should be one which is not itself readily subject to further chlorination.
  • Poly- and perchlorinated and/or fluorinated alkanes and benzenes are examples of suitable diluents.
  • the second step in the two-step chlorination procedure is to react the chlorinated polyalkene with the maleic reactant at a temperature usually within the range of about 100°C to about 200°C.
  • the mole ratio of chlorinated polyalkene to maleic reactant is usually about 1:1.
  • a mole of chlorinated polyalkene is that weight of chlorinated polyalkene corresponding to the Mn value of the unchlorinated polyalkene.
  • a stoichiometric excess of maleic reactant can be used, for example, a mole ratio of 1:2.
  • an equivalent weight of chlorinated polyalkene is the weight corresponding to the Mn value divided by the average number of chloro groups per molecule of chlorinated polyalkene while the equivalent weight of a maleic reactant is its molecular weight.
  • the ratio of chlorinated polyalkene to maleic reactant will normally be such as to provide about one equivalent of maleic reactant for each mole of chlorinated polyalkene up to about one equivalent of maleic reactant for each equivalent of chlorinated polyalkene with the understanding that it is normally desirable to provide an excess of maleic reactant; for example, an excess of about 5% to about 25% by weight. Unreacted excess maleic reactant may be stripped from the reaction product, usually under vacuum, or reacted during a further stage of the process as explained below.
  • the resulting polyalkene-substituted succinic acylating agent is, optionally, again chlorinated if the desired number of succinic groups are not present in the product. If there is present, at the time of this subsequent chlorination, any excess maleic reactant from the second step, the excess will react as additional chlorine is introduced during the subsequent chlorination. Otherwise, additional maleic reactant is introduced during and/or subsequent to the additional chlorination step. This technique can be repeated until the total number of succinic groups per equivalent weight of substituent groups reaches the desired level.
  • Another procedure for preparing substituted succinic acid acylating agents of the invention utilizes a process described in U.S. Patent 3,912,764 and U.K. Patent 1,440,219, According to that process, the polyalkene and the maleic reactant are first reacted by heating them together in a "direct alkylation" procedure. When the direct alkylation step is completed, chlorine is introduced into the reaction mixture to promote reaction of the remaining unreacted maleic reactants. According to the patents, 0.3 to 2 or more moles of maleic anhydride are used in the reaction for each mole of olefin polymer; i.e., polyalkylene. The direct alkylation step is conducted at temperatures of 180-250°C.
  • Another process for preparing the substituted succinic acylating agents of this invention is the so-called “one-step” process. This process is described in U.S. Patents 3,215,707 and 3,231,587.
  • the one-step process involves preparing a mixture of the polyalkene and the maleic reactant containing the necessary amounts of both to provide the desired substituted succinic acylating agents of this invention. This means that there must be at least one mole of maleic reactant for each mole of polyalkene in order that there can be at least one succinic group for each equivalent weight of substituent groups. Chlorine is then introduced into the mixture, usually by passing chlorine gas through the mixture with agitation, while maintaining a temperature of at least about 140°C.
  • a variation of this process involves adding additional maleic reactant during or subsequent to the chlorine introduction but, for reasons explained in U.S. Patents 3,215,707 and 3,231,587, this variation is presently not as preferred as the situation where all the polyalkene and all the maleic reactant are first mixed before the introduction of chlorine.
  • the polyalkene is sufficiently fluid at 140°C and above, there is no need to utilize an additional substantially inert, normally liquid solvent/diluent in the one-step process.
  • a solvent/diluent it is preferably one that resists chlorination.
  • the poly- and perchlorinated and/or -fluorinated alkanes, cycloalkanes, and benzenes can be used for this purpose.
  • Chlorine may be introduced continuously or intermittently during the one-step process.
  • the rate of introduction of the chlorine is not critical although, for maximum utilization of the chlorine, the rate should be about the same as the rate of consumption of chlorine in the course of the reaction.
  • the introduction rate of chlorine exceeds the rate of consumption, chlorine is evolved from the reaction mixture. It is often advantageous to use a closed system, including superatmospheric pressure, in order to prevent loss of chlorine so as to maximize chlorine utilization.
  • the minimum temperature at which the reaction in the one-step process takes place at a reasonable rate is about 140°C.
  • the minimum temperature at which the process is normally carried out is in the neighborhood of 140°C.
  • the preferred temperature range is usually between about 160-220°C. Higher temperatures such as 250°C or even higher may be used but usually with little advantage. In fact, temperatures in excess of 220°C are often disadvantageous with respect to preparing the particular acylated succinic compositions of this invention because they tend to "crack" the polyalkenes (that is, reduce their molecular weight by thermal degradation) and/or decompose the maleic reactant. For this reason, maximum temperatures of about 200-210°C are normally not exceeded.
  • the upper limit of the useful temperature in the one-step process is determined primarily by the decomposition point of the components in the reaction mixture including the reactants and the desired products.
  • the decomposition point is that temperature at which there is sufficient decomposition of any reactant or product such as to interfere with the production of the desired products.
  • the molar ratio of maleic reactant to chlorine is such that there is at least about one mole of chlorine for each mole of maleic reactant to be incorporated into the product. Moreover, for practical reasons, a slight excess, usually in the neighborhood of about 5% to about 30% by weight of chlorine, is utilized in order to offset any loss of chlorine from the reaction mixture. Larger amounts of excess chlorine may be used but do not appear to produce any beneficial results.
  • the molar ratio of polyalkene to maleic reactant preferably is such that there is at least about one mole of maleic reactant for each mole of polyalkene. This is necessary in order that there can be at least 1.0 succinic group per equivalent weight of substituent group in the product. Preferably, however, an excess of maleic reactant is used. Thus, ordinarily about a 5% to about 25% excess of maleic reactant will be used relative to that amount necessary to provide the desired number of succinic groups in the product.
  • the amines which are reacted with the succinic acid-producing compounds to form the nitrogen intermediate (C-2) may be monoamines and polyamines.
  • the amines can be aliphatic, cycloaliphatic, aromatic, or heterocyclic, including aliphatic-substituted cycloaliphatic, aliphatic-substituted aromatic, aliphatic-substituted heterocyclic, cycloaliphatic-substituted aliphatic, cycloaliphatic-substituted aromatic, cyclo-aliphatic-substituted heterocyclic, aromatic-substituted aliphatic, aromatic-substituted cycloaliphatic, aromatic-substituted heterocyclic, heterocyclic-substituted aliphatic, heterocyclic-substituted aliphatic, heterocyclic-substituted alicyclic, and heterocyclic-substituted aromatic amines and may be saturated or unsaturated.
  • the amines may also contain non-hydrocarbon substituents or groups as long as these groups do not significantly interfere with the reaction of the amines with the acylating reagents of this invention.
  • non-hydrocarbon substituents or groups include lower alkoxy, lower alkyl mercapto, nitro, interrupting groups such as -O- and -S- (e.g., as in such groups as -CH2CH2-X-CH2CH2- where X is -O- or -S-).
  • the amine of (C) may be characterized by the formula R1R2NH wherein R1 and R2 are each independently hydrogen or hydrocarbon, amino-substituted hydrocarbon, hydroxy-substituted hydrocarbon, alkoxy-substituted hydrocarbon, amino, carbamyl, thiocarbamyl, guanyl and acylimidoyl groups provided that only one of R1 and R2 may be hydrogen.
  • the amines ordinarily contain less than about 40 carbon atoms in total and usually not more than about 20 carbon atoms in total.
  • Aliphatic monoamines include mono-aliphatic and di-aliphatic substituted amines wherein the aliphatic groups can be saturated or unsaturated and straight or branched chain. Thus, they are primary or secondary aliphatic amines. Such amines include, for example, mono- and di-alkyl-substituted amines, mono- and di-alkenyl-substituted amines, and amines having one N-alkenyl substituent and one N-alkyl substituent and the like. The total number of carbon atoms in these aliphatic monoamines will, as mentioned before, normally not exceed about 40 and usually not exceed about 20 carbon atoms.
  • Such monoamines include ethylamine, diethylamine, n-butylamine, di-n-butylamine, allylamine, isobutylamine, cocoamine, stearylamine, laurylamine, methyllaurylamine, oleylamine, N-methyl-octylamine, dodecylamine, octadecylamine, and the like.
  • cycloaliphatic-substituted aliphatic amines examples include 2-(cyclohexyl)-ethylamine, benzylamine, phenethylamine, and 3-(furylpropyl)amine.
  • Cycloaliphatic monoamines are those monoamines wherein there is one cycloaliphatic substituent attached directly to the amino nitrogen through a carbon atom in the cyclic ring structure.
  • Examples of cycloaliphatic monoamines include cyclohexylamines, cyclopentylamines, cyclohexenylamines, cyclopentenylamines, N-ethyl-cyclohexylamine, dicyclohexylamines, and the like.
  • Examples of aliphatic-substituted, aromatic-substituted, and heterocyclic-substituted cycloaliphatic monoamines include propyl-substituted cyclohexylamines, phenyl-substituted cyclopentylamines, and pyranyl-substituted cyclohexylamine.
  • Aromatic amines suitable as (a) include those monoamines wherein a carbon atom of the aromatic ring structure is attached directly to the amino nitrogen.
  • the aromatic ring will usually be a mononuclear aromatic ring (i.e., one derived from benzene) but can include fused aromatic rings, especially those derived from naphthalene.
  • Examples of aromatic monoamines include aniline, di(para-methylphenyl)amine, naphthylamine, N-(n-butyl)aniline, and the like.
  • aliphatic-substituted, cycloaliphatic-substituted, and heterocyclic-substituted aromatic monoamines are para-ethoxyaniline, para-dodecylaniline, cyclohexyl-substituted naphthylamine, and thienyl-substituted aniline.
  • the polyamines from which (C-2) is derived include principally alkylene amines conforming for the most part to the formula wherein n is an integer preferably less than about 10, A is a hydrogen group or a substantially hydrocarbon group preferably having up to about 30 carbon atoms, and the alkylene group is preferably a lower alkylene group having less than about 8 carbon atoms.
  • the alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines.
  • ethylene diamine triethylene tetramine, propylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene) triamine.
  • Higher homologues such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful.
  • ethylene amines are especially useful. They are described in some detail under the heading "Ethylene Amines” in Encyclopedia of Chemical Technology, Kirk and Othmer, Vol. 5, pp. 898-905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines.
  • alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.
  • Hydroxyalkyl-substituted alkylene amines i.e., alkylene amines having one or more hydroxyalkyl substituents on the nitrogen atoms, likewise are contemplated for use herein.
  • the hydroxyalkyl-substituted alkylene amines are preferably those in which the alkyl group is a lower alkyl group, i.e., having less than about 6 carbon atoms.
  • amines examples include N-(2-hydroxyethyl)ethylene diamine, N,N'-bis(2-hydroxyethyl)ethylene diamine, 1-(2-hydroxyethyl)piperazine, mono-hydroxypropyl-substituted diethylene triamine, 1,4-bis-(2-hydroxypropyl)piperazine, di-hydroxypropyl-substituted tetraethylene pentamine, N-(3-hydroxypropyl)tetramethylene diamine, and 2-heptadecyl-1-(2-hydroxyethyl)imidazoline.
  • Heterocyclic mono- and polyamines can also be used in making the nitrogen-intermediates (C-2).
  • the terminology "heterocyclic mono- and polyamine(s)” is intended to describe those heterocyclic amines containing at least one primary or secondary amino group and at least one nitrogen as a heteroatom in the heterocyclic ring.
  • the hetero-N atom in the ring can be a tertiary amino nitrogen; that is, one that does not have hydrogen attached directly to the ring nitrogen.
  • Heterocyclic amines can be saturated or unsaturated and can contain various substituents such as nitro, alkoxy, alkyl mercapto, alkyl, alkenyl, aryl, alkaryl, or aralkyl substituents. Generally, the total number of carbon atoms in the substituents will not exceed about 20. Heterocyclic amines can contain hetero atoms other than nitrogen, especially oxygen and sulfur. Obviously they can contain more than one nitrogen hetero atom. The 5- and 6-membered heterocyclic rings are preferred.
  • heterocyclics are aziridines, azetidines, azolidines, tetra- and di-hydro pyridines, pyrroles, indoles, piperidines, imidazoles, di- and tetrahydroimidazoles, piperazines, isoindoles, purines, morpholines, thiomorpholines, N-aminoalkylmorpholines, N-aminoalkylthiomorpholines, N-aminoalkylpiperazines, N,N'-di-aminoalkylpiperazines, azepines, azocines, azonines, anovanes and tetra-, di- and perhydro derivatives of each of the above and mixtures of two or more of these heterocyclic amines.
  • Preferred heterocyclic amines are the saturated 5- and 6-membered heterocyclic amines containing only nitrogen, oxygen and/or sulfur in the hetero ring, especially the piperidines, piperazines, thiomorpholines , morpholines, pyrrolidines, and the like.
