EP0298469A2 - Verfahren zur Herstellung hochporöser Glaskeramikformteile - Google Patents

Verfahren zur Herstellung hochporöser Glaskeramikformteile Download PDF

Info

Publication number
EP0298469A2
EP0298469A2 EP88110847A EP88110847A EP0298469A2 EP 0298469 A2 EP0298469 A2 EP 0298469A2 EP 88110847 A EP88110847 A EP 88110847A EP 88110847 A EP88110847 A EP 88110847A EP 0298469 A2 EP0298469 A2 EP 0298469A2
Authority
EP
European Patent Office
Prior art keywords
silicon
disilane
formula
radical
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88110847A
Other languages
English (en)
French (fr)
Other versions
EP0298469B1 (de
EP0298469A3 (en
Inventor
Volker Dr. Dipl.-Chem. Frey
Bernd Dr. Dipl.-Chem. Pachaly
Norbert Dr. Dipl.-Chem. Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Priority to AT88110847T priority Critical patent/ATE80597T1/de
Publication of EP0298469A2 publication Critical patent/EP0298469A2/de
Publication of EP0298469A3 publication Critical patent/EP0298469A3/de
Application granted granted Critical
Publication of EP0298469B1 publication Critical patent/EP0298469B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles

Definitions

  • EP-A-107943 describes carbon-containing monolithic glasses which have been obtained from gels of organosilsesquioxanes of the general formula RSiO 3/2 . Defect-free molded parts can only be achieved due to the low porosity of these gels by complex drying procedures, even then the reproducibility of the dimensions of the molded parts is not guaranteed.
  • the object was to provide a process for the production of highly porous, defect-free glass ceramic molded parts which contain carbon atoms bonded to silicon atoms, with reproducible dimensions and high porosity, while avoiding expensive drying and processing processes.
  • This object is achieved by a process for the production of highly porous glass ceramic molded parts which contain carbon atoms bonded to silicon atoms, which is characterized in that a molded part consisting of an organopolysiloxane which is solid at room temperature from units of the formula where R is a radical of the formulas bonded via a silicon-silicon single bond can be implemented under a non-oxidizing atmosphere or in a vacuum at temperatures in the range from 700 to 1300 ° C.
  • the preferred temperature range in the process according to the invention is within the limits of 900 to 1100 ° C.
  • a reproducible volume shrinkage of 40 to 55% occurs, which is of decisive importance for the production of molded parts with reproducible dimensions.
  • the weight loss is 15 to 20%.
  • the reaction is carried out under a non-oxidizing atmosphere, that is to say under an inert atmosphere such as nitrogen or argon or under a reducing atmosphere such as carbon monoxide or hydrogen, or in vacuo.
  • the heating program must be adapted to the respective problem and essentially depends on the residual solvent content and the size and shape of the molded part.
  • the moldings used according to the invention consisting of an organopolysiloxane which is solid at room temperature and consist of units of the formula where R is a radical of the formulas bonded via a silicon-silicon single bond can be obtained preferably by a sol-gel process, wherein a disilane of the general formula wherein R 'each independently of the other is methyl, ethyl or isopropyl, optionally in a mixture with a disilane of the general formula wherein R 'has the meaning given above, in a shaping container with water optionally in the presence of alcohol and subsequently ammonia is added.
  • the shaping containers can represent bodies of any kind, for example cylinders or cuboids. Preferred volumes of these bodies are in the range from 1 to 500 cm3. Preferred materials for the shaping containers are Teflon, polyethylene, glass or aluminum.
  • Preferred parameters in the production of the molded parts, consisting of an organopolysiloxane solid at room temperature from units of the formula where R is a radical of the formulas bonded via a silicon-silicon single bond can be: Composition: 0-40 wt .-%, especially 15-30 wt .-% alcohol 20-50 wt .-%, in particular 25-40 wt .-% water and 40-60 wt .-%, in particular 43-52 wt .-% disilanes. Temperature: 10-50 ° C, especially 15-30 ° C.
  • Disilanes of the general formulas wherein R 'is independently methyl, ethyl or isopropyl and where R 'has the meaning given above are known compounds and according to Hengge et al., Monthly Bulletin for Chemistry, 105, 671-683 (1984) or WH Atwell et al., Journal of Organometallic Chemistry, 7, 71-78 ( 1967) easily accessible.
  • Preferred disilanes are 1,2-dimethyltetramethoxydisilane and 1,1,2-trimethyltrimethoxydisilane.
  • alcohol used are methanol, ethanol and isopropanol.
