EP0307262A1 - Procédé de brassage en poche d'acier à l'aide d'anhydride carbonique - Google Patents

Procédé de brassage en poche d'acier à l'aide d'anhydride carbonique Download PDF

Info

Publication number
EP0307262A1
EP0307262A1 EP88402046A EP88402046A EP0307262A1 EP 0307262 A1 EP0307262 A1 EP 0307262A1 EP 88402046 A EP88402046 A EP 88402046A EP 88402046 A EP88402046 A EP 88402046A EP 0307262 A1 EP0307262 A1 EP 0307262A1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
deoxidizer
bath
expressed
brewing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88402046A
Other languages
German (de)
English (en)
Other versions
EP0307262B1 (fr
Inventor
François Weisang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT88402046T priority Critical patent/ATE70857T1/de
Publication of EP0307262A1 publication Critical patent/EP0307262A1/fr
Application granted granted Critical
Publication of EP0307262B1 publication Critical patent/EP0307262B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a method of stirring in a ladle ladle, in which an inert gas is injected into a bath of molten steel, this injection being carried out so that bubbles of gas rise through at least part of the bath. of molten metal and burst on the surface thereof, so as to create a setting in motion of the molten metal during the rise of the gas, said steel bath having been previously calmed for incorporation of a deoxidizer in quantity sufficient for an excess of it to remain dissolved in the bath.
  • secondary metallurgy In order to improve productivity and quality, steelmakers have developed so-called secondary metallurgy or pocket metallurgy.
  • the main goal of this metallurgy is thermal control and analytical control of the metal.
  • thermal control stirring allows cooling and homogenization.
  • analytical control stirring makes it possible to carry out homogenization, staining of steel, deoxidation, control of the cleanliness of the metal, control of inclusions, desulfurization, dephosphorization, etc.
  • electric arcs to carry out reheating in a pocket for example, or of a vacuum to carry out degassing in this same pocket was improved by stirring the metal.
  • brewing by gas injection is widely used because it requires little investment and is very easy to use.
  • the effervescent steel is calmed by incorporation of deoxidizer such as aluminum and / or silicon, makes it possible to eliminate or reduce the residual oxygen present in the steel bath.
  • deoxidizer such as aluminum and / or silicon
  • an excess of deoxidizer is generally incorporated in the steel bath. This excess deoxidizer is generally less than 1500 ppm, and preferably between 100 and 500 ppm for aluminum and between 200 and 1000 ppm for silicon.
  • the content of dissolved deoxidizer is fixed and controlled at approximately ⁇ 20 ppm.
  • the mixing corresponds to a setting in motion by entrainment of the metal during the rise of the gas.
  • the intensity of the brewing is characterized by a physical quantity corresponding to the power per tonne of metal.
  • the method according to the invention is characterized in that, before brewing in the ladle begins, an additional amount of deoxidizer is added to the excess of deoxidizer in the molten metal bath and then carried out stirring of the molten metal by injection of carbon dioxide in gaseous form, the rate of carbon dioxide in gaseous form, taking into account the capacity of the ladle and the stirring time, remaining less than or equal to the maximum rate corresponding to l oxidation of the additional amount of deoxidizer.
  • the additional amount of deoxidizer will be less than or equal to 10% of the excess deoxidizer. It was found that this value of 10% was the maximum value making it possible to control the content of deoxidizer in the steel according to the predetermined grade.
  • the flow carbon dioxide per tonne of steel stirred is generally less than or equal to 10 liters per minute.
  • deoxidizers have a very high cost and one of the aims of the invention is to inject carbon dioxide under certain conditions so as to stir the molten metal, causing a loss of deoxidizer, the cost of which remains less than the economy achieved by the use of carbon dioxide, lower cost than argon.
  • oxides are produced in the metal during mixing with carbon dioxide, these do not cause deterioration of the cleanliness of the finished product.
  • the additional quantity of deoxidizers to be added to the steel before stirring must be able to be determined as a function of the geometry of the ladle, the duration of stirring in this ladle and the flow rate of carbon dioxide used.
  • the process in which a lance is used to inject carbon dioxide gas into the bath, the process is characterized in that the flow rate Q of carbon dioxide gas is such that the following relationship is checked: relationship in which: B is the ratio between the length of lance immersed in the bath and the height of metal in the pocket, Q is the carbon dioxide flow rate in liters per minute, W is the capacity of the bag in tonnes, t is the brewing time in minutes.
  • the additional quantity m sup. (expressed in kg) of deoxidizer to be added to the bag before mixing is less than or equal to: Do being the target deoxidizer content at the end of stirring expressed in%, R being the addition yield of the calming deoxidizer expressed in%, B being the ratio between the immersed depth of the lance and the height of metal, Q being the flow rate of carbon dioxide in liters per minute, W being the capacity of the bag in tonnes, t being the brewing time in minutes.
  • the method is characterized in that the flow rate Q of carbon dioxide is such that the following relation is verified: Q0 ⁇ 25 x W ⁇ 0 ⁇ 64 x S 0 ⁇ 33 xt ⁇ 10 formula in which: - Q is the gas flow injected in l / min - W is the capacity of the bag in tonnes - S is the active surface of the plug in contact with the steel in cm2 - t is the brewing time in minutes.
  • the additional quantity m sup of deoxidizer to be added to the molten metal bath is equal to: formula in which: Do is the target deoxidizer content at the end of brewing expressed in%, R is the addition yield of the calming deoxidizer expressed in%, Q is the carbon dioxide flow rate expressed in liters / minute, W is the bag capacity in tonnes, t is the brewing time in minutes, S is the active surface of the porous plug in contact with the steel expressed in cm2.
  • the additional quantity m sup of deoxidizer to be added to the molten metal is given by the same formula as in the case of porous plugs, the surface S then being calculated according to one or other of the formulas mentioned above.
  • Brewing is carried out in a 180-ton pocket using a lance, immersed at three-quarters of the height of the bath of molten steel. This mixing is carried out using a carbon dioxide gas flow rate of 200 liters per minute for 8 minutes. The addition yield R of aluminum is 50%. The aluminum content targeted at the end of brewing is 0.02%.
  • the amount of additional aluminum calculated m sup is equal to 1.37 kg.
  • Example 2 The same experiment is carried out as in the case of Example 1, using a porous plug placed in the bottom of the bag, the active surface of which is 190 cm 2.
  • the additional quantity m sup of aluminum to be added is equal to 1.76 kg.
  • the quantity of aluminum m sup to be added is 1.27 kg.
  • inerting can be carried out by injection of argon, nitrogen (when this is not to be excluded) or carbon dioxide above or on the surface of the bath.
  • this inerting can be carried out using gas or liquid.
  • carbon dioxide this inerting can be carried out using gas or carbon dioxide snow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Stackable Containers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Cookers (AREA)
  • Treating Waste Gases (AREA)