  • Piperidine, aminoalkyl-substituted piperidines, piperazine, aminoalkyl-substituted piperazines, morpholine, aminoalkyl-substituted morpholines, pyrrolidine, and aminoalkyl-substituted pyrrolidines are especially preferred.
  • the aminoalkyl substituents are substituted on a nitrogen atom forming part of the hetero ring.
  • Specific examples of such heterocyclic amines include N-amino-propylmorpholine, N-aminoethylpiperazine, and N,N'-diaminoethylpiperazine.
  • the nitrogen intermediate (C-2) obtained by reaction of the succinic acid-producing compounds and the amines described above may be amine salts, amides, imides, imidazolines as well as mixtures thereof.
  • To prepare the nitrogen intermediate (C-2) one or more of the succinic acid-producing compounds and one or more of the amines are heated, optionally in the presence of a normally liquid, substantially inert organic liquid solvent/diluent at an elevated temperature generally in the range of from about 80°C up to the decomposition point of the mixture or the product. Normally, temperatures in the range of about 100°C up to about 300°C are utilized provided that 300°C does not exceed the decomposition point.
  • succinic acid-producing compound and the amine are reacted in amounts sufficient to provide at least about one-half equivalent, per equivalent of acid-producing compound, of the amine.
  • the maximum amount of amine present will be about 2 moles of amine per equivalent of succinic acid-producing compound.
  • an equivalent of the amine is that amount of the amine corresponding to the total weight of amine divided by the total number of nitrogen atoms present.
  • octyl amine has an equivalent weight equal to its molecular weight
  • ethylene diamine has an equivalent weight equal to one-half its molecular weight
  • aminoethyl piperazine has an equivalent weight equal to one-third its molecular weight.
  • the number of equivalents of succinic acid-producing compound depends on the number of carboxylic functions present in the hydrocarbon-substituted succinic acid-producing compound.
  • the number of equivalents of hydrocarbon-substituted succinic acid-producing compound will vary with the number of succinic groups present therein, and generally, there are two equivalents of acylating reagent for each succinic group in the acylating reagents.
  • Conventional techniques may be used to determine the number of carboxyl functions (e.g., acid number, saponification number) and, thus, the number of equivalents of acylating reagent available to react with amine.
  • the compound (C) useful in the lubricating compositions of the present invention also contains boron.
  • the nitrogen- and boron-containing compounds are prepared by the reaction of
  • the amount of baron compound reacted with the oil-soluble acylated nitrogen intermediate (C-2) generally is sufficient to provide from about 0.1 atomic proportion of baron for each mole of the acylated nitrogen composition up to about 10 atomic proportions of baron for each atomic proportion of nitrogen of said acylated nitrogen composition. More generally the amount of baron compound present is sufficient to provide from about 0.5 atomic proportion of baron for each mole of the acylated nitrogen composition to about 2 atomic proportions of baron for each atomic proportion of nitrogen used.
  • the baron compounds useful in the present invention include baron trioxide, baron trifluoride, baron tribromide, baron trichloride, baron acids such as boronic acid (i.e., alkyl-B(OH)2 or aryl-B(OH)2), boric acid (i.e., H3BO3), tetraboric acid (i.e., H2B4O7), metaboric acid (i.e., HBO2), baron anhydrides, baron amides and various esters of such baron acids.
  • boronic acid i.e., alkyl-B(OH)2 or aryl-B(OH)2
  • boric acid i.e., H3BO3
  • tetraboric acid i.e., H2B4O7
  • metaboric acid i.e., HBO2
  • baron anhydrides baron amides and various esters of such baron acids.
  • Such complexes are known and are exemplified by boron-trifluoride-triethyl ester, boron trifluoride-phosphoric acid, boron trichloride-chloroacetic acid, boron tribromide-dioxane, and boron trifluoride-methyl ethyl ether.
  • boronic acids include methyl boronic acid, phenyl-boronic acid, cyclohexyl boronic acid, p-heptylphenyl boronic acid and dodecyl boronic acid.
  • the boron acid esters include especially mono-, di-, and tri-organic esters of boric acid with alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol, 1-octanol, 2-octanol, dodecanol, behenyl alcohol, oleyl alcohol, stearyl alcohol, benzyl alcohol, 2-butyl cyclohexanol, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 2,4-hexanediol, 1,2-cyclohexanediol, 1,3-octanediol, glycerol, pentaerythritol diethylene glycol, carbitol, Cellosolve, triethylene glycol, tripropylene glycol, phenol, naphthol, p-butylphenol
  • the reaction of the acylated nitrogen intermediate with the boron compounds can be effected simply by mixing the reactants at the desired temperature.
  • the use of an inert solvent is optional although it is often desirable, especially when a highly viscous or solid reactant is present in the reaction mixture.
  • the inert solvent may be a hydrocarbon such as benzene, toluene, naphtha, cyclohexane, n-hexane, or mineral oil.
  • the temperature of the reaction may be varied within wide ranges. Ordinarily it is preferably between about 50°C and about 250°C. In some instances it may be 25°C or even lower. The upper limit of the temperature is the decomposition point of the particular reaction mixture and/or product.
  • the reaction is usually complete within a short period such as 0.5 to 6 hours.
  • the product may be dissolved in the solvent and the resulting solution purified by centrifugation or filtration if it appears to be hazy or contain insoluble substances. Ordinarily the product is sufficiently pure so that further purification is unnecessary or optional.
  • the reaction of the acylated nitrogen compositions with the boron compounds results in a product containing boron and substantially all of the nitrogen originally present in the nitrogen reactant. It is believed that the reaction results in the formation of a complex between boron and nitrogen. Such complex may involve in some instances more than one atomic proportion of boron with one atomic proportion of nitrogen and in other instances more than one atomic proportion of nitrogen with one atomic proportion of boron. The nature of the complex is not clearly understood.
  • the relative proportions of the reactants to be used in the process are based primarily upon the consideration of utility of the products for the purposes of this invention.
  • useful products are obtained from reaction mixtures in which the reactants are present in relative proportions as to provide from about 0.1 atomic proportions of boron for each mole of the acylated nitrogen composition used to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen composition used.
  • the preferred amounts of reactants are such as to provide from about 0.5 atomic proportion of boron for each mole of the acylated nitrogen composition to about 2 atomic proportions of boron for each atomic proportion of nitrogen used.
  • the amount of a boron compound having one boron atom per molecule to be used with one mole of an acylated nitrogen composition having five nitrogen atoms per molecule is within the range from about 0.1 mole to about 50 moles, preferably from about 0.5 mole to about 10 moles.
  • a polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200°C.
  • the polyisobutenyl group has an average molecular weight of 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of 500).
  • the mixture then is heated and a water-toluene azeotrope distilled from the mixture. When no more water distills, the mixture is heated to 150°C at reduced pressure to remove the toluene. The residue is diluted with 350 grams of mineral oil and this solution is found to have a nitrogen content of 1.6%.
  • Example C-2-1 The procedure of Example C-2-1 is repeated using 31 grams (1 equivalent) of ethylene diamine as the amine reactant. The nitrogen content of the resulting product is 1.4%.
  • Example C-2-1 The procedure of Example C-2-1 is repeated using 55.5 grams (1.5 equivalents) of an ethylene amine mixture having a composition corresponding to that of triethylene tetramine. The resulting product has a nitrogen content of 1.9%.
  • Example C-2-1 The procedure of Example C-2-1 is repeated using 55.0 grams (1.5 equivalents) of triethylene tetramine as the amine reactant. The resulting product has a nitrogen content of 2.9%.
  • a polyisobutenyl succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1050 and a chlorine content of 4.3%) and maleic anhydride.
  • a chlorinated polyisobutylene having an average molecular weight of 1050 and a chlorine content of 4.3%)
  • maleic anhydride maleic anhydride.
  • a polypropylene-substituted succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and molecular weight of 1200 with maleic anhydride.
  • a mixture of 813 grams of the polypropylene-substituted succinic anhydride, 50 grams of a commercial ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and 566 grams of mineral oil is heated at 150°C for 5 hours. The residue is found to have a nitrogen content of 1.18%.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-1 except that the reaction mixture consists of 3880 grams of the polyisobutenyl succinic anhydride, 376 grams of a mixture of triethylene tetramine and diethylene triamine (75:25 weight ratio), and 2785 grams of mineral oil. The product is found to have a nitrogen content of 2%.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-1 except that the reaction mixture consists of 1385 grams of the polyisobutenyl succinic anhydride, 179 grams of a mixture of triethylene tetramine and diethylene triamine (75:25 weight ratio), and 1041 grams of mineral oil. The product is found to have a nitrogen content of 2.55%.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-7 except that the polyisobutene-substituted succinic anhydride of Example C-2-1 (1 equivalent for 1.5 equivalents of the amine reactant) is substituted for the polypropylene-substituted succinic anhydride used.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-7 except that the polyisobutene-substituted succinic anhydride of Example C-2-1 (1 equivalent for 2 equivalents of the amine reactant) is substituted for the polypropylene-substituted succinic anhydride used.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-4 except that the commercial ethylene amine mixture (1.5 equivalent per equivalent of the anhydride) of Example C-2-6 is substituted for the triethylene tetramine used.
  • An acylated nitrogen composition is prepared according to the procedure of Example C-2-7 except that the polyisobutene-substituted succinic anhydride of Example C-2-1 (1 equivalent for 1 equivalent of the amine reactant) is substituted for the polypropylene-substituted succinic anhydride.
  • the composition is found to have a nitrogen content of 1.5%.
  • a mixture is prepared by the addition of 10.2 parts (0.25 equivalent) of a commercial mixture of ethylene polyamines having from about 3 to about 10 nitrogen atoms per molecule to 113 parts of mineral oil and 161 parts (0.25 equivalent) of the substituted succinic acylating agent at 130°C.
  • the reaction mixture is heated to 150°C in 2 hours and stripped by blowing with nitrogen.
  • the reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.
  • a mixture is prepared by the addition of 57 parts (1.38 equivalents) of a commercial mixture of ethylene polyamines having from about 3 to 10 nitrogen atoms per molecule to 1067 parts of mineral oil and 893 parts (1.38 equivalents) of the substituted succinic acylating agent at 140-145°C.
  • the reaction mixture is heated to 155°C in 3 hours and stripped by blowing with nitrogen.
  • the reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.
  • a mixture is prepared by the addition of 18.2 parts (0.433 equivalent) of a commercial mixture of ethylene polyamines having from about 3 to 10 nitrogen atoms per molecule to 392 parts of mineral oil and 348 parts (0.52 equivalent) of the substituted succinic acylating agent prepared in Example C-2-15 at 140°C.
  • the reaction mixture is heated to 150°C in 1.8 hours and stripped by blowing with nitrogen.
  • the reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.
  • a mixture of 62 grams (1 atomic proportion of boron) of boric acid and 1645 grams (2.35 atomic proportions of nitrogen) of the acylated nitrogen composition obtained by the process of Example C-2-8 is heated at 150°C in nitrogen atmosphere for 6 hours. The mixture is then filtered and the filtrate is found to have a nitrogen content of 1.94% and a boron content of 0.33%.
  • An oleyl ester of boric acid is prepared by heating an equi-molar mixture of oleyl alcohol and boric acid in toluene at the reflux temperature while water is removed azeotropically. The reaction mixture is then heated to 150°C/20 mm. and the residue is the ester having a boron content of 3.2% and a saponification number of 62. A mixture of 344 grams (1 atomic proportion of boron) of the ester and 1645 grams (2.35 atomic proportions of nitrogen) of the acylated nitrogen composition obtained by the process of Example C-2-8 is heated at 150°C for 6 hours and then filtered. The filtrate is found to have a boron content of 0.6% and a nitrogen content of 1.74%.
  • a mixture of 372 (6 atomic proportions of boron) of boric acid and 3111 grams (6 atomic proportions of nitrogen) of the acylated nitrogen composition obtained by the process of Example C-2-1 is heated at 150°C for 3 hours and then filtered. The filtrate is found to have a boron content of 1.64% and a nitrogen content of 2.56%.
  • a mixture of 62 parts of boric acid and 2720 parts of the oil solution of the product prepared in Example C-2-15 is heated at 150°C under nitrogen for 6 hours.
  • the reaction mixture is filtered to yield the filtrate as an oil solution of the desired boron-containing product.
  • An oleyl ester of boric acid is prepared by heating an equimolar mixture of oleyl alcohol and boric acid in toluene at the reflux temperature while water is removed azeotropically. The reaction mixture is then heated to 150°C under vacuum and the residue is the ester having a boron content of 3.2% and a saponification number of 62. A mixture of 344 parts of the heater and 2720 parts of the oil solution of the product prepared in Example C-2-15 is heated at 150° for 6 hours and then filtered. The filtrate is an oil solution of the desired boron-containing product.
