EP0301827A2 - Elément photographique avec couche de substratage - Google Patents
Elément photographique avec couche de substratage Download PDFInfo
- Publication number
- EP0301827A2 EP0301827A2 EP88306918A EP88306918A EP0301827A2 EP 0301827 A2 EP0301827 A2 EP 0301827A2 EP 88306918 A EP88306918 A EP 88306918A EP 88306918 A EP88306918 A EP 88306918A EP 0301827 A2 EP0301827 A2 EP 0301827A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- article
- coating
- inorganic
- particles
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 66
- 239000000839 emulsion Substances 0.000 claims description 51
- 108010010803 Gelatin Proteins 0.000 claims description 28
- 229920000159 gelatin Polymers 0.000 claims description 28
- 235000019322 gelatine Nutrition 0.000 claims description 28
- 235000011852 gelatine desserts Nutrition 0.000 claims description 28
- 239000008273 gelatin Substances 0.000 claims description 25
- 229910000077 silane Inorganic materials 0.000 claims description 24
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 239000010954 inorganic particle Substances 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 239000004848 polyfunctional curative Substances 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 239000004593 Epoxy Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 1
- 238000000576 coating method Methods 0.000 description 63
- 239000011248 coating agent Substances 0.000 description 60
- 239000010410 layer Substances 0.000 description 39
- 229910001868 water Inorganic materials 0.000 description 31
- 238000000034 method Methods 0.000 description 30
- -1 silver halide Chemical class 0.000 description 26
- 239000000463 material Substances 0.000 description 22
- 229910044991 metal oxide Inorganic materials 0.000 description 22
- 150000004706 metal oxides Chemical class 0.000 description 22
- 229910052709 silver Inorganic materials 0.000 description 19
- 239000004332 silver Substances 0.000 description 19
- 239000008119 colloidal silica Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 239000000499 gel Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 206010070834 Sensitisation Diseases 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 230000008313 sensitization Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000084 colloidal system Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000007822 coupling agent Substances 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 229940068984 polyvinyl alcohol Drugs 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- JEHKKBHWRAXMCH-UHFFFAOYSA-N benzenesulfinic acid Chemical compound O[S@@](=O)C1=CC=CC=C1 JEHKKBHWRAXMCH-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000006224 matting agent Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002491 polymer binding agent Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003527 tetrahydropyrans Chemical group 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical class C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- GGZHVNZHFYCSEV-UHFFFAOYSA-N 1-Phenyl-5-mercaptotetrazole Chemical compound SC1=NN=NN1C1=CC=CC=C1 GGZHVNZHFYCSEV-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- JAAIPIWKKXCNOC-UHFFFAOYSA-N 1h-tetrazol-1-ium-5-thiolate Chemical class SC1=NN=NN1 JAAIPIWKKXCNOC-UHFFFAOYSA-N 0.000 description 1
- HAZJTCQWIDBCCE-UHFFFAOYSA-N 1h-triazine-6-thione Chemical class SC1=CC=NN=N1 HAZJTCQWIDBCCE-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PHPYXVIHDRDPDI-UHFFFAOYSA-N 2-bromo-1h-benzimidazole Chemical class C1=CC=C2NC(Br)=NC2=C1 PHPYXVIHDRDPDI-UHFFFAOYSA-N 0.000 description 1
- AYPSHJCKSDNETA-UHFFFAOYSA-N 2-chloro-1h-benzimidazole Chemical class C1=CC=C2NC(Cl)=NC2=C1 AYPSHJCKSDNETA-UHFFFAOYSA-N 0.000 description 1
- KRTDQDCPEZRVGC-UHFFFAOYSA-N 2-nitro-1h-benzimidazole Chemical class C1=CC=C2NC([N+](=O)[O-])=NC2=C1 KRTDQDCPEZRVGC-UHFFFAOYSA-N 0.000 description 1
- JSIAIROWMJGMQZ-UHFFFAOYSA-N 2h-triazol-4-amine Chemical class NC1=CNN=N1 JSIAIROWMJGMQZ-UHFFFAOYSA-N 0.000 description 1
- CBHTTYDJRXOHHL-UHFFFAOYSA-N 2h-triazolo[4,5-c]pyridazine Chemical class N1=NC=CC2=C1N=NN2 CBHTTYDJRXOHHL-UHFFFAOYSA-N 0.000 description 1
- KSCAZPYHLGGNPZ-UHFFFAOYSA-N 3-chloropropyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CCCCl KSCAZPYHLGGNPZ-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- OCVLSHAVSIYKLI-UHFFFAOYSA-N 3h-1,3-thiazole-2-thione Chemical class SC1=NC=CS1 OCVLSHAVSIYKLI-UHFFFAOYSA-N 0.000 description 1
- NYYSPVRERVXMLJ-UHFFFAOYSA-N 4,4-difluorocyclohexan-1-one Chemical compound FC1(F)CCC(=O)CC1 NYYSPVRERVXMLJ-UHFFFAOYSA-N 0.000 description 1
- UTMDJGPRCLQPBT-UHFFFAOYSA-N 4-nitro-1h-1,2,3-benzotriazole Chemical class [O-][N+](=O)C1=CC=CC2=NNN=C12 UTMDJGPRCLQPBT-UHFFFAOYSA-N 0.000 description 1
- GIQKIFWTIQDQMM-UHFFFAOYSA-N 5h-1,3-oxazole-2-thione Chemical compound S=C1OCC=N1 GIQKIFWTIQDQMM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910020175 SiOH Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 1
- KOEFSMLBFZGZLD-UHFFFAOYSA-L [bis(2-ethylhexoxy)-oxidophosphaniumyl] dihydrogen phosphate [bis(2-ethylhexoxy)-oxidophosphaniumyl] phosphate ethane-1,2-diolate titanium(4+) Chemical compound [Ti+4].[O-]CC[O-].CCCCC(CC)CO[P+]([O-])(OCC(CC)CCCC)OP(O)(O)=O.CCCCC(CC)CO[P+]([O-])(OCC(CC)CCCC)OP([O-])([O-])=O KOEFSMLBFZGZLD-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- AKCUHGBLDXXTOM-UHFFFAOYSA-N hydroxy-oxo-phenyl-sulfanylidene-$l^{6}-sulfane Chemical compound SS(=O)(=O)C1=CC=CC=C1 AKCUHGBLDXXTOM-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004957 nitroimidazoles Chemical class 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- NDGRWYRVNANFNB-UHFFFAOYSA-N pyrazolidin-3-one Chemical class O=C1CCNN1 NDGRWYRVNANFNB-UHFFFAOYSA-N 0.000 description 1