  • the moldings used according to the invention consisting of an organopolysiloxane which is solid at room temperature and consist of units of the formula where R is a radical of the formulas bonded via a silicon-silicon single bond can be obtained preferably by a sol-gel process, wherein a disilane of the general formula wherein R 'each independently of the other is methyl, ethyl or isopropyl, optionally in a mixture with a disilane of the general formula wherein R 'has the meaning given above, is reacted in a shaping container with water, if appropriate in the presence of alcohol, and ammonia is subsequently added until a pH in the range from 6.0 to 6.5 is reached.
  • the pH is adjusted by adding ammonia. This can be done, for example, by adding aqueous ammonia, by introducing gaseous ammonia or by adding substances which release ammonia when heated, such as urotropin, urea or basic ammonium salts (e.g. (NH4) 2CO3).
  • the molded part consisting of an organopolysiloxane which is solid at room temperature, can consist of units of the formula where R is a radical of the formulas bonded via a silicon-silicon single bond can be removed from the shaping container and dried in air at temperatures of preferably 20 to 150 ° C, in particular 25 to 100 ° C.
  • reproducible shrinkage occurs, which is decisive for the production of molded parts with reproducible dimensions has interpretation.
  • the highly porous glass ceramic molded parts produced by the process according to the invention and containing carbon atoms bonded to silicon atoms have a density of 0.7-0.8 g / cm 3 and a porosity of 60-70%. They are not electrically conductive and show good resistance to temperature changes up to 1000 ° C. Their temperature resistance in air is guaranteed up to a temperature of 1300 ° C.
  • the glass ceramic molded parts produced by the process according to the invention are used for thermal insulation and for filtration, preferably at high temperatures or high pressures.
  • a sol prepared from water, methanol and 1,2-dimethyltetramethoxydisilane was treated with concentrated ammonia solution until the initial pH value had risen from 4.8 to 6.0 (see Table 1).
  • the sol was then poured into a cylindrical glass mold with an inner diameter of 30 mm and a height of 100 mm. After 10-15 minutes the sol had gelled into a highly porous gel. After a further 10 minutes the gel was removed from the mold and air dried for 24 hours.
  • Table 1 shows density d (g / cm3) and shrinkage D (% compared to the diameter of the mold) of the dried moldings.
  • a solution prepared from 72.5 g (8 mol) of water, 48.0 g (3 mol) of methanol and 105 g (0.5 mol) of 1,2-dimethyltetramethoxydisilane was mixed with concentrated ammonia solution until the pH of 4, which was initially set, 8 rose to 6.0.
  • the sol was now poured into a tiled polyethylene mold with internal dimensions 100x100x30mm. After 10 minutes at 25 ° C, the sol gelled to a highly porous gel that filled the entire mold. After a further 10 minutes, the molded part was removed from the mold and air-dried at 25 ° C. for 24 hours. The resulting molded part had a density of 0.38 g / cm3, the edge length had shrunk by 11%.
  • test specimens produced according to Examples 2, 3 and 4 were heated to 1000 ° C. in a chamber furnace with argon purge and left at this temperature for 60 minutes.
  • Table 2 shows the mass losses in% and the densities in g / cm3.
  • Table 2 example Mass loss density Test specimen from example 6 17.1 0.74 2nd 7 17.2 0.79 3rd 8th 17.3 0.70 4th
  • a dry gel tile produced according to Example 5 was heated in a chamber furnace under argon purging to 1000 ° C. and left at this temperature for 60 minutes. After cooling, a black, porous tile was obtained which had lost 17.3% in weight and 45.9% in volume compared to the dry gel.
  • the material had a density of 0.75 g / cm3 with a porosity of 66.8%.
  • the porosity determination by Hg porosimetry showed a very narrow pore size distribution with a maximum at 4 micrometers.
  • the surface area according to the BET method was 1.5 m2 / g.
  • a highly porous, carbon-containing glass ceramic tile produced in accordance with Example 9 was heated in a chamber furnace to 1300 ° C. in an air atmosphere and left at this temperature for 10 hours. After cooling, there was no change in weight. Furthermore, this tile was heated to 1000 ° C in a chamber furnace and quickly immersed in a water bath at a temperature of 25 ° C. Even after repeating this process ten times, the tile was not damaged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Silicon Polymers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung hochporöser Glaskeramikformteile, die an Siliciumatome gebundene Kohlenstoffatome enthalten, das dadurch gekennzeichnet ist, daß ein Formteil, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel <IMAGE> wobei R ein über eine Silicium-Silicium-Einfachbindung gebundener Rest der Formeln <IMAGE> sein kann, unter nichtoxidierender Atmosphäre oder im Vakuum bei Temperaturen im Bereich von 700 bis 1300 °C umgesetzt wird.