Abstract

La présente invention concerne un procédé de brassage en poche d'un acier calmé, à l'aide d'anhydride carbonique gazeux. Avant que ne débute le brassage dans la poche, on ajoute à la quantité habituellement utilisée de désoxydant, une quantité supplémentaire de désoxydant dans le métal fondu, le débit d'anhydride carbonique, compte tenu de la capacité de la poche et de la durée de brassage restant inférieur ou égal au débit maximal correspondant à l'oxydation de la quantité supplémentaire de désoxydant en fin de brassage.

Description

  • La présente invention concerne un procédé de brassage en poche d'un acier, dans lequel on injecte dans un bain d'acier fondu un gaz inerte, cette injection étant réalisée de sorte que des bulles de gaz montent à travers au moins une partie du bain de métal fondu et viennent éclater à la surface de celui-ci, de manière à créer une mise en mouvement du métal fondu lors de la montée du gaz, ledit bain d'acier ayant été au préalable calmé pour incorporation d'un désoxydant en quantité suffisante pour qu'un excédent de celui-ci reste à l'état dissous dans le bain.
  • Afin d'améliorer la productivité et la qualité, les aciéristes ont développé la métallurgie dite secondaire ou métallurgie en poche. Le but essentiel de cette métallurgie est la maîtrise thermique et la maîtrise analytique du métal. Au niveau de la maîtrise thermique, le brassage permet le refroidissement et l'homogénéisation. Au niveau de la maîtrise analytique, le brassage permet de réaliser l'homogénéisation, la mise à nuance de l'acier, la désoxydation, le contrôle de la propreté du métal, le contrôle des inclusions, la désulfuration, la déphosphoration, etc... On a également constaté que l'utilisation d'arcs électriques pour réaliser le réchauffage en poche par exemple, ou du vide pour réaliser le dégazage dans cette même poche était améliorée par un brassage du métal. Parmi les différents modes de brassage utilisés, le brassage par injection de gaz est très employé car il ne demande que peu d'investissement et est très simple d'utilisation.
  • Avant brassage, l'acier effervescent est calmé par incorporation de désoxydant tel que l'aluminium et/ou le silicium, permetta d'éliminer ou de réduire l'oxygène résiduel présent dans le bain d'acier. Afin de maintenir une teneur en oxygène dissous dans l'acier compatible avec les conditions de coulée, on incorpore généralement un excédent de désoxydant dans le bain d'acier. Cet excédent de désoxydant est généralement inférieur à 1500ppm, et de préférence compris entre 100 et 500 ppm pour l'aluminium et entre 200 et 1000 ppm par le silicium. Suivant la nuance désirée de l'acier, la teneur en désoxydant dissous est fixée et contrôlée à environ ± 20 ppm.
  • Le brassage correspond à une mise en mouvement par entrainement du métal lors de la montée du gaz. L'intensité du brassage est caractérisée par une grandeur physique correspondant à la puissance par tonne de métal.
  • Il est connu d'utiliser des gaz neutres tels que l'argon, ou l'azote, pour réaliser la brassage dans une poche. Dans un certain nombre d'applications, l'azote ne peut être utilisé car on recherche la réalisation d'acier ayant une basse teneur en azote. Jusqu'à présent, seul l'argon pouvait être utilisé pour la brassage gazeux des poches lorsqu'on désire en particulier obtenir des aciers à faible teneur en azote. Toutefois, l'utilisation l'argon est quelquefois limitée par des contraintes d'ordre économique compte tenu du coût élevé de ce gaz.
  • On a donc recherché s'il était possible d'utiliser un autre gaz pour réaliser ce brassage, qui présente un comportement sensiblement inerte vis à vis de l'acier tout en étant économique lors de son utilisation.