- HBCQSNAFLVXVAY-UHFFFAOYSA-N pyrimidine-2-thiol Chemical class SC1=NC=CC=N1 HBCQSNAFLVXVAY-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- JJJPTTANZGDADF-UHFFFAOYSA-N thiadiazole-4-thiol Chemical class SC1=CSN=N1 JJJPTTANZGDADF-UHFFFAOYSA-N 0.000 description 1
- 125000005323 thioketone group Chemical group 0.000 description 1
- 150000004886 thiomorpholines Chemical class 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- DAHWFTWPSFSFMS-UHFFFAOYSA-N trihydroxysilane Chemical compound O[SiH](O)O DAHWFTWPSFSFMS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 239000001043 yellow dye Substances 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/91—Photosensitive materials characterised by the base or auxiliary layers characterised by subbing layers or subbing means
Definitions
- the present invention relates to photographic emulsions on substrates having a subbing or priming layer thereon.
- Typical photographic supports comprise a base material (e.g., polyester, cellulose triacetate, or paper) with a subbing layer on at least one surface to assist in the adherence of the gelatin layers, including the emulsion layers, to the base.
- base material e.g., polyester, cellulose triacetate, or paper
- subbing layer on at least one surface to assist in the adherence of the gelatin layers, including the emulsion layers, to the base.
- Conventional subbing layers are described in U.S. Patent Nos. 3,343,840, 3,495,984, 3,495,985 and 3,788,856.
- the present invention relates to photographic elements having at least one silver halide emulsion layer over a substrate, where the substrate has at least one polymeric surface to which is adhered a layer comprising a gelled or hydrolyzed network of inorganic particles, preferably inorganic oxide particles, containing an ambifunctional silane.
- the present invention relates to photographic elements. These elements comprise a substrate having at least one silver halide emulsion layer on a surface thereof. A surface with an emulsion thereon is hereinafter referred to as a major surface of the substrate.
- the silver halide emulsion generally comprises silver halide grains (also referred to as crystals or particles) carried in a water-penetrable binder medium of a hydrophilic colloid. It has been recently found that the use of a gelled or hydrolyzed network of inorganic particles, preferably oxides, as a layer on a polymeric surface provides an excellent subbed (or primed) substrate for photographic emulsions (U.S. Patent Application Serial No. 40930, filed April 21, 1987).
- this gelled particulate layer is capable of providing one or more excellent properties to the photographic element including, but not limited to antistatic properties, ease of coatability of the particulate layer, photoinertness (harmless to the photographic emulsion and its properties), adhesion (both wet and dry, to both the substrate and the emulsion layers), and reduction in specular reflectance (i.e., antihalation properties).
- wet adhesion can be weak during development processing. It has been hypothesized that the bond between the gelled network and the gelatin is an acid/base bond.
- this bond is sufficiently weakened so that other materials in the emulsion will compete with the gelatin for reaction with sites on the sol-gel coating. This can weaken the bond between the gelatin layer and gelled network layer. Lifting or separation of the layers can result.
- ambifunctional silane means that the compound has reactive silanes on one end of the molecule and a different reactive species capable of reacting with a photographic hardener for gelatin or directly with gelatin.
- This second functionality enables the compound to react with the inorganic particle (through the silane group) and also react with the gelatin (reacting with the gelatin hardener which also reacts with the gelatin).
- the preferred second functional groups on the compound are amino groups and epoxy (e.g., glycidyl) groups.
- the second functionality may be present as a single functional moiety or may be present as a multiple number of such groups.
- a formula that may be used to represent many of the ambifunctional silanes of the present invention is (Q) n -R-Si(OR1)3 wherein R1 is alkyl or aryl, R is an organic group with (n+1) external bonds or valences, n is 0, 1 or 2, and Q is a moiety reactive with photographic hardeners or directly with gelatin (e.g., alpha-amino acids).
- R1 is alkyl of 1 to 10 carbon atoms and most preferably l to 4 carbon atoms.
- R is preferably an aliphatic or aromatic bridging group such as alkylene, arylene, alkarylene, or aralkylene which may be interrupted with ether linkages (oxygen or thioethers), nitrogen linkages, or other relatively inert moieties. More preferably R is alkylene of 1 to 12 carbon atoms, preferably 2 to 8 carbon atoms, with n equal to 1.
- Q is preferably epoxy, or amino, primary or secondary, more preferably primary amino.
- the second functional group may be present as a multiple number of such groups it is meant that the moiety (Q) n -R- may include moieties such as NH2-(CH2)2-NH-(CH2)2-NH-(CH2)3- NH2-(CH2)-3 (NH2)2-CH-CH2- and the like.
- the substrates of the invention may comprise any material having at least one polymeric surface which is to be used as the major surface of the substrate.