Description

  • In der EP-A-107943 sind kohlenstoffhaltige monolithische Gläser beschrieben, die aus Gelen von Organosilsesquioxanen der allgemeinen Formel RSiO3/2 erhalten wurden. Defektfreie Formteile sind wegen der geringen Porosität dieser Gele nur durch aufwendige Trocknungsprozeduren erreichbar, wobei auch dann die Reproduzierbarkeit der Maße der Formteile nicht ge­geben ist.
  • Es bestand die Aufgabe ein Verfahren zur Herstellung hoch­poröser, defektfreier Glaskeramikformteile, die an Silicium­atome gebundene Kohlenstoffatome enthalten, mit reproduzier­baren Maßen und hoher Porosität bereitzustellen unter Vermei­dung von aufwendigen Trocknungs- und Verarbeitungsprozessen.
  • Gelöst wird diese Aufgabe durch ein Verfahren zur Herstellung hochporöser Glaskeramikformteile, die an Siliciumatome gebun­dene Kohlenstoffatome enthalten, das dadurch gekennzeichnet ist, daß ein Formteil, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel
    Figure imgb0001
    wobei R ein über eine Silicium-Silicium-Einfachbindung gebun­dener Rest der Formeln
    Figure imgb0002
    sein kann, unter nichtoxidierender Atmosphäre oder im Vakuum bei Temperaturen im Bereich von 700 bis 1300 °C umgesetzt wird.
  • Der bevorzugte Temperaturbereich beim erfindungsgemäßen Ver­fahren liegt innerhalb der Grenzen von 900 bis 1100 °C. Beim erfindungsgemäßen Verfahren tritt in Abhängigkeit von der gewählten Zusammensetzung des Formteils, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan, ein repro­duzierbarer Volumenschrumpf von 40 bis 55 % auf, was für die Herstellung von Formteilen mit reproduzierbaren Maßen ent­scheidende Bedeutung hat. Der Gewichtsverlust beträgt 15 bis 20 %.
    Die Umsetzung wird unter nichtoxidierender Atmosphäre, das heißt unter inerter Atmosphäre wie Stickstoff oder Argon oder unter reduzierender Atmosphäre wie Kohlenmonoxid oder Wasser­stoff, oder im Vakuum durchgeführt. Das Aufheizprogramm muß der jeweiligen Problemstellung angepaßt werden und hängt im wesentlichen von Lösungsmittelrestgehalt, sowie Größe und Form des Formteils ab.
  • Die erfindungsgemäß verwendeten Formteile, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Ein­heiten der Formel
    Figure imgb0003
    wobei R ein über eine Silicium-Silicium-Einfachbindung gebun­dener Rest der Formeln
    Figure imgb0004
    sein kann, werden vorzugsweise durch ein Sol-Gel-Verfahren erhalten, wobei ein Disilan der allgemeinen Formel
    Figure imgb0005
    worin R′ jeweils unabhängig voneinander Methyl-, Ethyl- oder Isopropylrest bedeutet, gegebenenfalls im Gemisch mit einem Disilan der allgemeinen Formel
    Figure imgb0006
    worin R′ die oben dafür angegebene Bedeutung hat, in einem formgebenden Behälter mit Wasser gegebenenfalls in Gegenwart von Alkohol umgesetzt wird und nachfolgend Ammoniak zugesetzt wird.
  • Die formgebenden Behälter können Körper jeglicher Art wieder­geben, beispielsweise Zylinder oder Quader. Bevorzugte Volu­men dieser Körper liegen im Bereich von 1 bis 500 cm³. Be­vorzugte Materialien für die formgebenden Behälter sind Tef­lon, Polyethylen, Glas oder Aluminium.
  • Bevorzugte Parameter bei der Herstellung der Formteile, be­stehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel
    Figure imgb0007
    wobei R ein über eine Silicium-Silicium-Einfachbindung gebun­dener Rest der Formeln
    Figure imgb0008
    sein kann, sind:
    Zusammensetzung: 0-40 Gew.-%, insbesondere 15-30 Gew.-% Alkohol
    20-50 Gew.-%, insbesondere 25-40 Gew.-% Wasser und
    40-60 Gew.-%, insbesondere 43-52 Gew.-% Disilane. Temperatur:
        10-50°C, insbesondere 15-30°C.
  • Sehr gute Ergebnisse wurden mit 22 Gew.-% Alkohol, 33 Gew.-% Wasser und 45 Gew.-% Disilan erhalten.
  • Disilane der allgemeinen Formeln
    Figure imgb0009
    worin R′ jeweils unabhängig voneinander Methyl-, Ethyl- oder Isopropylrest bedeutet und
    Figure imgb0010
    worin R′ die oben dafür angegebene Bedeutung hat, sind be­kannte Verbindungen und nach Hengge et al., Monatshefte für Chemie, 105, 671-683 (1984) oder W.H. Atwell et al., Journal of Organometallic Chemistry, 7, 71-78 (1967) leicht zugäng­lich. Bevorzugte Disilane sind 1,2-Dimethyltetramethoxydi­silan und 1,1,2-Trimethyltrimethoxydisilan.
  • Bevorzugte Beispiele für eingesetzte Alkohle sind Methanol, Ethanol und Isopropanol.
  • Die erfindungsgemäß verwendeten Formteile, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Ein­heiten der Formel
    Figure imgb0011
    wobei R ein über eine Silicium-Silicium-Einfachbindung gebun­dener Rest der Formeln
    Figure imgb0012
    sein kann, werden vorzugsweise durch ein Sol-Gel-Verfahren erhalten, wobei ein Disilan der allgemeinen Formel
    Figure imgb0013
    worin R′ jeweils unabhängig voneinander Methyl-, Ethyl- oder Isopropylrest bedeutet, gegebenenfalls im Gemisch mit einem Disilan der allgemeinen Formel
    Figure imgb0014
    worin R′ die oben dafür angegebene Bedeutung hat, in einem formgebenden Behälter mit Wasser gegebenenfalls in Gegenwart von Alkohol umgesetzt wird und nachfolgend Ammoniak zuge­setzt wird bis ein pH-Wert im Bereich von 6,0 bis 6,5 er­reicht ist.
  • Die Einstellung des pH-Wertes erfolgt durch Zugabe von Ammo­niak. Dies kann beispielsweise durch Zugabe von wäßrigem Ammoniak, durch Einleiten von gasförmigem Ammoniak oder durch Zugabe von bei Erwärmung Ammoniak abspaltenden Substanzen wie Urotropin, Harnstoff oder basischen Ammonsalzen (z.B. (NH₄)₂CO₃) erfolgen.
  • Nach dem Gelieren kann das Formteil, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel
    Figure imgb0015
    wobei R ein über eine Silicium-Silicium-Einfachbindung gebun­dener Rest der Formeln
    Figure imgb0016
    sein kann, aus dem formgebenden Behälter entnommen werden und an Luft bei Temperaturen von vorzugsweise 20 bis 150 °C, ins­besondere 25 bis 100 °C getrocknet werden. Hierbei tritt in Abhängigkeit von der gewählten Zusammensetzung des Formteils ein reproduzierbarer Schrumpf auf, was für die Herstellung von Formteilen mit reproduzierbaren Maßen entscheidende Be­ deutung hat.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten hoch­porösen Glaskeramikformteile, die an Siliciumatome gebundene Kohlenstoffatome enthalten, weisen eine Dichte von 0,7-­0,8g/cm³ bei einer Porosität von 60-70% auf. Sie sind nicht elektrisch leitfähig und zeigen eine gute Temperaturwechsel­beständigkeit bis 1000°C. Ihre Temperaturbeständigkeit an Luft ist bis zu einer Temperatur von 1300°C gewährleistet.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten Glas­keramikformteile finden Verwendung zur thermischen Isolierung und zur Filtration, vorzugsweise bei hohen Temperaturen oder hohen Drücken.