  • the lubricants and functional fluids of the present invention contain an amount of the amine salt (B-1) and compound (C) to provide the lubricants and functional fluids with the desired properties such as improved high temperature stability. Normally, this amount will be from about 0.1 to about 10% by weight of the combination of (B-1) and (C) and preferably from about 0.25 to about 7.5% of the total weight of the fluid.
  • the relative amounts of amine salt (B-1) and compound (C) contained in the lubricant may vary over a wide range although the weight ratio of (B-1):(C) generally is from about 0.1:1 to about 10:1. In a more preferred embodiment, the weight ratio (B-1):(C) is from about 0.5:1 to about 5:1.
  • the amount of the phosphite (B-2) contained in the lubricating composition may vary over a wide range, and the preferred amounts can be determined readily by one skilled in the art.
  • additives include, for example, detergents and dispersants of the ash-producing or ashless type, corrosion- and oxidation-inhibiting agents, pour point depressing agents, extreme pressure agents, antiwear agents, color stabilizers and anti-foam agents.
  • the ash-producing detergents are exemplified by oil-soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
  • basic salt is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature of about 50°C and filtering the resulting mass.
  • a “promoter” in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
  • Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthylamine, and dodecylamine.
  • a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60-200°C.
  • Ashless detergents and dispersants are so called despite the fact that, depending on its constitution, the dispersant may upon combustion yield a non-volatile material such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain metal and therefore does not yield a metal-containing ash on combustion.
  • a non-volatile material such as boric oxide or phosphorus pentoxide
  • Many types are known in the art, and any of them are suitable for use in the lubricant compositions of this invention.
  • the following are illustrative: (1) Reaction products of relatively high molecular weight aliphatic or alicyclic halides with amines, preferably oxyalkylene polyamines. These may be characterized as "amine dispersants" and examples thereof are described for example, in the following U.S.
  • Patents: 3,275,554 3,454,555 3,438,757 3,565,804 (2) Reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines), which may be characterized as "Mannich dispersants".
  • aldehydes especially formaldehyde
  • amines especially polyalkylene polyamines
  • Patents are illustrative: 2,459,112 3,442,808 3,591,598 2,962,442 3,448,047 3,600,372 2,984,550 3,454,497 3,634,515 3,036,003 3,459,661 3,649,229 3,166,516 3,461,172 3,697,574 3,236,770 3,493,520 3,725,277 3,355,270 3,539,633 3,725,480 3,368,972 3,558,743 3,726,882 3,413,347 3,586,629 3,980,569 (3) Products obtained by post-treating the amine or Mannich dispersants with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, phosphorus compounds or the like.
  • reagents as urea, thiourea,
  • chlorinated aliphatic hydrocarbons such as chlorinated wax
  • organic sulfides and polysulfides such as benzyl disulfide, bis(chlorobenzyl)disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized terpene
  • phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate, phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentylphenyl pho
  • Zinc dialkylphosphorodithioates are a well known example.
  • pour point depressants are a particularly useful type of additive often included in the lubricating oils described herein.
  • the use of such pour point depressants in oil-based compositions to improve low temperature properties of oil-based compositions is well known in the art. See, for example, page 8 of "Lubricant Additives" by C.V. Smalheer and R. Kennedy Smith (Lezius-Hiles Co. publishers, Cleveland, Ohio, 1967).
  • pour point depressants examples include polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
  • Pour point depressants useful for the purposes of this invention techniques for their preparation and their uses are described in U.S. Patents 2,387,501; 2,015,748; 2,655,479; 1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715.
  • Anti-foam agents are used to reduce or prevent the formation of stable foam.
  • Typical anti-foam agents include silicones or organic polymers. Additional anti-foam compositions are described in "Foam Control Agents", by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162.
  • Lubricant A PARTS BY WEIGHT Base Oil 96.76 Product of Example B-1-F 1.25 Product of Example C-17 2.00
  • the lubricant compositions of the present invention may be in the form of lubricating oils and greases in which any of the above-described oils of lubricating viscosity can be employed as a vehicle.
  • the lubricating oil generally is employed in an amount sufficient to balance the total grease composition and generally, the grease compositions will contain various quantities of thickening agents and other additive components to provide desirable properties.
  • thickening agents can be used in the preparation of the greases of this invention. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms.
  • the metals are typified by sodium, lithium, calcium and barium.
  • fatty materials include stearic acid, hydroxy stearic acid, stearin, oleic acid, palmetic acid, myristic acid, cottonseed oil acids, and hydrogenated fish oils.
  • thickening agents include salt and salt-soap complexes as calcium stearate-acetate (U.S. Patent 2,197,263), barium stearate acetate (U.S. Patent 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Patent 2,999,065), calcium caprylate-acetate (U.S. Patent 2,999,066), and calcium salts and soaps of low-, intermediate- and high-molecular weight acids and of nut oil acids.
  • salt and salt-soap complexes as calcium stearate-acetate (U.S. Patent 2,197,263), barium stearate acetate (U.S. Patent 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Patent 2,999,065), calcium caprylate-acetate (U.S. Patent 2,999,066), and calcium salts and soaps of low-, intermediate- and high-molecular weight acids and of
  • Particularly useful thickening agents employed in the grease compositions are essentially hydrophilic in character, but which have been converted into a hydrophobic condition by the introduction of long chain hydrocarbon groups onto the surface of the clay particles prior to their use as a component of a grease composition, as, for example, by being subjected to a preliminary treatment with an organic cationic surface-active agent, such as an ammonium compound.
  • Typical ammonium compounds are tetraalkylammonium chlorides, such as dimethyl dioctadecyl ammonium chloride, dimethyl dibenzyl ammonium chloride and mixtures thereof. This method of conversion, being well known to those skilled in the art, and is believed to require no further discussion.
  • the clays which are useful as starting materials in forming the thickening agents to be employed in the grease compositions can comprise the naturally occurring chemically unmodified clays.
  • These clays are crystalline complex silicates, the exact composition of which is not subject to precise description, since they vary widely from one natural source to another.
  • These clays can be described as complex inorganic silicates such as aluminum silicates, magnesium silicates, barium silicates, and the like, containing, in addition to the silicate lattice, varying amounts of cation-exchangeable groups such as sodium.
  • Hydrophilic clays which are particularly useful for conversion to desired thickening agents include montmorillonite clays, such as bentonite, attapulgite, hectorite, illite, saponite, sepiolite, biotite, vermiculite, zeolite clays, and the like.
  • the thickening agent is employed in an amount from about 0.5 to about 30, and preferably from 3% to 15% by weight of the total grease composition.
  • aqueous compositions including both concentrates and water-based functional fluids, containing other conventional additives commonly employed in water-based functional fluids. These methods comprise the steps of:
  • these mixing steps are preferably carried out using conventional equipment and generally at room or slightly elevated temperatures, usually below 100°C and often below 50°C.
  • the concentrate can be formed and then shipped to the point of use where it is diluted with water to form the desired water-based functional fluid.
  • the finished water-based functional fluid can be formed directly in the same equipment used to form the concentrate or the dispersion or solution.
  • the surfactants that are useful in the aqueous compositions of the invention can be of the cationic, anionic, nonionic or amphoteric type. Many such surfactants of each type are known to the art. See, for example, McCutcheon's "Emulsifiers & Detergents", 1981, North American Edition, published by McCutcheon Division, MC Publishing Co., Glen Rock, New Jersey, U.S.A.
  • nonionic surfactant types are the alkylene oxide-treated products, such as ethylene oxide-treated phenols, alcohols, esters, amines and amides. Ethylene oxide/propylene oxide block copolymers are also useful nonionic surfactants. Glycerol esters and sugar esters are also known to be nonionic surfactants.
  • a typical nonionic surfactant class useful with the present invention are the alkylene oxide-treated alkyl phenols such as the ethylene oxide alkyl phenol condensates sold by the Rohm & Haas Company.
  • Triton X-100 which contains an average of 9-10 ethylene oxide units per molecule, has an HLB value of about 13.5 and a molecular weight of about 628.
  • suitable nonionic surfactants are known; see, for example, the aforementioned McCutcheon's as well as the treatise "Non-Ionic Surfactants” edited by Martin J. Schick, M. Dekker Co., New York, 1967.
  • cationic, anionic and amphoteric surfactants can also be used. Generally, these are all hydrophilic surfactants. Anionic surfactants contain negatively charged polar groups while cationic surfactants contain positively charged polar groups. Amphoteric dispersants contain both types of polar groups in the same molecule. A general survey of useful surfactants is found in Kirk-Othmer Encyclopedia of Chemical Technology, Second Edition, Volume 19, page 507 et seq. (1969, John Wiley and Son, New York) and the aforementioned compilation published under the name of McCutcheon's.
  • anionic surfactant types are the widely known carboxylate soaps, organo sulfates, sulfonates, sulfocarboxylic acids and their salts, and phosphates.
  • Useful cationic surfactants include nitrogen compounds such as amine oxides and the wellknown quaternary ammonium salts.
  • Amphoteric surfactants include amino acid-type materials and similar types.
  • Various cationic, anionic and amphoteric dispersants are available from the industry, particularly from such companies as Rohm & Haas and Union Carbide Corporation, both of America. Further information about anionic and cationic surfactants also can be found in the texts "Anionic Surfactants", Parts II and III, edited by W.M. Linfield, published by Marcel Dekker, Inc., New York, 1976 and “Cationic Surfactants”, edited by E. Jungermann, Marcel Dekker, Inc., New York, 1976.
  • the concentrates can contain up to about 75% by weight, more preferably from about 10% to about 75% by weight of one or more of these surfactants.
  • the water-based functional fluids can contain up to about 15% by weight, more preferably from about 0.05% to about 15% by weight of one or more of these surfactants.
  • the aqueous compositions of this invention contain at least one thickener for thickening said compositions.
  • these thickeners can be polysaccharides, synthetic thickening polymers, or mixtures of two or more of these.
  • polysaccharides that are useful are natural gums such as those disclosed in "Industrial Gums" by Whistler and B. Miller, published by Academic Press, 1959. Specific examples of such gums are gum agar, guar gum, gum arabic, algin, dextrans, xanthan gum and the like.
  • cellulose ethers and esters including hydroxy hydrocarbyl cellulose and hydrocarbylhydroxy cellulose and its salts.
  • specific examples of such thickeners are hydroxyethyl cellulose and the sodium salt of carboxymethyl cellulose. Mixtures of two or more of any such thickeners are also useful.
  • the thickener used in the aqueous compositions of the present invention be soluble in both cold (10°C) and hot (about 90°C) water. This excludes such materials as methyl cellulose which is soluble in cold water but not in hot water. Such hot-water-insoluble materials, however, can be used to perform other functions such as providing lubricity to the aqueous compositions of this invention.
  • thickeners can also be synthetic thickening polymers.
  • Many such polymers are known to those of skill in the art. Representative of them are polyacrylates, polyacrylamides, hydrolyxed vinyl esters, water-soluble homo- and interpolymers of acrylamido-alkane sulfonates containing 50 mole percent at least of acryloamido alkane sulfonate and other comonomers such as acrylonitrile, styrene and the like.
  • Poly-n-vinyl pyrrolidones, homo- and copolymers as well as water-soluble salts of styrene, maleic anhydride and isobutylene maleic anhydride copolymers can also be used as thickening agents.
  • Preferred thickeners are the water-dispersible reaction products formed by reacting at least one hydrocarbyl-substituted succinic acid and/or anhydride represented by the formula wherein R is a hydrocarbyl group of from about 8 to about 40 carbon atoms, with at least one water-dispersible amine terminated poly(oxyalkylene) or at least one water-dispersible hydroxy-terminated polyoxyalkylene.
  • R preferably has from about 8 to about 30 carbon atoms, more preferably from about 12 to about 24 carbon atoms, still more preferably from about 16 to about 18 carbon atoms.
  • R is represented by the formula wherein R' and R'' are independently hydrogen or straight chain or substantially straight chain hydrocarbyl groups, with the proviso that the total number of carbon atoms in R is within the above-indicated ranges.
  • R' and R'' are alkyl or alkenyl groups.
  • R has from about 16 to about 18 carbon atoms
  • R' is hydrogen or an alkyl group of from 1 to about 7 carbon atoms or an alkenyl group of from 2 to about 7 carbon atoms