- the finished emulsion is coated on a suitable support.
- Supports which can be used include films of synthetic polymers such a polyalkyl acrylate or methacrylate, polystyrene, polyvinyl chloride, partial formalation polyvinyl alcohol, polycarbonate, polyesters such as polyethylene terephthalate, and polyamides, films of cellulose derivatives such as cellulose nitrate, cellulose acetate, cellulose triacetate, and cellulose acetate butyrate, paper covered with ⁇ -olefin polymers or gelatin (a natural polymer), for example, and synthetic papers made of polystyrene; that is, any of transparent or opaque support commonly used in photographic elements can be used.
- synthetic polymers such as polyalkyl acrylate or methacrylate, polystyrene, polyvinyl chloride, partial formalation polyvinyl alcohol, polycarbonate, polyesters such as polyethylene terephthalate, and polyamides
- films of cellulose derivatives such
- Primed polymeric substrates are also useful, including, but not limited to, gelatin-primed polymers (e.g., gelatin on poly(ethylene terephthalate)), and poly(vinylidene chloride) copolymers on polyester.
- gelatin-primed polymers e.g., gelatin on poly(ethylene terephthalate)
- poly(vinylidene chloride) copolymers on polyester e.g., poly(ethylene terephthalate)
- Other primers such as aziridines, acrylates, and melamine-formaldehyde are also known. This includes polymeric materials loaded with pigments and particulates such as titania to improve the white background of the image and to provide antihalation or other sensitometric effects.
- the substrates of the invention may be used with any type of photographic silver halides including, but not limited to silver chloride, silver bromide, silver chlorobromide, silver iodochlorobromide, silver bromoiodide and silver chloroiodide grains, which may be in any of the many available crystal forms or habits including, but not limited to cubic, tetrahedral, lamellar, tabular, orthorhombic grains, etc.
- Soluble silver salts and soluble halides can be reacted by methods such as a single jet process, a double jet process, and a combination thereof.
- a procedure can be employed in which silver halide grains are formed under the presence of an excess of silver ions (a so-called reverse mixing process).
- a so-called controlled double jet process can also be employed in which the pAg of the liquid phase wherein the silver halide is formed is kept constant.
- Two or more silver halide emulsions which have been prepared independently may be used in combination with each other.
- Soluble salts are usually removed from the silver halide emulsion after the precipitate formation or physical ripening of the silver halide emulsion.
- a noodle water-washing method can be employed in which the soluble salts are removed by gelling the emulsions.
- a flocculation method utilizing inorganic salts containing polyvalent anions, anionic surface active agents, anionic polymers or gelatin derivatives can also be used.
- the silver halide emulsions are usually chemically sensitized. This chemical sensitization can be carried out, for example, by the methods as described in H. Frieser ed., Die Unen der Photographischen Sawe mit Silverhalogeniden , Akademische Verlagsgesellschaft, pp. 675-734 (1968).
- a sulfur sensitization method using sulfur-containing compounds capable of reacting with active gelatins and silver e.g., thiosulfates, thioureas, mercapto compounds, and rhodanines
- a reduction sensitization method using reducing substances e.g., stannous salts, amines, hydrazine derivatives, formamidinesulfinic acid, and silane compounds
- a noble metal sensitization method using noble metal compounds e.g., gold complex salts, and metal complex salts of Group VIII metals, such as platinum, rhodium, iridium, and palladium, of the Periodic Table
- noble metal compounds e.g., gold complex salts, and metal complex salts of Group VIII metals, such as platinum, rhodium, iridium, and palladium, of the Periodic Table
- the sulfur sensitization method is described in detail, for example, in U.S. Patent Nos. 1,574,944, 2,410,689, 2,278,947, 2,728,668 and 3,656,955; the reduction sensitization method, in U.S. Patent Nos. 2,983,609, 2,419,974 and 4,054,458; and the noble metal sensitization method, in U.S. Patent Nos. 2,399,083, 2,448,060 and British Patent No. 618,061.
- photographic emulsions which are used in the present invention may be incorporated various compounds for the purpose of, e.g., preventing the formation of fog during the production, storage or photographic processing of the light-sensitive material, or stabilizing photographic performance. That is, many compounds known as antifoggants or stabilizers, such as azoles (E.G., benzothiazolium salts, nitroimidazoles, nitrobenzimidazoles, chlorobenzimidazoles, bromobenzimidazoles, mercaptothiazoles, mercaptobenzothiazoles, mercaptobenzimidazoles, mercaptothiadiazoles, aminotriazoles, benzotriazoles, nitrobenzotriazoles, and mercaptotetrazoles, (particularly 1-phenyl-5-mercaptotetrazole), mercaptopyrimidines, mercaptotriazines, thioketo compounds (e.g., oxazoline
- the photographic emulsion layers of the light-sensitive material of the present invention may contain polyalkylene oxide or its derivatives (e.g., ethers, esters and amines), thioether compounds, thiomorpholines, quaternary ammonium salt compounds, urethane derivatives, urea derivatives, imidazole derivatives, 3-pyrazolidones, hydroquinone or its derivatives, and the like for the purpose of increasing sensitivity or contrast, or accelerating development.
- polyalkylene oxide or its derivatives e.g., ethers, esters and amines
- thioether compounds e.g., thiomorpholines
- quaternary ammonium salt compounds e.g., urethane derivatives, urea derivatives, imidazole derivatives, 3-pyrazolidones, hydroquinone or its derivatives, and the like for the purpose of increasing sensitivity or contrast, or accelerating development.
- binders or protective colloids to be used in the emulsion layers and intermediate layer of the light-sensitive material of the present invention it is advantageous to use gelatins.
- other hydrophilic colloids can be used.