  • A priori, l'homme de métier a tendance à écarter la possiblité d'utiliser l'anhydride carbonique gazeux pour réaliser un brassage en poche car il est connu de l'article intitulé "Emprego de CO₂ na Descarburaçao do Aco em Formo Elétrico - Renato Augusto Barbosa da Silva - Getulio Sergio da Silva - METALURGIA - vol. 28 - N° 172 - MARCO, 1972" que l'anhydride carbonique à la température d'un bain d'acier fondu c'est à dire de l'ordre de 1.600°C se décompose en oxygène et monoxyde de carbone qui ont un comportement oxydant vis à vis de l'acier.
  • De manière inattendue, on a constaté qu'il était possible d'utiliser l'anhydride carbonique pour réaliser le brassage dans une poche d'un acier calmé, malgré le caractère oxydant de l'anhydride carbonique dans les conditions d'utilisation, tout en réalisant un brassage de manière économique.
  • Le procédé selon l'invention est caractérisé en ce que, avant que ne débute le brassage dans la poche, on ajoute à l'éxcédent de désoxydant une quantité supplémentaire de désoxydant dans le bain de métal fondu et en ce que l'on réalise ensuite le brassage du métal fondu par injection d'anhydride carbonique sous forme gazeuse, le débit d'anhydride carbonique sous forme gazeuse, compte tenu de la capacité de la poche et de la durée de brassage, restant inférieure ou égal au débit maximal correspondant à l'oxydation de la quantité supplémentaire de désoxydant. De préférence, la quantité supplémentaire de désoxydant sera inférieure ou égale à 10% de l'excédent de désoxydant. On a constaté que cette valeur de 10% était la valeur maximale permettant de contrôler la teneur en désoxydant de l'acier selon la nuance prédéterminée. Le débit d'anhydride carbonique par tonne d'acier brassé est généralement inférieur ou égal à 10 litres par mn.
  • Des études approfondies ont permis de mettre en évidence les facteurs qui influencent la perte en désoxydant lors du brassage, ce désoxydant étant généralement très réactif vis à vis de l'oxyde de fer qui entoure les bulles de gaz, entrainant ainsi la formation d'oxydes. Or, les désoxydants ont un coût très élevé et l'un des buts de l'invention est d'injecter l'anhydride carbonique selon certaines conditions de manière à réaliser un brassage du métal fondu engendrant une perte de désoxydant dont le coût reste inférieur à l'économie réalisée par l'utilisation d'anydride carbonique, de coût plus faible que l'argon. De plus, on constate que, de manière inattendue, bien que l'on produise des oxydes dans le métal lors du brassage avec l'anhydride carbonique, ceux-ci n'entraînent pas de détérioration de la propreté du produit fini.
  • Ainsi, on a pu montrer l'importance des paramètres suivants lors du brassage d'un acier par un gaz : la nature de l'acier brassé, c'est à dire la composition visée à la fin du brassage, la nature et la quantité de désoxydant utilisé, en début de brassage ainsi que la quantité de désoxydant demandée à la coulée après traitement en poche, les dimensions de la poche (hauteur, diamètre) et la quantité de métal traité, le type d'injecteur de gaz utilisé et ses caractéristiques hydrauliques, le gaz utilisé, le débit injecté ainsi que la durée du traitement.
  • La quantité supplémentaire de désoxydants à ajouter dans l'acier avant brassage doit pouvoir être déterminée en fonction de la géométrie de la poche, de la durée de brassage dans cette poche et du débit d'anhydride carbonique utilisé.
  • Selon une première variante préférentielle de réalisation du procédé de l'invention, dans lequel on utilise une lance pour injecter l'anhydride carbonique gazeux dans le bain, le procédé est caractérisé en ce que le débit Q d'anhydride carbonique gazeux est tel que la relation suivante est vérifiée :