  • R'' is an alkyl or alkenyl group of from about 5 to about 15 carbon atoms.
  • the water-dispersible amine terminated poly-(oxyalkylene)s are preferably alpha omega diamino poly(oxyethylene)s, alpha omega diamino poly(oxypropylene) poly(oxyethylene) poly(oxypropylene)s or alpha omega diamino propylene oxide capped poly(oxyethylene)s.
  • the amine-terminated poly(oxyalkylene) can also be a urea condensate of such alpha omega diamino poly(oxyethylene)s, alpha omega diamino poly(oxypropylene) poly(oxyethylene) poly- (oxypropylene)s or alpha omega diamino propylene oxide capped poly(oxyethylene)s.
  • the amine-terminated poly(oxyalkylene) can also be a polyamino (e.g., triamino, tetramino, etc.) polyoxyalkylene provided it is amine-terminated and it is water-dispersible.
  • a polyamino e.g., triamino, tetramino, etc.
  • water-dispersible amine-terminated poly(oxyalkylene)s that are useful in accordance with the present invention are disclosed in U.S. Patents 3,021,232; 3,108,011; 4,444,566; and Re 31,522.
  • Water-dispersible amine terminated poly-(oxyalkylene)s that are useful are commercially available from the Texaco Chemical Company under the trade name Jeffamine.
  • the water-dispersible hydroxy-terminated polyoxyalkylenes are constituted of block polymers of propylene oxide and ethylene oxide, and a nucleus which is derived from organic compounds containing a plurality of reactive hydrogen atoms.
  • the block polymers are attached to the nucleus at the sites of the reactive hydrogen atoms.
  • these compounds include the hydroxy-terminated polyoxyalkylenes which are represented by the formula wherein a and b are integers such that the collective molecular weight of the oxypropylene chains range from about 900 to about 25,000, and the collective weight of the oxyethylene chains constitute from about 20% to about 90%, preferably from about 25% to about 55% by weight of the compound.
  • hydroxy-terminated polyoxyalkylenes represented by the formula HO(C2H4O) x (C3H6O) y (C2H4O) z H wherein y is an integer such that the molecular weight of the oxypropylene chain is at least about 900, and x and z are integers such that the collective weight of the oxyethylene chains constitute from about 20% to about 90% by weight of the compound. These compounds preferably have a molecular weight in the range of about 1100 to about 14,000. These compounds are commercially available from BASF Wyandotte Corporation under the tradename "Pluronic”. Useful hydroxy-terminated polyoxyalkylenes are disclosed in U.S. Patents 2,674,619 and 2,979,528.
  • the reaction between the carboxylic agent and the amine- or hydroxy-terminated polyoxyalkylene can be carried out at a temperature ranging from the highest of the melt temperatures of the reaction components up to the lowest of the decomposition temperatures of the reaction components or products. Generally, the reaction is carried out at a temperature in the range of about 60°C to about 160°C, preferably about 120°C to about 160°C.
  • the ratio of equivalents of carboxylic agent to polyoxyalkylene preferably ranges from about 0.1:1 to about 8:1, preferably about 1:1 to about 4:1, and advantageously about 2:1.
  • the weight of an equivalent of the carboxylic agent can be determined by dividing its molecular weight by the number of carboxylic functions present.
  • the weight of an equivalent of the amine-terminated polyoxyalkylene can be determined by dividing its molecular weight by the number of terminal amine groups present.
  • the weight of an equivalent of the hydroxy-terminated polyoxyalkylene can be determined by dividing its molecular weight by the number of terminal terminal hydroxyl groups present.
  • the number of terminal amine and hydroxyl groups can usually be determined from the structural formula of the polyoxyalkylene or empirically through well known procedures.
  • the amide/acids and ester/acids formed by the reaction of the carboxylic agent and amine-terminated or hydroxy-terminated polyoxyalkylene can be neutralized with, for example, one or more alkali metals, one or more amines, or a mixture thereof, and thus converted to amide/salts or ester/salts, respectively. Additionally, if these amide/acids or ester/acids are added to concentrates or functional fluids containing alkali metals or amines, amide/salts or ester/salts usually form, in situ.
  • South African Patent 85/0978 discloses the use of hydrocarbyl-substituted succinic acid or anhydride/hydroxy-terminated poly(oxyalkylene) reaction products as thickeners for aqueous compositions.
  • the thickening characteristics of said thickener can be enhanced by combining it with at least one surfactant.
  • any of the surfactants identified above under the subtitle "Surfactants” can be used in this regard.
  • the weight ratio of thickener to surfactant is generally in the range of from about 1:5 to about 5:1, preferably from about 1:1 to about 3:1.
  • the thickener is present in a thickening amount in the aqueous compositions of this invention.
  • the thickener is preferably present at a level of up to about 70% by weight, preferably from about 20% to about 50% by weight of the concentrates of the invention.
  • the thickener is preferably present at a level in the range of from about 1.5% to about 10% by weight, preferably from about 3% to about 6% by weight of the functional fluids of the invention.
  • the functional additives that can be used in the aqueous systems are typically oil-soluble, waterinsoluble additives which function in conventional oil-based systems as extreme pressure agents, anti-wear agents, load-carrying agents, dispersants, friction modifiers, lubricity agents, etc. They can also function as anti-slip agents, film formers and friction modifiers. As is well known, such additives can function in two or more of the above-mentioned ways; for example, extreme pressure agents often function as load-carrying agents.
  • oil-soluble, water-insoluble functional additive refers to a functional additive which is not soluble in water above a level of about 1 gram per 100 milliliters of water at 25°C, but is soluble in mineral oil to the extent of at least 1 gram per liter at 25°C.
  • These functional additives can also include certain solid lubricants such as graphite, molybdenum disulfide and polytetrafluoroethylene and related solid polymers.
  • These functional additives can also include frictional polymer formers.
  • frictional polymer formers are potential polymer forming materials which are dispersed in a liquid carrier at low concentration and which polymerize at rubbing or contacting surfaces to form protective polymeric films on the surfaces. The polymerizations are believed to result from the heat generated by the rubbing and, possibly, from catalytic and/or chemical action of the freshly exposed surface.
  • a specific example of such materials is dilinoleic acid and ethylene glycol combinations which can form a polyester frictional polymer film.
  • these functional additives are known metal or amine salts of organo sulfur, phosphorus, boron or carboxylic acids which are the same as or of the same type as used in oil-based fluids.
  • such salts are of carboxylic acids of 1 to 22 carbon atoms including both aromatic and aliphatic acids; sulfur acids such as alkyl and aromatic sulfonic acids and the like; phosphorus acids such as phosphoric acid, phosphorus acid, phosphinic acid, acid phosphate esters and analogous sulfur homologs such as the thiophosphoric and dithiophosphoric acid and related acid esters; boron acids include boric acid, acid borates and the like.
  • Useful functional additives also include metal dithiocarbamates such as molybdenum and antimony dithiocarbamates; as well as dibutyl tin sulfide, tributyl tin oxide, phosphates and phosphites; borate amine salts, chlorinated waxes; trialkyl tin oxide, molybdenum phosphates, and chlorinated waxes.
  • the functional additive is a sulfur or chloro-sulfur extreme pressure agent, known to be useful in oil-base systems.
  • Such materials include chlorinated aliphatic hydrocarbons, such as chlorinated wax; organic sulfides and polysulfides, such as benzyl-disulfide, bis-(chlorobenzyl)disulfide, dibutyl tetrasulfide, sulfurized sperm oil, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, sulfurized terpene, and sulfurized Diels-Alder adducts; phosphosulfurized hydrocarbons, such as the reaction product of phosphorus sulfide with turpentine or methyl oleate; phosphorus esters such as the dihydrocarbon and trihydrocarbon phosphites, i.e., dibutyl phosphite, dih
  • the functional additive can also be a film former such as a synthetic or natural latex or emulsion thereof in water.
  • a film former such as a synthetic or natural latex or emulsion thereof in water.
  • latexes include natural rubber latexes and polystyrene butadienes synthetic latex.
  • the functional additive can also be an anti-chatter or anti-squawk agent.
  • the former are the amide metal dithiophosphate combinations such as disclosed in West German Patent 1,109,302; amine salt-azomethene combinations such as disclosed in British Patent Specification 893,977; or amine dithiophosphate such as disclosed in U.S. Patent 3,002,014.
  • anti-squawk agents are N-acyl-sarcosines and derivatives thereof such as disclosed in U.S. Patents 3,156,652 and 3,156,653; sulfurized fatty acids and esters thereof such as disclosed in U.S. Patents 2,913,415 and 2,982,734; and esters of dimerized fatty acids such as disclosed in U.S. Patent 3,039,967.
  • Mixtures of two or more of any of the aforedescribed functional additives can also be used.
  • a functionally effective amount of the functional additive is present in the aqueous compositions of this invention.
  • the term "functionally effective amount” refers to a sufficient quantity of an additive to impart desired properties intended by the addition of said additive.
  • an additive is a rust-inhibitor
  • a functionally effective amount of said rust-inhibitor would be an amount sufficient to increase the rust-inhibiting characteristics of the composition to which it is added.
  • the additive is an anti-wear agent
  • a functionally effective amount of said anti-wear agent would be a sufficient quantity of the anti-wear agent to improve the anti-wear characteristics of the composition to which it is added.
  • the aqueous systems of this invention often contain at least one inhibitor for corrosion of metals. These inhibitors can prevent corrosion of either ferrous or non-ferrous metals (e.g., copper, bronze, brass, titanium, aluminum and the like) or both.
  • the inhibitor can be organic or inorganic in nature. Usually it is sufficiently soluble in water to provide a satisfactory inhibiting action though it can function as a corrosioninhibitor without dissolving in water, it need not be water-soluble.
  • Many suitable inorganic inhibitors useful in the aqueous systems of the present invention are known to those skilled in the art. Included are those described in "Protective Coatings for Metals" by Burns and Bradley, Reinhold Publishing Corporation, Second Edition, Chapter 13, pages 596-605.
  • useful inorganic inhibitors include alkali metal nitrites, sodium di- and tripolyphosphate, potassium and dipotassium phosphate, alkali metal borate and mixtures of the same.
  • suitable organic inhibitors are known to those of skill in the art.
  • Specific examples include hydrocarbyl amine and hydroxy-substituted hydrocarbyl amine neutralized acid compound, such as neutralized phosphates and hydrocarbyl phosphate esters, neutralized fatty acids (e.g., those having about 8 to about 22 carbon atoms), neutralized aromatic carboxylic acids (e.g., 4-tertiarybutyl benzoic acid), neutralized naphthenic acids and neutralized hydrocarbyl sulfonates.
  • amines include the alkanol amines such as ethanol amine, diethanolamine. Mixtures of two or more of any of the afore-described corrosion-inhibitors can also be used.
  • the corrosion-inhibitor is usually present in concentrations in which they are effective in inhibiting corrosion of metals with which the aqueous composition comes in contact.
  • Certain of the aqueous systems of the present invention can also contain at least one polyol with inverse solubility in water.
  • polyols are those that become less soluble as the temperature of the water increases. They thus can function as surface lubricity agents during cutting or working operations since, as the liquid is heated as a result of friction between a metal workpiece and worktool, the polyol of inverse solubility "plates out" on the surface of the workpiece, thus improving its lubricity characteristics.
  • the aqueous systems of the present invention can also include at least one bactericide.
  • bactericides are well known to those of skill in the art and specific examples can be found in the aforementioned McCutcheon publication "Functional Materials” under the heading “Antimicrobials” on pages 9-20 thereof.
  • these bactericides are water-soluble, at least to the extent to allow them to function as bactericides.
  • the aqueous systems of the present invention can also include such other materials as dyes, e.g., an acid green dye; water softeners, e.g., ethylene diamine tetraacetate sodium salt or nitrilo triacetic acid; odor masking agents, e.g., citronella, oil of lemon, and the like; and anti-foamants, such as the well-known silicone anti-foamant agents.
  • dyes e.g., an acid green dye
  • water softeners e.g., ethylene diamine tetraacetate sodium salt or nitrilo triacetic acid
  • odor masking agents e.g., citronella, oil of lemon, and the like
  • anti-foamants such as the well-known silicone anti-foamant agents.
  • the aqueous systems of this invention may also include an anti-freeze additive where it is desired to use the composition at a low temperature.
  • an anti-freeze additive such as ethylene glycol and analogous polyoxyalkylene polyols can be used as anti-freeze agents.
  • the amount used will depend on the degree of anti-freeze protection desired and will be known to those of ordinary skill in the art.
  • ingredients described above for use in making the aqueous systems of this invention are industrial products which exhibit or confer more than one property on such aqueous compositions.
  • a single ingredient can provide several functions thereby eliminating or reducing the need for some other additional ingredient.
  • an extreme pressure agent such as tributyl tin oxide can also function as a bactericide.