- proteins such as gelatin derivatives, graft polymers of gelatin and other polymers, albumin, and casein, sugar derivatives such as cellulose derivatives (e.g., hydroxyethyl cellulose, carboxymethyl cellulose, and cellulose sulfate), sodium alginate, and starch derivatives, and various synthetic hydrophilic polymeric substances, homopolymers or copolymers, such as polyvinyl alcohol, polyvinyl alcohol partial acetal, poly(N-vinyl)pyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyvinyl imidazole, and polyvinyl pyrazole can be used.
- the light-sensitive material of the present invention is particularly effectively used as a black-and-white reflection light-sensitive material which is to be subjected to rapid processing.
- it can be used as an X-ray recording light-sensitive material, a photomechanical process light-sensitive material, a light-sensitive material to be used in a facsimile system, etc., and further, as a multilayer, multicolor photographic light-sensitive material having at least two different spectral sensitivities.
- the multilayer, multicolor photographic material usually comprises a support, and at least one red-sensitive emulsion layer, at least one green-sensitive emulsion layer and at least one blue-sensitive emulsion layer on the support.
- the order in which the above layers are arranged can be chosen appropriately.
- the red-sensitive emulsion layer contains cyan dye forming couplers
- the green-sensitive emulsion layer contains magenta dye forming couplers
- the blue-sensitive emulsion layer contains yellow dye forming couplers.
- other combinations can be employed. Even in the case of the multilayer, multicolor photographic material, the effects of the present invention are exhibited significantly in a reflection light-sensitive material.
- Spectral sensitizing dyes may be used in one or more silver halide emulsions useful on the subbed substrates of the present invention. These sensitizing dyes are well known in the art to increase the sensitization of silver halide grains to various portions of the electromagnetic spectrum such as the ultraviolet, blue, green, yellow, orange, red, near infrared, and infrared. These dyes may be used singly or in combination with other dyes to sensitize the emulsions.
- the substrate of the invention bears a coating comprising a continuous gelled network of inorganic metal oxide particles, the network containing an ambifunctional silane.
- the particles preferably have an average primary particle size of less than about 500 or 200 ⁇ .
- continuous refers to covering the surface of the substrate with virtually no straight-line penetrable discontinuities or gaps in the areas where the gelled network is applied.
- the layer may be and usually is porous, without significant straight-line pores or gaps in the layer.
- gelled network refers to an aggregation of colloidal particles linked together to form a porous three-dimensional network.
- the silane will be hydrolyzed at the positions described as (OR′) at page 4, line 6, substituting hydroxy groups for the (OR′), groups. For example, a triethoxysilane will become a trihydroxysilane.
- the hydrolyzed silane molecules may associate with the metal oxide particles by "oxane" bonding in a reversible fashion (SiOH + HOM(particle) ⁇ Si-O-M(particle)).
- the coating should be thicker than a monolayer of particles.
- the coating comprises a thickness equal to or greater than three average particle diameters and more preferably equal to or greater than five particle diameters.
- the articles of the invention comprise a substrate which may be transparent, translucent, or opaque to visible light having at least one polymeric surface, and have formed thereon a coating in the form of a continuous gelled network of inorganic oxide particles with an adhesion promoting effective amount of an ambifunctional silane.
- the coated article preferivelyably exhibits a total average increase in transmissivity of normal incident light of at least two percent and up to as much as ten percent or more, when compared to an uncoated substrate, depending on the substrate coated, over a range of wavelengths extending at least between 400 to 900 nm.
- An increase in light transmission of two percent or more is generally visually apparent and is sufficient to produce a measurable increase in energy transmissivity when the coated substrate is used.
- An increase in transmissivity is also present at wavelengths into the infrared portion of the spectrum.
- the gelled network is a porous coating having voids between the inorganic oxide particles. If the porosity is too small, the antireflectance may be reduced. If the porosity is too large, the coating is weakened and may have reduced adhesion to the substrate.
- the colloidal solution from which the gelled network is obtained is capable of providing porosity of about 25 to 70 volume percent, preferably about 30 to 60 volume percent when dried. The porosity can be determined by drying a sufficient amount of the colloidal solution to provide a dried product sample of about 50 to 100 mg and analyzing the sample using a "Quantasorb" surface area analyzer available from Quantachrome Corp., Syosett, NY.
- the voids of the porous coating provide a multiplicity of subwavelength interstices between the inorganic particles where the index of refraction abruptly changes from that of air to that of the coating material.
- These subwavelength interstices which are present throughout the coating layer, provide a coating which may have a calculated index of refraction (RI) of from about 1.15 to 1.40, preferively 1.20 to 1.30 depending on the porosity of the coating.
- RI index of refraction
- the average primary particle size of the colloidal inorganic metal oxide particles is preferably less than about 200 ⁇ .
- the average primary particle size of the colloidal inorganic metal oxide particles is more preferably less than about 70 ⁇ . When the average particle size becomes too large, the resulting dried coating surface is less efficient as an antireflection coating.
- the average thickness of the dried coating is preferably from about 300 to 10,000 ⁇ , more preferably 800 to 5000 ⁇ and most preferably between 900 and 2000 ⁇ . Such coatings provide good antistatic properties. When the coating thickness is too great, the coating has reduced adhesion and flexibility and may readily flake off or form powder under mechanical stress.
- Articles such as transparent sheet or film materials may be coated on a single side or on both sides to increase light transmissivity, the greatest increase being achieved by coating both sides.