    Figure imgb0001


    relation dans laquelle :
    B est le rapport entre la longueur de lance immergée dans le bain et la hauteur de métal dans la poche,
    Q est le débit d'anhydride carbonique en litre par minute,
    W est la capacité de la poche en tonne,
    t est le temps de brassage en minute.
  • Dans ce cas, la quantité supplémentaire msup. (exprimée en kg) de désoxydant à ajouter dans la poche avant brassage est inférieure ou égale à :

    Figure imgb0002


    Do étant la teneur visée en désoxydant en fin de brassage exprimée en %, R étant le rendement d'addition du désoxydant de calmage exprimé en %, B étant le rapport entre la profondeur immergée de la lance et la hauteur de métal,
    Q étant le débit en d'anhydride carbonique en litre par minute,
    W étant la capacité de la poche en tonne,
    t étant le temps de brassage en minute.
  • Selon un deuxième mode préférentiel de réalisation de l'invention, dans lequel on utilise un bouchon poreux pour injecter l'anhydride carbonique gazeux dans le bain de métal fondu, le procédé est caractérisé en ce que le débit Q d'anhydride carbonique est tel que la relation suivante est vérifiée :

    Q⁰ʼ²⁵ x W⁻⁰ʼ⁶⁴ x S ⁰ʼ³³ x t ≦ 10

    formule danslaquelle :
    - Q est le débit de gaz injecté en l/mn
    - W est la capacité de la poche en tonne
    - S est la surface active du bouchon en contact avec l'acier en cm²
    - t est le temps de brassage en minute.
  • Dans le cas d'un bouchon poreux, la quantité supplémentaire msup de désoxydant à rajouter dans le bain de métal fondu est égale à :