  • Beispiel 1-4:
  • Ein aus Wasser, Methanol und 1,2-Dimethyltetramethoxydisilan hergestelltes Sol wurde so lange mit konzentrierter Ammoniak­lösung versetzt, bis der Anfangs-pH-Wert von 4,8 aus 6,0 ge­stiegen war (s.Tabelle 1). Das Sol wurde dann in eine zylind­rische Glasform mit Innendurchmesser 30mm und 100mm Höhe ge­gossen. Nach 10-15min war das Sol zu einem hochporösen Gel geliert. Nach weiteren 10 Minuten wurde das Gel aus der Form entnommen und 24h luftgetrocknet. Tabelle 1 zeigt Dichte d (g/cm³) und Durchmesserschwund D (% gegenüber dem Durchmesser der Form) der getrockneten Formteile. Tabelle 1
    Beispiel Gew.-% H₂O Gew.-% MeOH Gew.-% Disilan pH d D
    1 26 23 51 6,0 0,53 18,5
    2 34 21 45 6,0 0,49 14,7
    3 33 22 45 6,0 0,37 11,1
    4 32 26 42 6,0 0,34 11,1
  • Beispiel 5:
  • Ein aus 72,5g (8mol) Wasser, 48,0g (3mol) Methanol und 105g (0,5mol) 1,2-Dimethyltetramethoxydisilan hergestelltes Sol wurde so lange mit konzentrierter Ammoniaklösung versetzt, bis der sich anfangs einstellende pH-Wert von 4,8 auf 6,0 ge­stiegen war. Das Sol wurde nun in eine kachelförmige Poly­ethylenform mit Innenmaßen 100x100x30mm gegossen. Nach 10min bei 25°C gelierte das Sol zu einem hochporösem Gel, das die gesamte Form ausfüllte. Nach weiteren 10min wurde das Form­teil aus der Form genommen und 24h bei 25°C luftgetrocknet. Das resultierende Formteil wies eine Dichte von 0,38g/cm³ auf, die Kantenlänge war um 11% geschrumpft.
  • Beispiel 6-8:
  • Die gemäß Beispiel 2, 3 und 4 hergestellten Testkörper wurden in einem Kammerofen mit Argonspülung auf 1000°C aufgeheizt und 60min bei dieser Temperatur belassen. Tabelle 2 zeigt die Massenverluste in % und die Dichten in g/cm³. Tabelle 2
    Beispiel Massenverlust Dichte Testkörper aus Beispiel
    6 17,1 0,74 2
    7 17,2 0,79 3
    8 17,3 0,70 4
  • Beispiel 9:
  • Eine gemäß Beispiel 5 hergestellte Trockengel-Kachel wurde in einem Kammerofen unter Argonspülung auf 1000°C aufgeheizt und 60min bei dieser Temperatur belassen. Nach dem Abkühlen er­hielt man eine schwarze, poröse Kachel die gegenüber dem Trockengel um 17,3% an Gewicht und um 45,9% an Volumen ver­loren hatte. Das Material wies eine Dichte von 0,75g/cm³ bei einer Porosität von 66,8% auf. Die Porositäts-Bestimmung durch Hg-Porosimetrie ergab eine sehr enge Porengrößenver­teilung mit einem Maximum bei 4 micrometer. Die Oberfläche nach BET-Methode betrug 1,5m²/g.
  • Beispiel 10
  • Eine gemäß Beispiel 9 hergestellte hochporöse, kohlenstoff­haltige Glaskeramik-Kachel wurde in einem Kammerofen unter Luftatmosphäre auf 1300°C aufgeheizt und 10h bei dieser Tem­peratur belassen. Nach Abkühlung zeigte sich keine Gewichts­veränderung.
    Des weiteren wurde diese Kachel in einem Kammerofen auf 1000°C aufgeheizt und rasch in ein Wasserbad mit einer Tem­peratur von 25°C getaucht. Auch nach zehnmaliger Wiederholung dieses Vorgangs trat keine Beschädigung der Kachel auf.