- the process of coating the layer of the present invention comprises coating a substrate with a solution of colloidal inorganic metal oxide particles (and preferably the silane at this point), the solution preferably containing at least 0.2 or 0.5 to 15 weight percent of the particles, the particles preferably having an average primary particle size less than about 500 or 200 ⁇ , more preferably less than about 70 ⁇ , and drying the coating at a temperature less than that which degrades the substrate, preferably less than about 200°C, more preferably in the range of 80 to 120°C.
- the coating provides the substrate with an average reduction in specular reflectance of at least two percent over wavelengths of 400 to 900 nm.
- Coating may be carried out by standard coating techniques such as bar coating, roll coating, knife coating curtain coating, rotogravure coating, spraying and dipping.
- the substrate may be treated prior to coating to obtain a uniform coating using techniques such as corona discharge, flame treatment, and electron beam. Generally, no pretreatment is required.
- the ambifunctional silane may be added before, during or after coating. It is preferred to add the silane to the coating mixture before coating. If the silane is added after the "gelled network" has been coated and dried, it should be added from a water-containing solution, so that the silane will be in its hydrolyzed form.
- the colloidal inorganic oxide solution e.g., a hydrosol or organosol
- a moderately low temperature generally less than about 200°C, preferably 80-120°C, to remove the water or organic liquid medium.
- the coating may also be dried at room temperature, provided the drying time is sufficient to permit the coating to dry completely.
- the drying temperature should be less than at which the substrate degrades.
- the resulting coating is hygroscopic in that it is capable of absorbing and/or rehydrating water, for example, in an amount of up to about 15 to 20 weight percent, depending on ambient temperature and humidity conditions.
- the colloidal inorganic oxide solution utilized in the present invention comprises finely divided solid inorganic metal oxide particles in a liquid.
- solution includes dispersions or suspensions of finely divided particles of ultramicroscopic size in a liquid medium.
- the solutions used in the practice of this invention are clear to milky in appearance.
- Inorganic metal oxides particularly suitable for use in the present invention are those in which the metal oxide particles are negatively charged, which includes tin oxide (SnO2), titania, antimony oxide (Sb2O5), silica, and alumina-coated silica as well as other inorganic metal oxides of Groups III and IV of the Periodic Table and mixtures thereof.
- SnO2 tin oxide
- Tia titania
- Sb2O5 antimony oxide
- silica silica
- alumina-coated silica as well as other inorganic metal oxides of Groups III and IV of the Periodic Table and mixtures thereof.
- the colloidal coating solution preferably contains about 0.2 to 15 weight percent, more preferably about 0.5 to 8 weight percent, colloidal inorganic metal oxide particles. At particle concentrations about 15 weight percent, the resulting coating may have reduced uniformity in thickness and exhibit reduced adhesion to the substrate surface. Difficulties in obtaining a sufficiently thin coating to achieve increased light transmissivity and reduced reflection may also be encountered at concentrations above about 15 weight percent. At concentrations below 0.2 weight percent, process inefficiencies result due to the large amount of liquid which must be removed and antireflection properties may be reduced.
- the thickness of the applied wet coating solution is dependent on the concentration of inorganic metal oxide particles in the coating solution and the desired thickness of the dried coating.
- the thickness of the wet coating solution is preferably such that the resulting dried coating thickness is from about 80 to 500 nm thick, more preferably about 90 to 200 nm thick.
- the coating solution may also optionally contain a surfactant to improve wettability of the solution on the substrate, but inclusion of an excessive amount of surfactant may reduce the adhesion of the coating to the substrate.
- a surfactant include "Tergitol” TMN-6 (Union Carbide Corp.) and “Triton” X-100 (Rohm and Haas Co.).
- the surfactant can be used in amounts of up to about 0.5 weight percent of the solution.
- the coating solution may optionally contain a very small amount of polymeric binder, particularly a hydrophilic polymer binder, to improve scratch resistance, or to reduce formation of particulate dust during subsequent use of the coated substrate.
- polymeric binder particularly a hydrophilic polymer binder
- useful polymeric binders include polyvinyl alcohol, polyvinyl acetate, gelatin, polyesters, polyamides, polyvinyl pyrrolidone, copolyesters, copolymers of acrylic acid and/or methacrylic acid, and copolymers of styrene.
- the coating solution can contain up to about 5 weight percent of the polymeric binder based on the weight of the inorganic metal oxide particles.
- Useful amounts of polymeric binder are generally in the range of about 0.1 to 5 weight percent to reduce particulate dust.
- the ambifunctional silane is generally present as at least 0.1% by weight of the solids content of the gelled particulate layer.
- the ambifunctional silane is present as from 1 to 20% by weight of the solids content of the particulate layer. More preferably the silane is present as 0.2 to 10% by weight of the solids content of the particulate layer.
- the sol as received from the manufacturer is diluted with water to the desired percent solids. Then the specified coupling agent is added to the diluted sol. The amount of coupling agent is calculated according to the percent weight to metal oxide solids. After addition of coupling agent the mixture is vigorously shaken for 30 sec. to dissolve the coupling agent. Then, 0.05-.1% wt. of Triton X-100 surfactant is added as a coating aid.
- This mixture is coated onto an appropriate substrate film by: l ) a 10 cm x 20 cm sheet of film is placed on a flat surface; 2) a bead of the mixture is drawn across the top of the sheet (about 1 milliliter); 3) the mixture is spread across the sheet by means of a #4 stainless steel wire-wound rod; 4) the coated sheet is dried in an oven for about two minutes at 100°C. The dried coated sheets are allowed to stand at room temperature for one day or more before further use.
- a standard x-ray photographic emulsion is prepared and coated onto the above sheets by: 1) the temperature of the emulsion mixture is adjusted to about 40°C; 2) a bead of the emulsion (approx. 2 ml) is drawn across the top of a sol-coated sheet; 3) the emulsion is spread across the sheet by means of a #24 stainless steel wire-wound rod; 4) the emulsion coated sheet is dried at 50°C for about two hours.