    Figure imgb0003


    formule dans laquelle :
    Do est la teneur visée en désoxydant en fin de brassage exprimée en %,
    R est le rendement d'addition du désoxydant de calmage exprimé en %,
    Q est le débit d'anhydride carbonique exprimé en litre/minute,
    W est la capacité de la poche en tonnes,
    t est le temps de brassage en minute,
    S est la surface active du bouchon poreux en contact avec l'acier exprimée en cm².
  • Selon un troisième mode préférentiel de réalisation de l'invention, dans lequel on injecte le gaz dans la poche à l'aide d'un injecteur dans lequel le gaz passe par un espace ménagé entre les blocs de réfractaires non poreux, la section de passage du gaz étant controlée soit par des rainures dans les blocs réfractaires soit de manière préférentielle par une série de tubes métalliques de petits diamètres et de section circulaire ou aplatie, le procédé est caractérisé en ce que le débit Q d'anhydride carbonique dans le bain de métal est tel que la relation suivante est vérifiée :

    Q⁰ʼ²⁵ x W⁻⁰ʼ⁶⁴ x S ⁰ʼ³³ x t ≦ 7

    formule dans laquelle,
    Q est le débit d'anhydride carbonique exprimé en litre par minute,
    W est la quantité de métal traité dans la poche, exprimée en tonne,
    t est le temps de brassage en minute,
    S est la section mouillée en cm² qui dans le cas de tubes circulaires est égale à :
    Figure imgb0004
    tandis que dans le cas de rainures ou de tubes applatis :

    S = N x (L + 0,05) x (l + 0,05),

    N étant le nombre de passages élémentaires sur un injecteur,
    d étant le diamètre intérieur du tube en cours,
    L et l étant respectivement la plus grande longueur et la plus grande largeur de la rainure exprimées en cm.
  • Dans le cas d'injection à l'aide d'injecteurs tels que définis ci-dessus, la quantité supplémentaire msup de désoxydant à rajouter dans le métal fondu est donnée par la même formule que dans le cas de bouchons poreux, la surface S étant alors calculée selon l'une ou l'autre des formules mentionnées ci-dessus.
  • L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre non limitatif :
  • Exemple 1.
  • On réalise un brassage dans une poche de 180 tonnes à l'aide d'une lance, immergée au trois quart de la hauteur du bain d'acier fondu. Ce brassage est effectué à l'aide d'un débit d'anhydride carbonique gazeux de 200 litres par minute pendant 8 minutes. Le rendement d'addition R de l'aluminium est de 50%. La teneur en aluminium visé en fin de brassage est de 0.02%.
  • La quantité d'aluminium supplémentaire calculée msup est égale à 1,37 kg.
  • En ajoutant cette quantité supplémentaire d'aluminium avant le brassage effectué comme indiqué ci-dessus, on vérifie en réalisant une analyse d'un échantillon prélevé en fin de brassage que la teneur en aluminium de l'acier est bien de 0,02% (200ppm).
  • Exemple 2.
  • On réalise la même expérience que dans la cas de l'exemple 1 en utilisant un bouchon poreux placé dans le fond de la poche, dont la surface active est de 190cm².
  • La quantité supplémentaire msup d'aluminium à ajouter, calculée selon la formule mentionnée plus haut est égale à 1,76 kg.
  • En réalisant le brassage selon les indications données ci-dessus en ajoutant avant la début du brassage la quantité de 1.76 kg d'aluminium dans le bain d'acier, on constate par analyse d'un échantillon prélevé dans le bain en fin de brassage que la teneur en aluminium de l'échantillon est bien de 0,02% (200ppm).
  • Exemple 3.
  • On réalise dans les mêmes conditions que précédemment un brassage à l'aide d'un injecteur constitué de tubes de petites diamètres dont le diamètre équivalent ne dépasse pas 3 mm. On utilise une section égale à 0,7 cm².
  • La quantité d'aluminium msup à ajouter, calculée selon la formule mentionnée ci-dessus est de 1,27 kg. En réalisant le brassage selon les indications données ci-dessus, on vérifie qu'un échantillon prélevé en fin de brassage contient bien une teneur en aluminium égale à 0,02% (200ppm).
  • D'une manière générale, on notera qu'au cours du traitement du métal dans la poche selon le procédé décrit ci-dessus, il peut s'avérer préférable ou nécessaire de réaliser un inertage de la surface du bain d'acier pendant toute la durée du brassage. En particulier, ceci peut s'avérer nécessaire si l'on veut conserver une faible teneur en azote à l'acier traité. Cet inertage pourra s'effectuer par injection d'argon, d'azote (lorsque celui-ci n'est pas à exclure) ou d'anhydride carbonique au-dessus ou sur la surface du bain. Pour les deux premiers gaz cités, cet inertage peut être effectué à l'aide de gaz ou de liquide. Pour l'anhydride carbonique, cet inertage peut être effectué à l'aide de gaz ou de neige carbonique.