Claims (16)

  1. Schmiermittel- oder funktionelle Fluidzusammensetzung mit verbesserter Hochtemperaturstabilität, umfassend
    (A) einen Hauptbestandteil eines Öls mit Schmierviskosität und eine geringere Menge von
    (B-1) mindestens einem löslichen, tertiär-aliphatischen primären Aminsalz, wobei das primäre Amin eine Anzahl von 4 bis 30 C-Atomen mindestens einer substituierten Phosphorsäure der allgemeinen Formel
    Figure imgb0012
    enthält, in der R¹ ein Wasserstoffatom oder einen aliphatischen Kohlenwasserstoffrest und R² einen aliphatischen Kohlenwasserstoffrest bedeuten, wobei R¹ und R² 4 bis 60 C-Atome enthalten, und wobei beide Reste X jeweils ein Sauerstoff- oder Schwefelatom sind, und
    (C) mindestens einer löslichen stickstoff- und borhaltigen Verbindung, hergestellt durch Umsetzen von
    (C-1) mindestens einer Borverbindung, ausgewählt aus Bortrioxid, Borhalogeniden, Borsäuren, Boranhydriden, Boramiden und Estern von Borsäuren, mit
    (C-2) mindestens einem löslichen, acylierten Stickstoffzwischenprodukt, hergestellt durch Umsetzen einer Kohlenwasserstoffsubstituierten Bernsteinsäure-bildenden Verbindung, ausgewählt aus Bernsteinsäuren, deren Anhydriden, Estern und Halogeniden, die durchschnittlich mindestens 50 aliphatische C-Atome im Substituenten enthalten, mit mindestens einem halben Äquivalent pro Äquivalent säurebildende Verbindung eines Amins, das mindestens ein an ein Stickstoffatom gebundenes Wasserstoffatom enthält.
  2. Die Zusammensetzung nach Anspruch 1, wobei die Phosphorsäurezusammensetzung von (B-1) ein Gemisch substituierter Phosphorsäuren umfaßt, hergestellt durch Umsetzen mindestens einer Hydroxyverbindung mit einem Phosphorreaktanten der allgemeinen Formel P₂X₅, wobei X ein Sauerstoffatom ist.
  3. Die Zusammensetzung nach einem der vorstehenden Ansprüche, wobei sich der Kohlenwasserstoffsubstituent der Bernsteinsäure-bildenden Verbindung von (C-2) von einem Polyolefin mit einem Mn-Wert im Bereich von 700 bis 10 000 ableitet.
  4. Die Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Amin von (C-2) die allgemeine Formel