- Adhesion Test Methods The following method was used to test all of the experimental samples for emulsion adhesion. Following the tests described below, each sample is given a grade between zero (0) and 10, according to the approximate percentage of emulsion remaining on the sample. Thus if 50% of the emulsion remains the grade is "5". If all of the emulsion remains, the grade is "10".
- the test method is: 1) a 5 cm x 10 cm portion of the x-ray emulsion coated material from above is immersed in x-ray developer at room temperature for two minutes; 2) the material is removed from the developer and, while still wet with developer, scribed in a cross-hatch pattern with the corner of a razor blade, and rubbed with firm pressure in a circular motion for 24 cycles with a rubber glove-tipped index finger; 3) the sample is washed in cold water and dried; 4) a 2.5 cm x 5 cm portion of 3M #610 tape is affixed over the cross-hatched area of the test material and pulled off with a vigorous snap; 5) the sample is graded as described above for emulsion adhesion.
- the substrate film used in the examples was 4-mil PET primed with about 0.04 microns of a poly(vinylidene chloride) containing terpolymer.
- GPS is ⁇ -glycidoxypropyltrimethoxysilane.
- a silica-coated sample was prepared using the coating mixture 2B and the above-described preparative method. This sample was dipped into a solution of 0.10% APS in ethanol for 15 seconds and air dried. This was then emulsion coated and tested according to the above procedures. The adhesion test result was "10".
- silica-coated samples were prepared using the coating mixture 2B and the above-described preparative method. These samples were coated with x-ray emulsion modified as follows:
- a silica-coated sample was prepared using the coating mixture 1C, except that 0.56g of K&K #1312 gelatin was dissolved in the mixture. This was emulsion coated and tested according to the above procedures. The adhesion test result was "10". Furthermore the conductive and optical properties of the silica-coated sample were comparable to those of silica-coated sample prepared with mixture 1C.
- sol-gel and gelation as they apply to the use of inorganic dispersions of particles in the formation of layers, are well understood in the art. Sol-gels, as previously described, comprise a rigidized dispersion of a colloid in a liquid, that is the gelled network previously described. Gelation is the process of rigidizing the sol-gel.
- the liquid extracted sol-gel coating (which will generally retain some significant amounts of liquid, e.g., at least 0.1% by weight up to 10% or 15% or more by weight in some cases) can be described in a number of various physical terms which distinguish it from other particulate constructions such as sintered, adhesively bound, or thermally fused particles.
- the association of the particles in a sol-gel system is a continuous sol-gel network which is known to mean in the art that the particles form an inorganic polymer network at the intersection of the particle (e.g., as with silica sol-gels), or an inorganic salt system. Bonding forces such as van der Waals forces and hydrogen bonding can form an important part of the mechanism of particle association.
- These characterizations of sol-gel compositions are quite distinct from the use of polymer binders which form a binding medium to keep particles associated and where the particles themselves do not exert direct bonding forces on one another.
- the size of the colloid particles in the sol-gel is important. Processes where particulates are ball-milled generally produce particles of no less than about 1 micron. Unless a chemical process is used to form the particles of smaller size, which agglomerate to effectively form large particles which are then ball-milled to break up the agglomeration, the particle size limit of about l micron from physical processing tends to hold true.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7968787A | 1987-07-30 | 1987-07-30 | |
US79687 | 1987-07-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0301827A2 true EP0301827A2 (fr) | 1989-02-01 |
EP0301827A3 EP0301827A3 (en) | 1989-07-12 |
EP0301827B1 EP0301827B1 (fr) | 1993-07-07 |
Family
ID=22152154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88306918A Expired - Lifetime EP0301827B1 (fr) | 1987-07-30 | 1988-07-27 | Elément photographique avec couche de substratage |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0301827B1 (fr) |
JP (1) | JP2823207B2 (fr) |
KR (1) | KR970007784B1 (fr) |
CN (1) | CN1031300C (fr) |
AR (1) | AR243687A1 (fr) |
AU (1) | AU603908B2 (fr) |
BR (1) | BR8803780A (fr) |
CA (1) | CA1338180C (fr) |
DE (1) | DE3882178T2 (fr) |
MX (1) | MX12346A (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709228A1 (fr) * | 1994-10-11 | 1996-05-01 | Minnesota Mining And Manufacturing Company | Elément donneur d'image et élément récepteur d'image par transfert thermique et leurs applications lithographiques |
EP0713135A2 (fr) | 1994-11-21 | 1996-05-22 | Eastman Kodak Company | Elément formateur d'image comprenant une couche électro-conductrice contenant des particules d'oxyde d'étain dopé à l'antimoine |
US5591530A (en) * | 1992-10-01 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Flexible optically uniform sign face substrate |