Claims (7)

1. Procédé de brassage en poche d'un acier calmé, dans lequel on injecte dans un bain d'acier fondu un gaz inerte, cette injection étant réalisée de sorte que les bulles de gaz montent à travers au moins une partie du bain de métal fondu et viennent éclater à la surface de celui-ci, de manière à créer une mise en mouvement du métal fondu lors de la montée du gaz, ledit bain d'acier ayant été au préalable calmé par incorporation d'un désoxydant en quantité suffisante pour qu'un excédent de celui-di reste à l'état dissous dans le bain, caractérisé en ce que, avant que ne débute le brassage dans la poche, on ajoute à l'excédent de désoxydant une quantité supplémentaire de désoxydant dans le bain de métal fondu et en ce que l'on réalise ensuite le brassage du métal fondu par injection d'anhydride carbonique sous forme gazeuse, le débit d'anhydride carbonique sous forme gazeuse, compte tenu de la capacité de la poche, restant inférieur ou égal au débit maximal correspondant à l'oxydation de la quantité supplémentaire de désoxydant.
2. Procédé selon la revendication 1 caractérisé en ce que la quantité supplémentaire de désoxydant est inférieure ou égale à 10% de l'éxcédent de désoxydant dissous.
3. Procédé selon la revendication 1 ou 2, dans lequel on utilise une lance pour injecter de l'anhydride carbonique gazeux dans le bain de métal fondu, caractérisé en ce que le débit Q de l'anhydride carbonique gazeux est tel que la relation suivante est vérifiée :

Figure imgb0005


relation dans laquelle :
B est le rapport entre la longueur de lance immergée dans le bain et la hauteur de métal dans la poche,
Q est le débit d'anhydride carbonique en litre par minute,
W est la capacité de la poche en tonne,
t est le temps de brassage en minute.
4. Procédé de brassage en poche selon la revendication 1 ou 2, dans lequel on utilise un bouchon poreux placé dans la paroi inférieure de la poche pour injecter l'anhydride carbonique gazeux dans le bain, caractérisé en ce que le débit Q d'anhydride carbonique gazeux est tel que la relation suivante est vérifiée :

Q⁰ʼ²⁵ x W⁻⁰ʼ⁶⁴ x S ⁰ʼ³³ x t ≦ 10

formule danslaquelle :
- Q est le débit de gaz injecté en l/mn
- W est la capacité de la poche en tonne
- S est la surface active du bouchon en contact avec l'acier en cm²
- t est le temps de brassage en minute.
5. Procédé de brassage en poche selon la revendication 1 ou 2dans lequel on utilise des injecteurs pour injecter l'anhydride carbonique gazeux dans le bain de métal fondu, caractérisé en ce que le débit Q d'anhydride carbonique gazeux est tel que la relation suivante est vérifiée :

Q⁰ʼ²⁵ x W⁻⁰ʼ⁶⁴ x S ⁰ʼ³³ x t ≦ 7

formule dans laquelle,
Q est le débit d'anhydride carbonique exprimé en litre par minute,
W est la quantité de métal traité dans la poche, exprimée en tonne,
t est le temps de brassage en mn,
S est la section mouillée en cm² qui dans le cas de tubes circulaires est égale à :
Figure imgb0006
tandis que dans le cas de rainures ou de tubes plats :