            R₁R₂NH



    hat, in der R₁ und R₂ unabhängig voneinander ein Wasserstoffatom oder einen Kohlenwasserstoff-, Amino-substituierten Kohlenwasserstoff-, Hydroxy-substituierten Kohlenwasserstoff-, Alkoxy-substituierten Kohlenwasserstoff-, Amino-, Carbamyl-, Thiocarbamyl-, Guanyl- und Acylimidoylrest bedeuten, mit der Maßgabe, daß nur einer der Reste R₁ und R₂ ein Wasserstoffatom ist.
  5. Die Zusammensetzung nach einem der Ansprüche 1-3, wobei das Amin von (C-2) ein Polyamin ist.
  6. Die Zusammensetzung nach Anspruch 5, wobei das Amin von (C-2) ein Hydroxyalkyl-substituiertes Alkylenpolyamin ist.
  7. Die Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Borverbindung Borsäure ist.
  8. Die Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Gewichtsverhältnis von (B-1):(C) 0,1:1 bis 10:1 beträgt.
  9. Die Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die vorliegende Menge an (C-1) und (C-2) eine Menge ist, die von 0,1 Atomanteilen Bor pro Mol des acylierten Stickstoffzwischenprodukts bis 10 Atomanteile Bor pro Atomanteil Stickstoff des acylierten Stickstoffzwischenprodukts liefert, und wobei die lösliche stickstoff- und borhaltige Zusammensetzung (C) durch Umsetzen von (C-1) mit (C-2) bei einer erhöhten Temperatur bis zu, jedoch nicht einschließlich, der Zersetzungstemperatur eines der Reaktanten oder des Reaktionsprodukts hergestellt wird.
  10. Die Zusammensetzung nach Anspruch 1, wobei R¹ und R² aliphatische Hydrocarbylreste sind und zusammengenommen 4 bis 60 C-Atome enthalten, und wobei (C-2) mindestens ein lösliches acyliertes Stickstoffzwischenprodukt ist, das durch Umsetzen einer mit einem aliphatischen Olefinpolymer substituierten Bernsteinsäure-bildenden Verbindung, die durchschnittlich mindestens 50 aliphatische C-Atome im Polymersubstituenten enthält, mit mindestens einem halben Äquivalent pro Äquivalent säurebildende Verbindung eines Alkylenamins, eines Hydroxyalkyl-substituierten Alkylenamins oder eines Gemisches davon hergestellt wird.
  11. Die Zusammensetzung nach Anspruch 10, wobei die Phosphorsäureverbindung von (B-1) ein Gemisch substituierter Phosphorsäuren der allgemeinen Formel
    Figure imgb0013
    ist, in der R¹ ein Wasserstoffatom oder ein Kohlenwasserstoffrest und R² einen Kohlenwasserstoffrest bedeuten, und die Gesamtzahl der C-Atome in R¹ und R² 4 bis 60 beträgt.
  12. Die Zusammensetzung nach Anspruch 10 oder 11, wobei sich der Polymersubstituent der Bernsteinsäure-bildenden Verbindung von einem Polybuten mit einem Mn-Wert im Bereich von 700 bis 10 000 ableitet.
  13. Die Zusammensetzung nach einem der Ansprüche 10 bis 12, wobei das Gewichtsverhältnis von (B-1):(C) 0,1:1 bis 10:1 beträgt.
  14. Die Zusammensetzung nach einem der Ansprüche 10 bis 13, wobei die vorliegende Menge an (C-1) und (C-2) eine Menge darstellt, die ausreicht, um von 0,1 Atomanteilen Bor pro Mol des acylierten Stickstoffzwischenprodukts bis zu 10 Atomanteilen Bor pro Atomanteil Stickstoff des acylierten Stickstoffzwischenprodukts zu liefern, und wobei die lösliche stickstoff- und borhaltige Zusammensetzung (C) durch Umsetzen von (C-1) mit (C-2) bei einer Temperatur von 50°C bis 250°C hergestellt wird.
  15. Die Zusammensetzung nach einem der Ansprüche 10 bis 14, die 0,1 Gew.-% bis 5 Gew.-% von (B) und 0,1 Gew.-% bis 5 Gew.-% von (C) enthält.
  16. Verfahren zur Herstellung der Zusammensetzung nach Anspruch 1, umfassend das Mischen der Komponenten (A), (B-1) und (C), wobei die Komponenten (A), (B-1) und (C) die in Anspruch 1 angegebene Bedeutung haben.
EP87904578A 1986-06-13 1987-06-05 Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen Revoked EP0309481B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87904578T ATE102989T1 (de) 1986-06-13 1987-06-05 Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87426786A 1986-06-13 1986-06-13
US874267 1986-06-13
SG151594A SG151594G (en) 1986-06-13 1994-10-17 Phosphorus-containing lubricant and functional fluid compositions

Publications (2)

Publication Number Publication Date
EP0309481A1 EP0309481A1 (de) 1989-04-05
EP0309481B1 true EP0309481B1 (de) 1994-03-16

Family

ID=26664443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87904578A Revoked EP0309481B1 (de) 1986-06-13 1987-06-05 Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen

Country Status (11)