Claims (6)

1. Verfahren zur Herstellung hochporöser Glaskeramikform­teile, die an Siliciumatome gebundene Kohlenstoffatome enthalten, dadurch gekennzeichnet, daß ein Formteil, be­stehend aus einem bei Raumtemperatur festen Organopoly­siloxan aus Einheiten der Formel
Figure imgb0017
wobei R ein über eine Silicium-Silicium-Einfachbindung gebundener Rest der Formeln
Figure imgb0018
sein kann, unter nichtoxidierender Atmosphäre oder im Vakuum bei Temperaturen im Bereich von 700 bis 1300 °C umgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Formteil, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel
Figure imgb0019
wobei R ein über eine Silicium-Silicium-Einfachbindung gebundener Rest der Formeln
Figure imgb0020
sein kann, durch ein Sol-Gel-Verfahren erhalten wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Formteil, bestehend aus einem bei Raumtemperatur festen Organopolysiloxan aus Einheiten der Formel
Figure imgb0021
wobei R ein über eine Silicium-Silicium-Einfachbindung gebundener Rest der Formeln
Figure imgb0022
sein kann, durch ein Sol-Gel-Verfahren erhalten wird, wobei ein Disilan der allgemeinen Formel
Figure imgb0023
worin R′ jeweils unabhängig voneinander Methyl-, Ethyl- ­oder Isopropylrest bedeutet, gegebenenfalls im Gemisch mit einem Disilan der allgemeinen Formel
Figure imgb0024
worin R′ die oben dafür angegebene Bedeutung hat, in einem formgebenden Behälter mit Wasser gegebenenfalls in Gegenwart von Alkohol umgesetzt wird und nachfolgend Ammoniak zugesetzt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß als Disilan 1,2-Dimethyltetramethoxydisilan gegebenen­falls im Gemisch mit 1,1,2-Trimethyltrimethoxydisilan eingesetzt wird.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß 0-40 Gew.-% Alkohol, 20-50 Gew.-% Wasser und 40-60 Gew.-% Disilan eingesetzt werden.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß Ammoniak zugesetzt wird bis ein pH-­Wert im Bereich von 6,0 bis 6,5 erreicht ist.
EP88110847A 1987-07-08 1988-07-07 Verfahren zur Herstellung hochporöser Glaskeramikformteile Expired - Lifetime EP0298469B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88110847T ATE80597T1 (de) 1987-07-08 1988-07-07 Verfahren zur herstellung hochporoeser glaskeramikformteile.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3722597 1987-07-08
DE19873722597 DE3722597A1 (de) 1987-07-08 1987-07-08 Verfahren zur herstellung hochporoeser glaskeramikformteile

Publications (3)

Publication Number Publication Date
EP0298469A2 true EP0298469A2 (de) 1989-01-11
EP0298469A3 EP0298469A3 (en) 1989-09-13
EP0298469B1 EP0298469B1 (de) 1992-09-16

Family

ID=6331162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88110847A Expired - Lifetime EP0298469B1 (de) 1987-07-08 1988-07-07 Verfahren zur Herstellung hochporöser Glaskeramikformteile

Country Status (6)

Country Link
US (1) US5015605A (de)
EP (1) EP0298469B1 (de)
JP (1) JPS6424080A (de)
AT (1) ATE80597T1 (de)
CA (1) CA1316671C (de)
DE (2) DE3722597A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403848A2 (de) * 1989-06-01 1990-12-27 Wacker-Chemie Gmbh Verfahren zur Herstellung vom sphärischem, monodispersem Organopolysiloxan oder Siliciumoxycarbid
FR2650269A1 (fr) * 1989-07-28 1991-02-01 Gen Electric Structures en verre cellulaire derivant de resines silicones expansees et procedes pour leur preparation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512359A (en) * 1990-01-12 1996-04-30 Alliedsignal Inc. High flexural strength ceramic fiber reinforced silicon carboxide composite
US5459307A (en) * 1993-11-30 1995-10-17 Xerox Corporation System for storage and retrieval of digitally encoded information on a medium
US5618766A (en) * 1996-07-22 1997-04-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Lightweight ceramic composition of carbon silicon oxygen and boron
DE10030665A1 (de) * 2000-06-23 2002-01-03 Merck Patent Gmbh Gelierform zur Herstellung von Formkörpern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081726A (fr) * 1952-08-18 1954-12-22 Rhone Poulenc Sa Nouvelles résines organosiliciques et leurs préparations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32107E (en) * 1982-12-23 1986-04-08 Dow Corning Corporation Carbon-containing monolithic glasses and ceramics prepared by a sol-gel process
US4686124A (en) * 1983-12-12 1987-08-11 Sumitomo Bakelite Company Ltd. Thermoplastic resin-silicone rubber composite shaped article
US4640901A (en) * 1985-03-18 1987-02-03 University Of Cincinnati High temperature membrane
US4705837A (en) * 1986-04-08 1987-11-10 Massachusetts Institute Of Technology Method for converting Si-H containing polysiloxanes to new and useful preceramic polymers and ceramic materials
US4818732A (en) * 1987-03-19 1989-04-04 The Standard Oil Company High surface area ceramics prepared from organosilane gels
US4789389A (en) * 1987-05-20 1988-12-06 Corning Glass Works Method for producing ultra-high purity, optical quality, glass articles
US4828588A (en) * 1988-04-01 1989-05-09 University Of Cincinnati Process for preparation of heterogeneous polysiloxane membrane and membrane produced