S = N x (L + 0,05) x (l + 0,05),

N étant le nombre de passages élémentaires sur un injecteur,
d étant le diamètre intérieur du tube en cm,
L et l étant respectivement la plus grande longueur et la plus grande largeur de la rainure exprimées en cm.
6. Procédé de brassage en poche selon la revendication 3, caractérisé en ce que la quantité supplémentaire de désoxydant msup à rajouter est inférieure ou égale à :

Figure imgb0007


Do étant la teneur visée en désoxydant en fin de brassage exprimée en %,
R étant le rendement d'addition de l'aluminium de calmage exprimé en %,
B étant le rapport entre la profondeur immergée de la lance et la hauteur de métal,
Q étant le débit en d'anhydride carbonique en litre par minute,
W étant la capacité de la poche en tonne,
t étant le temps de brassage par minute.
7. Procédé de brassage selon la revendication 4 ou 5, caractérisé en ce que la quantité supplémentaire de désoxydant à rajouter est inférieure ou égale à :

Figure imgb0008


formule dans laquelle :
Do est la teneur visée en désoxydant en fin de brassage exprimée en %,
R est le rendement d'addition du désoxydant de calmage exprimé en %,
Q est le débit d'anhydride carbonique exprimé en litre/minute,
W est la capacité de la poche en tonne,
t est le temps de brassage en minute,
S est la surface active du bouchon poreux en contact avec l'acier exprimée en cm².
EP88402046A 1987-08-12 1988-08-05 Procédé de brassage en poche d'acier à l'aide d'anhydride carbonique Expired - Lifetime EP0307262B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88402046T ATE70857T1 (de) 1987-08-12 1988-08-05 Verfahren zum ruehren von stahl in der pfanne mit hilfe von kohlendioxid.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8711458 1987-08-12
FR8711458A FR2619396B1 (fr) 1987-08-12 1987-08-12 Procede de brassage en poche d'acier a l'aide d'anhydride carbonique

Publications (2)

Publication Number Publication Date
EP0307262A1 true EP0307262A1 (fr) 1989-03-15
EP0307262B1 EP0307262B1 (fr) 1991-12-27

Family

ID=9354127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402046A Expired - Lifetime EP0307262B1 (fr) 1987-08-12 1988-08-05 Procédé de brassage en poche d'acier à l'aide d'anhydride carbonique

Country Status (11)

Country Link
US (1) US4891063A (fr)
EP (1) EP0307262B1 (fr)
JP (1) JPH01240613A (fr)
KR (1) KR890003967A (fr)
AT (1) ATE70857T1 (fr)
AU (1) AU608882B2 (fr)
CA (1) CA1335695C (fr)
DE (1) DE3867184D1 (fr)
ES (1) ES2027402T3 (fr)
FR (1) FR2619396B1 (fr)
ZA (1) ZA885896B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375722B1 (ko) * 2000-11-15 2003-03-15 오병영 판유리 연삭장치의 유지부재 승하강장치
DE102011008894A1 (de) * 2011-01-19 2012-07-19 Air Liquide Deutschland Gmbh Verfahren und Düse zur Unterdrückung einer Entwicklung von eisenhaltigem Dampf

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729309A (en) * 1969-03-07 1973-04-24 Nippon Kokan Kk Method for adding alloying elements to molten metals
BE882149A (fr) * 1980-03-07 1980-09-08 Centre Rech Metallurgique Perfectionnements aux procedes de traitement de metal liquide
US4238227A (en) * 1979-06-27 1980-12-09 United States Steel Corporation Cleansing of steel by gas rinsing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1206062A (en) * 1967-10-18 1970-09-23 Nippon Kokan Kk Deoxidation method
US3971655A (en) * 1974-08-21 1976-07-27 Nippon Steel Corporation Method for treatment of molten steel in a ladle
DE2527156B2 (de) * 1975-06-18 1980-09-04 Thyssen Niederrhein Ag Huetten- Und Walzwerke, 4200 Oberhausen Verfahren zur Vorbehandlung einer Stahlschmelze beim Stranggießen
JPS58207314A (ja) * 1982-05-28 1983-12-02 Sumitomo Metal Ind Ltd 鋼の精錬方法
JPS59145720A (ja) * 1983-02-09 1984-08-21 Nippon Kokan Kk <Nkk> 溶融金属撹「はん」ランスの冷却方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729309A (en) * 1969-03-07 1973-04-24 Nippon Kokan Kk Method for adding alloying elements to molten metals
US4238227A (en) * 1979-06-27 1980-12-09 United States Steel Corporation Cleansing of steel by gas rinsing
BE882149A (fr) * 1980-03-07 1980-09-08 Centre Rech Metallurgique Perfectionnements aux procedes de traitement de metal liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 8, no. 273 (C-256)[1710], 13 décembre 1984; & JP-A-59 145 720 (NIPPON KOKAN K.K.) 21-08-1984 *