Country Link
US (1) US5354484A (de)
EP (1) EP0309481B1 (de)
JP (1) JP2656522B2 (de)
AU (1) AU595358B2 (de)
CA (1) CA1304072C (de)
DE (1) DE3789382T2 (de)
HK (1) HK895A (de)
MX (1) MX169012B (de)
SG (1) SG151594G (de)
WO (1) WO1987007637A2 (de)
ZA (1) ZA874205B (de)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
CA1335671C (en) * 1988-02-29 1995-05-23 Robert Dean Lundberg Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5230817A (en) * 1988-02-29 1993-07-27 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
JPH0699701B2 (ja) * 1989-02-10 1994-12-07 コスモ石油株式会社 パワーステアリング用作動流体組成物
IT1229656B (it) * 1989-04-21 1991-09-06 Mini Ricerca Scient Tecnolog Composizioni lubrificanti contenenti ditiofosfati non metallici.
CA2028399C (en) * 1989-11-13 2000-08-29 Stephen Norman Gear oils and additives therefor
CA2030096A1 (en) * 1989-11-27 1991-05-28 Stephen Norman Gear oils and additives therefor
US5254272A (en) * 1989-12-22 1993-10-19 Ethyl Petroleum Additives Limited Lubricant compositions with metal-free antiwear or load-carrying additives and amino succinate esters
GB8929096D0 (en) * 1989-12-22 1990-02-28 Ethyl Petroleum Additives Ltd Metal free lubricants
EP0483403A1 (de) * 1990-10-31 1992-05-06 Hoechst Aktiengesellschaft Aminsäurederivate mit renininhibierender Aktivität, Verfahren zu deren Herstellung und pharmazeutische Zubereitungen die sie enthalten
EP0580587B1 (de) * 1990-12-27 1997-05-21 Exxon Research And Engineering Company Rauchverringernde additive für schmier- und kraftstoff- mischungen für zweitaktkraftmaschinen
US5328619A (en) * 1991-06-21 1994-07-12 Ethyl Petroleum Additives, Inc. Oil additive concentrates and lubricants of enhanced performance capabilities
US5552068A (en) * 1993-08-27 1996-09-03 Exxon Research And Engineering Company Lubricant composition containing amine phosphate
JP4302769B2 (ja) * 1993-12-20 2009-07-29 エクソン ケミカル パテンツ インコーポレイテッド 動力伝達液用の油溶性摩擦増加性添加剤
US5520831A (en) * 1993-12-20 1996-05-28 Exxon Chemical Patents Inc. Increasing the friction durability of power transmission fluids through the use of oil soluble competing additives
CA2177261C (en) * 1993-12-20 2004-02-03 Ricardo Alfredo Bloch Increasing the friction durability of power transmission fluids through the use of oil soluble competing additives
GB9401710D0 (en) * 1994-01-29 1994-03-23 Castrol Ltd Anti-wear additives and their use
JPH07224293A (ja) * 1994-02-14 1995-08-22 Nippon Oil Co Ltd 緩衝器用油圧作動油組成物
TW291495B (de) 1994-08-03 1996-11-21 Lubrizol Corp
AU710294B2 (en) * 1995-09-12 1999-09-16 Lubrizol Corporation, The Lubrication fluids for reduced air entrainment and improved gear protection
US5789358A (en) * 1995-12-22 1998-08-04 Exxon Research And Engineering Company High load-carrying turbo oils containing amine phosphate and thiosemicarbazide derivatives
US5801130A (en) * 1995-12-22 1998-09-01 Exxon Research And Engineering Company High load-carrying turbo oils containing amine phosphate and dimercaptothiadiazole derivatives
US5807811A (en) * 1996-08-23 1998-09-15 The Lubrizol Corporation Water-based drilling fluids containing phosphites as lubricating aids
US5763372A (en) * 1996-12-13 1998-06-09 Ethyl Corporation Clean gear boron-free gear additive and method for producing same
DE19710160A1 (de) * 1997-03-12 1998-09-17 Clariant Gmbh Phosphorsäureester als Hochdruckadditive
US5916850A (en) * 1997-11-06 1999-06-29 Indian Oil Corporaton Limited Multifunctional additives from cashew nut shell liquid
JP2001303086A (ja) * 2000-04-18 2001-10-31 Chevron Oronite Ltd 潤滑油組成物および添加剤組成物
JP2002285184A (ja) * 2001-02-20 2002-10-03 Ethyl Corp ギア清浄用低燐配合
JP4185307B2 (ja) * 2001-09-20 2008-11-26 新日本石油株式会社 内燃機関用潤滑油組成物
US6617287B2 (en) * 2001-10-22 2003-09-09 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
US6573223B1 (en) * 2002-03-04 2003-06-03 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
ATE548437T1 (de) 2002-10-04 2012-03-15 Vanderbilt Co R T Synergistische organoboratzusammensetzungen und schmierzusammensetzungen damit
US20040214729A1 (en) * 2003-04-25 2004-10-28 Buitrago Juan A. Gear oil composition having improved copper corrosion properties
US20040241309A1 (en) * 2003-05-30 2004-12-02 Renewable Lubricants. Food-grade-lubricant
US7598212B2 (en) * 2003-07-18 2009-10-06 Exxonmobil Research And Engineering Company Lubricating composition suitable for diesel engines
MXPA06002862A (es) * 2003-09-12 2006-06-14 Renewable Lubricants Inc Lubricante de aceite vegetal que comprende aceites sinteticos completamente hidroprocesados.
US20060211585A1 (en) * 2003-09-12 2006-09-21 Renewable Lubricants, Inc. Vegetable oil lubricant comprising Fischer Tropsch synthetic oils
US7759294B2 (en) 2003-10-24 2010-07-20 Afton Chemical Corporation Lubricant compositions
US7452851B2 (en) * 2003-10-24 2008-11-18 Afton Chemical Corporation Lubricant compositions
EP1874900A4 (de) 2005-03-01 2012-07-04 Vanderbilt Co R T Molybdändialkyldithiocarbamat-zusammensetzungen und diese enthaltende schmiermittelzusammensetzungen
US7531486B2 (en) * 2005-03-31 2009-05-12 Exxonmobil Chemical Patents Inc. Additive system for lubricant
US8034754B2 (en) * 2005-03-31 2011-10-11 The Lubrizol Corporation Fluids for enhanced gear protection
WO2006116502A1 (en) * 2005-04-26 2006-11-02 Renewable Lubricants, Inc. High temperature biobased lubricant compositions comprising boron nitride
US20070078066A1 (en) * 2005-10-03 2007-04-05 Milner Jeffrey L Lubricant formulations containing extreme pressure agents
US20070105728A1 (en) * 2005-11-09 2007-05-10 Phillips Ronald L Lubricant composition
US20070142659A1 (en) * 2005-11-09 2007-06-21 Degonia David J Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof
US20070142237A1 (en) * 2005-11-09 2007-06-21 Degonia David J Lubricant composition
US20070142660A1 (en) 2005-11-09 2007-06-21 Degonia David J Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof
US8299003B2 (en) 2005-11-09 2012-10-30 Afton Chemical Corporation Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof
US20070167334A1 (en) * 2006-01-17 2007-07-19 Sullivan William T Lubricating fluids
US20110111992A1 (en) * 2006-01-17 2011-05-12 The Lubrizol Corporation Lubricating fluids
US20070164259A1 (en) * 2006-01-17 2007-07-19 Sullivan William T Additive system for lubricating fluids
US9410104B2 (en) * 2006-04-24 2016-08-09 The Lubrizol Corporation Star polymer lubricating composition
JP5207599B2 (ja) * 2006-06-08 2013-06-12 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
EP2067846B1 (de) * 2006-09-28 2012-03-21 Idemitsu Kosan Co., Ltd. Schmierölzusammensetzung
US8026199B2 (en) * 2006-11-10 2011-09-27 Nippon Oil Corporation Lubricating oil composition
US20080182770A1 (en) * 2007-01-26 2008-07-31 The Lubrizol Corporation Antiwear Agent and Lubricating Compositions Thereof
JP2008280536A (ja) * 2007-05-09 2008-11-20 Afton Chemical Corp 少なくとも1種の摩擦改良用化合物を含有して成る組成物およびそれの使用方法
US8349778B2 (en) * 2007-08-16 2013-01-08 Afton Chemical Corporation Lubricating compositions having improved friction properties
JP5288861B2 (ja) * 2008-04-07 2013-09-11 Jx日鉱日石エネルギー株式会社 潤滑油組成物
BRPI1008703B1 (pt) 2009-02-18 2018-05-08 Lubrizol Corp “derivados de amina como modificadores de atrito em lubrificantes”
CN103459570A (zh) * 2011-02-16 2013-12-18 路博润公司 润滑组合物以及润滑传动系装置的方法
MX342410B (es) 2011-04-15 2016-09-28 Vanderbilt Chemicals Llc Composiciones de dialquilditiocarbamato de molibdeno y composiciones lubricantes que las contienen.
BR112013029108A2 (pt) 2011-05-12 2017-02-07 Lubrizol Corp imidas e ésteres aromáticos como aditivos de lubrificantes
AU2012283952B2 (en) 2011-07-21 2016-05-19 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
EP2734502B1 (de) 2011-07-21 2017-07-05 The Lubrizol Corporation Überbasische reibungsmodifikatoren und verwendungsverfahren dafür
JP5739587B2 (ja) 2011-11-11 2015-06-24 ヴァンダービルト ケミカルズ、エルエルシー 潤滑油組成物
AU2013243735B2 (en) * 2012-04-04 2017-07-13 The Lubrizol Corporation Bearing lubricants for pulverizing equipment
CN104822809A (zh) * 2012-12-03 2015-08-05 路博润公司 赋予降低的齿轮箱操作温度的工业齿轮油
US20140171348A1 (en) * 2012-12-14 2014-06-19 Exxonmobil Research And Engineering Company Ionic liquids as lubricating oil base stocks, cobase stocks and multifunctional functional fluids
EP2937409A4 (de) * 2012-12-19 2016-06-01 Idemitsu Kosan Co Schmierölzusammensetzung
CN106459808B (zh) 2014-06-27 2020-10-27 路博润公司 为变速器流体提供良好摩擦性能的摩擦改进剂混合物
JP6806676B2 (ja) 2014-11-12 2021-01-06 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 潤滑剤用途のための混合リン含有酸エステル
WO2016164345A1 (en) 2015-04-09 2016-10-13 The Lubrizol Corporation Lubricants containing quaternary ammonium compounds
US10526287B2 (en) 2015-04-23 2020-01-07 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and uses thereof
US11193081B2 (en) 2016-05-24 2021-12-07 The Lubrizol Corporation Seal swell agents for lubricating compositions
US10808199B2 (en) 2016-05-24 2020-10-20 The Lubrizol Corporation Seal swell agents for lubricating compositions
EP3380591B1 (de) 2016-05-24 2019-07-10 The Lubrizol Corporation Dichtungsquellmittel für schmierzusammensetzungen
US20200017794A1 (en) 2016-09-21 2020-01-16 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
EP3516017B1 (de) 2016-09-21 2024-04-10 The Lubrizol Corporation Polyacrylatantischaumkomponenten zur verwendung in dieselkraftstoffen
WO2018081343A1 (en) 2016-10-26 2018-05-03 Constellation Pharmaceuticals, Inc. Lsd1 inhibitors and medical uses thereof
EP3559177A1 (de) 2016-12-22 2019-10-30 The Lubrizol Corporation Fluorierte polyacrylatantischaumkomponenten für schmiermittelzusammensetzungen
US10640723B2 (en) * 2018-03-16 2020-05-05 Afton Chemical Corporation Lubricants containing amine salt of acid phosphate and hydrocarbyl borate
WO2019183365A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
DE102018006661A1 (de) 2018-08-23 2020-02-27 Klüber Lubrication München Se & Co. Kg Schmiermittelzusammensetzung
US11066622B2 (en) 2019-10-24 2021-07-20 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
EP4090722A4 (de) 2020-01-17 2024-02-21 Afton Chemical Corp Reibungsmodifizierungsverbindungen; verwandte zusammensetzungen und verfahren
CN113174286A (zh) * 2021-04-27 2021-07-27 青岛中科润美润滑材料技术有限公司 一种风电螺纹防卡润滑脂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259894A1 (de) * 1974-02-04 1975-08-29 Lubrizol Corp