EP0785464A1 (fr) | 1996-01-18 | 1997-07-23 | Eastman Kodak Company | Elément d'imagerie avec couche électroconductrice |
EP0790138A1 (fr) | 1996-02-15 | 1997-08-20 | Minnesota Mining And Manufacturing Company | Procédé pour l'enregistrement par transfert thermique induit par laser |
EP1050780A1 (fr) * | 1999-05-07 | 2000-11-08 | FERRANIA S.p.A. | Elément photographique avec une couche améliorant l'adhésion au support |
US8673419B2 (en) | 2008-03-14 | 2014-03-18 | 3M Innovative Properties Company | Stretch releasable adhesive tape |
US9890301B2 (en) | 2014-12-30 | 2018-02-13 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
US10081745B1 (en) | 2014-12-30 | 2018-09-25 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
US10414954B2 (en) | 2014-12-30 | 2019-09-17 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2002449C (fr) * | 1988-12-05 | 2001-05-08 | Mark A. Strobel | Article autocollant a couche d'accrochage |
US5236818A (en) * | 1992-11-02 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5344751A (en) * | 1993-05-28 | 1994-09-06 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5445866A (en) * | 1993-10-19 | 1995-08-29 | Minnesota Mining And Manufacturing Company | Water-based transparent image recording sheet |
US5464900A (en) * | 1993-10-19 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Water soluble organosiloxane compounds |
US5771764A (en) * | 1995-11-13 | 1998-06-30 | Eastman Kodak Company | Use of cutting tools for photographic manufacturing operations |
US5674654A (en) * | 1996-09-19 | 1997-10-07 | Eastman Kodak Company | Imaging element containing an electrically-conductive polymer blend |
US5981126A (en) * | 1997-09-29 | 1999-11-09 | Eastman Kodak Company | Clay containing electrically-conductive layer for imaging elements |
US5827630A (en) * | 1997-11-13 | 1998-10-27 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing metal antimonate and non-conductive metal-containing colloidal particles and a transparent magnetic recording layer |
US5866287A (en) * | 1997-11-13 | 1999-02-02 | Eastman Kodak Company | Imaging element comprising and electrically-conductive layer containing metal antimonate and non-conductive metal-containing colloidal particles |
US5869227A (en) * | 1997-12-18 | 1999-02-09 | Eastman Kodak Company | Antistatic layer with smectite clay and an interpolymer containing vinylidene halide |
US6190846B1 (en) | 1998-10-15 | 2001-02-20 | Eastman Kodak Company | Abrasion resistant antistatic with electrically conducting polymer for imaging element |
US6124083A (en) * | 1998-10-15 | 2000-09-26 | Eastman Kodak Company | Antistatic layer with electrically conducting polymer for imaging element |
US6168911B1 (en) | 1998-12-18 | 2001-01-02 | Eastman Kodak Company | Formulations for preparing metal oxide-based pigment-binder transparent electrically conductive layers |
US6077655A (en) * | 1999-03-25 | 2000-06-20 | Eastman Kodak Company | Antistatic layer for imaging element containing electrically conductive polymer and modified gelatin |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3169865A (en) * | 1960-07-29 | 1965-02-16 | Eastman Kodak Co | Zirconia subbed photographic paper |
UST873009I4 (en) * | 1969-11-07 | 1970-04-14 | Defensive publication | |
US3615538A (en) * | 1968-08-02 | 1971-10-26 | Printing Dev Inc | Photosensitive printing plates |
FR2169217A1 (fr) * | 1972-01-26 | 1973-09-07 | Hitachi Ltd | |
US4048357A (en) * | 1972-10-10 | 1977-09-13 | Agfa-Gevaert N.V. | Method of coating multi-layer graphic film |
FR2385771A1 (fr) * | 1977-03-28 | 1978-10-27 | Minnesota Mining & Mfg | Pellicules resistant a l'abrasion et absorbant les radiations ultraviolettes |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1286467A (en) | 1968-11-18 | 1972-08-23 | Agfa Gevaert | Proteinaceous colloid compositions and their adherence to glass supports |
GB1437185A (en) * | 1972-10-10 | 1976-05-26 | Agfa Gevaert | Non-stocking achroring layers for polyester film |
JPS5583042A (en) * | 1978-12-18 | 1980-06-23 | Fuji Photo Film Co Ltd | Photographic material |
US4374898A (en) * | 1981-06-25 | 1983-02-22 | E. I. Du Pont De Nemours And Company | Elastomeric film |
JPS6061259A (ja) * | 1983-09-14 | 1985-04-09 | ダイアホイルヘキスト株式会社 | ポリエステルフイルム |
JPS6067938A (ja) * | 1983-09-24 | 1985-04-18 | Konishiroku Photo Ind Co Ltd | ハロゲン化銀写真感光材料 |
JPS6095433A (ja) * | 1983-10-29 | 1985-05-28 | Daikin Ind Ltd | 重合体被膜の形成方法 |
JP2502275B2 (ja) * | 1984-07-02 | 1996-05-29 | キヤノン株式会社 | 情報信号再生装置 |
JPS61213841A (ja) * | 1985-03-20 | 1986-09-22 | Ricoh Co Ltd | ジアゾ複写材料 |
EP0250154A3 (fr) * | 1986-06-18 | 1989-07-12 | Minnesota Mining And Manufacturing Company | Elément photographique sur un support polymère avec une nouvelle couche de substratage |
US5204219A (en) | 1987-07-30 | 1993-04-20 | Minnesota Mining And Manufacturing Company | Photographic element with novel subbing layer |
-
1988
- 1988-07-12 AU AU18957/88A patent/AU603908B2/en not_active Expired
- 1988-07-20 MX MX1234688A patent/MX12346A/es unknown
- 1988-07-27 EP EP88306918A patent/EP0301827B1/fr not_active Expired - Lifetime
- 1988-07-27 CA CA000573120A patent/CA1338180C/fr not_active Expired - Fee Related
- 1988-07-27 DE DE88306918T patent/DE3882178T2/de not_active Expired - Lifetime
- 1988-07-29 BR BR8803780A patent/BR8803780A/pt not_active IP Right Cessation
- 1988-07-29 CN CN88104681A patent/CN1031300C/zh not_active Expired - Lifetime