Also Published As

Publication number Publication date
FR2619396A1 (fr) 1989-02-17
KR890003967A (ko) 1989-04-19
EP0307262B1 (fr) 1991-12-27
DE3867184D1 (de) 1992-02-06
ES2027402T3 (es) 1992-06-01
CA1335695C (fr) 1995-05-30
JPH01240613A (ja) 1989-09-26
ZA885896B (en) 1989-04-26
ATE70857T1 (de) 1992-01-15
AU2064588A (en) 1989-02-16
AU608882B2 (en) 1991-04-18
US4891063A (en) 1990-01-02
FR2619396B1 (fr) 1990-01-12

Similar Documents

Publication Publication Date Title
CA1226737A (fr) Procede de fabrication d&#39;aciers a haute usinabilite
EP0307262B1 (fr) Procédé de brassage en poche d&#39;acier à l&#39;aide d&#39;anhydride carbonique
CA2415244C (fr) Produit siderurgique en acier au carbone, notamment destine a la galvanisation, et ses procedes de realisation
FR2459836A1 (fr) Procede de desoxydation de l&#39;acier par addition d&#39;aluminium puis insufflation d&#39;argon
EP0033289B1 (fr) Procédé de décarburation des fontes au chrome
FR2630131A1 (fr) Procede de desulfuration des fontes
CA2404633C (fr) Traitement sous vide d&#39;un metal fondu avec brassage simultane par injection d&#39;helium
JPS63143216A (ja) 極低炭素・低窒素鋼の溶製方法
JP3561414B2 (ja) 溶鋼の減圧精錬方法
JPH02228418A (ja) 清浄鋼の製造方法
EP0156706B1 (fr) Procédé de purification des métaux par insufflation
RU2031138C1 (ru) Способ внепечной обработки стали
JPH0941028A (ja) 高清浄性極低炭素鋼の製造方法
SU981385A1 (ru) Способ выплавки стали дл автолиста
BE1005461A3 (fr) Procede et installation d&#39;affinage de ferromanganese carbure.
RU2016088C1 (ru) Способ внепечной обработки стали
JPS63157814A (ja) 極低窒素鋼の溶製方法
JPH0512410B2 (fr)
JPH08157934A (ja) 溶鋼のCa処理方法
FR2713660A1 (fr) Procédé de décarburation d&#39;acier contenu dans une poche.
FR2593520A1 (fr) Procede d&#39;elimination de soufre et d&#39;hydrogene de l&#39;acier
EP0023759A1 (fr) Procédé de recyclage de ferrailles
KR19990051469A (ko) 티타늄질화물 생성 억제에 의해 청정도를 향상시킨 스테인레스강 제조방법
GB1569158A (en) Methods of and apparatus for vacuum refining molten steel
JPH0543930A (ja) 常圧下における極低炭素鋼の溶製方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19911227

Ref country code: GB

Effective date: 19911227

Ref country code: AT

Effective date: 19911227

REF Corresponds to:

Ref document number: 70857

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 3867184

Country of ref document: DE

Date of ref document: 19920206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027402

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920831

Ref country code: LI

Effective date: 19920831

Ref country code: CH

Effective date: 19920831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 88402046.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960711

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960724

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960726

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960809

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970806

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19970806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

EUG Se: european patent has lapsed

Ref document number: 88402046.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050805