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228671A (en) * 1938-10-04 1941-01-14 Standard Oil Co Compounded mineral oil
US2413852A (en) * 1944-08-30 1947-01-07 Atlantie Refining Company Rust-inhibiting lubricant
US2605226A (en) * 1949-11-30 1952-07-29 Tide Water Associated Oil Comp Compounded lubricating oil
US3033789A (en) * 1957-03-28 1962-05-08 Lubrizol Corp Foam inhibited gear lubricant composition
DE1248643B (de) * 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3087936A (en) * 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
GB946032A (en) * 1961-08-18 1964-01-08 Shell Res Ltd Improved lubricating oil compositions
FR1367789A (fr) * 1962-07-09 1964-07-24 Lubrizol Corp Additif phosphoro-azoté pour huile lubrifiante et sa production
US3197405A (en) * 1962-07-09 1965-07-27 Lubrizol Corp Phosphorus-and nitrogen-containing compositions and process for preparing the same
US3267033A (en) * 1963-04-15 1966-08-16 Lubrizol Corp Lubricating composition having desirable frictional characteristics
US3513093A (en) * 1963-06-17 1970-05-19 Lubrizol Corp Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives
US3265618A (en) * 1963-07-26 1966-08-09 Shell Oil Co Lubricating oil compositions
US3284409A (en) * 1965-06-22 1966-11-08 Lubrizol Corp Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3318811A (en) * 1965-12-30 1967-05-09 Shell Oil Co Lubricating oil containing a diacid diphosphate ester
NL132016C (de) * 1966-04-13
US3484375A (en) * 1966-12-30 1969-12-16 Exxon Research Engineering Co Lubricating oils and fuels containing organic phosphite reaction products
FR1557534A (de) * 1967-04-24 1969-02-14
US3925213A (en) * 1971-02-24 1975-12-09 Optimol Oelwerke Gmbh Sulfur and phosphorus bearing lubricant
JPS516128B2 (de) * 1973-04-11 1976-02-25
US4089790A (en) * 1975-11-28 1978-05-16 Chevron Research Company Synergistic combinations of hydrated potassium borate, antiwear agents, and organic sulfide antioxidants
US4113639A (en) * 1976-11-11 1978-09-12 Exxon Research & Engineering Co. Lubricating oil composition containing a dispersing-varnish inhibiting combination of an oxazoline compound and an acyl nitrogen compound
US4101427A (en) * 1977-02-09 1978-07-18 Exxon Research & Engineering Co. Lubricant composition
GB1585056A (en) * 1977-06-15 1981-02-25 Exxon Research Engineering Co Phosphosulphurised terpenes
US4118328A (en) * 1977-12-08 1978-10-03 Chevron Research Company Amine phosphate salts
US4207195A (en) * 1978-05-12 1980-06-10 Mobil Oil Corporation Sulfurized olefin adducts of dihydrocarbyl phosphites and lubricant compositions containing same
AU515964B2 (en) * 1978-05-22 1981-05-14 Exxon Research And Engineering Company Improved lubricant composition incorporating di alkyl di thiophosphate additives
JPS54156016A (en) * 1978-05-29 1979-12-08 Exxon Research Engineering Co Improved lubricant composition
US4263150A (en) * 1979-06-11 1981-04-21 The Lubrizol Corporation Phosphite treatment of phosphorus acid salts and compositions produced thereby
US4337161A (en) * 1980-03-24 1982-06-29 Chevron Research Company Borate-containing oil-in-water microemulsion fluid
US4338205A (en) * 1980-08-25 1982-07-06 Exxon Research & Engineering Co. Lubricating oil with improved diesel dispersancy
US4472288A (en) * 1980-08-29 1984-09-18 Chevron Research Company Lubricant composition containing alkali metal borate and an oil-soluble amine salt of a phosphorus compound
GB2108147A (en) * 1981-10-22 1983-05-11 Exxon Research Engineering Co Anti-wear additives
ZA834111B (en) * 1982-06-08 1984-03-28 Exxon Research Engineering Co Lubricating oil composition
US4431552A (en) * 1982-11-26 1984-02-14 Chevron Research Company Lubricant composition containing an alkali-metal borate and a mixture of phosphates, monothiophosphates and dithiophosphates in a critical ratio
US4575431A (en) * 1984-05-30 1986-03-11 Chevron Research Company Lubricant composition containing a mixture of neutralized phosphates
EP0177021B1 (de) * 1984-10-03 1992-01-08 Hitachi, Ltd. Schmiermittel für die plastische Verformung von Metallen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259894A1 (de) * 1974-02-04 1975-08-29 Lubrizol Corp

Also Published As

Publication number Publication date
JP2656522B2 (ja) 1997-09-24
SG151594G (en) 1995-03-17
WO1987007637A3 (en) 1988-03-10
WO1987007637A2 (en) 1987-12-17
DE3789382D1 (de) 1994-04-21
JPH01502987A (ja) 1989-10-12
US5354484A (en) 1994-10-11
HK895A (en) 1995-01-13
MX169012B (es) 1993-06-16
AU7694987A (en) 1988-01-11
ZA874205B (de) 1987-12-15
EP0309481A1 (de) 1989-04-05
DE3789382T2 (de) 1994-10-20
CA1304072C (en) 1992-06-23
AU595358B2 (en) 1990-03-29

Similar Documents

Publication Publication Date Title
EP0309481B1 (de) Phosphor enthaltendes schmiermittel und funktionelle fluidzubereitungen
US4755311A (en) Phosphorus-, sulfur- and boron-containing compositions, and lubricant and functional fluid compositions containing same
EP0289592B1 (de) Phosphor- und/oder stickstoffhaltige abkömmlinge in schmiermitteln
EP0291521B1 (de) Schwefel enthaltende zubereitungen, schmiermittel, brennstoff und funktionelle fluidzubereitungen
AU677276B2 (en) Lubricating compositions, greases, aqueous fluids containing organic ammonium thiosulfates
WO1987007638A2 (en) Phosphorous- and sulfur-containing lubricant and functional fluid compositions
CA2108206C (en) Lubricants, greases, aqueous fluids and concentrates containing additives derived from dimercaptothiadiazoles
CA2108205C (en) Lubricants, greases, and aqueous fluids containing additives derived from dimercaptothiadiazoles
US4800031A (en) Sulfur-containing lubricant and functional fluid compositions
US4767552A (en) Urazole compositions useful as additives for functional fluids
US6228818B1 (en) Organophosphoryl borates and lubricants and aqueous fluids containing the same
WO1986002941A1 (en) Amino sulfonic acid derivatives of carboxylic acid-containing interpolymers, and fuels, lubricants and aqueous systems containing said derivatives
US20010056042A1 (en) Organophosphoryl borates and lubricants and aqueous fluids containing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19891102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 102989

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3789382

Country of ref document: DE

Date of ref document: 19940421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940518

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940531

Year of fee payment: 8

ET Fr: translation filed
EPTA Lu: last paid annual fee
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

EAL Se: european patent in force in sweden

Ref document number: 87904578.9

26 Opposition filed

Opponent name: ETHYL CORPORATION

Effective date: 19941215

NLR1 Nl: opposition has been filed with the epo

Opponent name: ETHYL CORPORATION.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950605

Ref country code: AT

Effective date: 19950605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960515

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960528

Year of fee payment: 10

Ref country code: BE

Payment date: 19960528

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960529

Year of fee payment: 10

Ref country code: GB

Payment date: 19960529

Year of fee payment: 10

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 961027

27W Patent revoked

Effective date: 19961027

NLR2 Nl: decision of opposition