- 1988-07-29 JP JP63190519A patent/JP2823207B2/ja not_active Expired - Lifetime
- 1988-07-29 AR AR88311557A patent/AR243687A1/es active
- 1988-07-29 KR KR1019880009608A patent/KR970007784B1/ko not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3169865A (en) * | 1960-07-29 | 1965-02-16 | Eastman Kodak Co | Zirconia subbed photographic paper |
US3615538A (en) * | 1968-08-02 | 1971-10-26 | Printing Dev Inc | Photosensitive printing plates |
UST873009I4 (en) * | 1969-11-07 | 1970-04-14 | Defensive publication | |
FR2169217A1 (fr) * | 1972-01-26 | 1973-09-07 | Hitachi Ltd | |
US4048357A (en) * | 1972-10-10 | 1977-09-13 | Agfa-Gevaert N.V. | Method of coating multi-layer graphic film |
FR2385771A1 (fr) * | 1977-03-28 | 1978-10-27 | Minnesota Mining & Mfg | Pellicules resistant a l'abrasion et absorbant les radiations ultraviolettes |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591530A (en) * | 1992-10-01 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Flexible optically uniform sign face substrate |
EP0709228A1 (fr) * | 1994-10-11 | 1996-05-01 | Minnesota Mining And Manufacturing Company | Elément donneur d'image et élément récepteur d'image par transfert thermique et leurs applications lithographiques |
EP0713135A2 (fr) | 1994-11-21 | 1996-05-22 | Eastman Kodak Company | Elément formateur d'image comprenant une couche électro-conductrice contenant des particules d'oxyde d'étain dopé à l'antimoine |
EP0785464A1 (fr) | 1996-01-18 | 1997-07-23 | Eastman Kodak Company | Elément d'imagerie avec couche électroconductrice |
EP0790138A1 (fr) | 1996-02-15 | 1997-08-20 | Minnesota Mining And Manufacturing Company | Procédé pour l'enregistrement par transfert thermique induit par laser |
EP1050780A1 (fr) * | 1999-05-07 | 2000-11-08 | FERRANIA S.p.A. | Elément photographique avec une couche améliorant l'adhésion au support |
US8673419B2 (en) | 2008-03-14 | 2014-03-18 | 3M Innovative Properties Company | Stretch releasable adhesive tape |
US9238758B2 (en) | 2008-03-14 | 2016-01-19 | 3M Innovative Properties Company | Stretch releasable adhesive tape |
US9890301B2 (en) | 2014-12-30 | 2018-02-13 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
US10081745B1 (en) | 2014-12-30 | 2018-09-25 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
US10414954B2 (en) | 2014-12-30 | 2019-09-17 | 3M Innovative Properties Company | Water-based pressure-sensitive adhesive compositions |
Also Published As
Publication number | Publication date |
---|---|
KR890002707A (ko) | 1989-04-11 |
EP0301827B1 (fr) | 1993-07-07 |
DE3882178T2 (de) | 1994-02-03 |
KR970007784B1 (ko) | 1997-05-16 |
EP0301827A3 (en) | 1989-07-12 |
CA1338180C (fr) | 1996-03-26 |
AU1895788A (en) | 1989-02-02 |
MX12346A (es) | 1993-12-01 |
JPS6449040A (en) | 1989-02-23 |
CN1030984A (zh) | 1989-02-08 |
JP2823207B2 (ja) | 1998-11-11 |
DE3882178D1 (de) | 1993-08-12 |
BR8803780A (pt) | 1989-02-21 |
AU603908B2 (en) | 1990-11-29 |
CN1031300C (zh) | 1996-03-13 |
AR243687A1 (es) | 1993-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5204219A (en) | Photographic element with novel subbing layer | |
EP0301827B1 (fr) | Elément photographique avec couche de substratage | |
EP0250154A2 (fr) | Elément photographique sur un support polymère avec une nouvelle couche de substratage | |
US4555482A (en) | Silver halide photographic emulsion | |
GB2161949A (en) | Silver salt diffusion transfer photographic material | |
JPS62237443A (ja) | 超硬調ネガ型写真感光材料 | |
JPH0642043B2 (ja) | 固体粒子膜の形成方法 | |
JPH0140969B2 (fr) | ||
US4654297A (en) | Silver salt diffusion transfer element comprising two silver halide layers | |
JPS6360372B2 (fr) | ||
US4916049A (en) | Silver halide photographic material | |
JPH0551887B2 (fr) | ||
JPH09127650A (ja) | 写真要素の製造方法、写真要素及び固体粒子分散体の調製方法 | |
JP2663060B2 (ja) | 銀塩拡散転写による画像形成方法 | |
GB2299680A (en) | Photographic material with antistatic layer | |
JPH10282619A (ja) | ハロゲン化銀写真感光材料 | |
JPS6232443A (ja) | ハロゲン化銀写真感光材料 | |
JPS63101841A (ja) | ハロゲン化銀写真感光材料 | |
JPS63292125A (ja) | ハロゲン化銀写真感光材料 | |
JP2725101B2 (ja) | ハロゲン化銀写真感光材料およびその製造方法 | |
JPH01210947A (ja) | ハロゲン化銀写真感光材料 | |
JPH02181140A (ja) | ハロゲン化銀写真感光材料 | |
JPH03288145A (ja) | ハロゲン化銀写真感光材料 | |
JPH037933A (ja) | ハロゲン化銀写真感光材料 | |
JPH01159635A (ja) | ハロゲン化銀写真感光材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19891214 |
|
17Q | First examination report despatched |
Effective date: 19911119 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3882178 Country of ref document: DE Date of ref document: 19930812 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88306918.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19990701 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19990729 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000731 |
|
BERE | Be: lapsed |
Owner name: MINNESOTA MINING AND MFG CY Effective date: 20000731 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88306918.9 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070831 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070727 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070724 Year of fee payment: 20 Ref country code: IT Payment date: 20070730 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070717 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20080726 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20080727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080726 |