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081726A (fr) * 1952-08-18 1954-12-22 Rhone Poulenc Sa Nouvelles résines organosiliciques et leurs préparations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CERAMIC ENGINEERING AND SCIENCE PROCEEDINGS, Band 4, Nrs. 9/10. September-Oktober 1983, Seiten 704-717, Columbus, Ohio, US; F.K. CHI: "Carbon-containing monolithic glasses via the sol-gel process" *
JOURNAL OF NON-CRYSTALLINE SOLIDS, Band 82, Nrs. 1/3, Juni 1986, Seiten 24-30, Elsevier Science Publishers B.V., Amsterdam, NL; S. SAKKA et al.: "Hydrolysis and polycondensation of dimethyldiethoxysilane and methyltriethoxysilane as materials for the sol-gel process" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403848A2 (de) * 1989-06-01 1990-12-27 Wacker-Chemie Gmbh Verfahren zur Herstellung vom sphärischem, monodispersem Organopolysiloxan oder Siliciumoxycarbid
EP0403848A3 (de) * 1989-06-01 1991-01-02 Wacker-Chemie Gmbh Verfahren zur Herstellung vom sphärischem, monodispersem Organopolysiloxan oder Siliciumoxycarbid
US5130400A (en) * 1989-06-01 1992-07-14 Wacker-Chemie Gmbh Process for preparing spherical, monodispersed organopolysiloxanes or silicon oxycarbides
FR2650269A1 (fr) * 1989-07-28 1991-02-01 Gen Electric Structures en verre cellulaire derivant de resines silicones expansees et procedes pour leur preparation

Also Published As

Publication number Publication date
JPS6424080A (en) 1989-01-26
DE3874630D1 (de) 1992-10-22
EP0298469B1 (de) 1992-09-16
US5015605A (en) 1991-05-14
DE3722597A1 (de) 1989-01-19
CA1316671C (en) 1993-04-27
ATE80597T1 (de) 1992-10-15
EP0298469A3 (en) 1989-09-13

Similar Documents

Publication Publication Date Title
DE68908092T2 (de) Im Sol-Gel-Verfahren hergestellte kermaische Kugeln.
DE69021600T2 (de) Verfahren zur Herstellung von Metalloxydaerogelenmonolithen.
DE4113059C2 (de) Verfahren zur Herstellung von Schwarzglas
DE2363036A1 (de) Heissgepresstes siliciumcarbid
DE3880886T2 (de) Sol-Gel-Verfahren zur Herstellung von Gläsern mit ultraniedriger Ausdehnung.
DE2724352A1 (de) Verfahren zur herstellung eines formkoerpers aus einem keramischen material
EP0413231A2 (de) Verfahren zur Herstellung eines anorganischen Sinterformteiles
DE102011004532A1 (de) Hochreines Siliciumdioxidgranulat für Quarzglasanwendungen
EP0298469B1 (de) Verfahren zur Herstellung hochporöser Glaskeramikformteile
EP0209927B1 (de) Verfahren zur Herstellung von Glaskörpern
DE3108387C2 (de)
DE69030401T2 (de) Verfahren zur Herstellung Halbleiteranordnungen unter Verwendung von Gläsern aus Phosphosilikaten
DE3718482C2 (de)
EP0298470B1 (de) Verfahren zur Herstellung von Formteilen auf Basis von Siliciumoxycarbid
EP0403848A2 (de) Verfahren zur Herstellung vom sphärischem, monodispersem Organopolysiloxan oder Siliciumoxycarbid
DE4102426C2 (de) Verfahren zur Herstellung eines gesinterten Siliciumcarbid- und Siliciumnitrid-Basiskörpers
US3194852A (en) Production of uranium oxide bodies
DE3939448A1 (de) Hochfeste verbundkeramik, verfahren zu ihrer herstellung und ihre verwendung
DE3500962A1 (de) Verfahren zur herstellung eines sinterkoerpers aus siliciumcarbid
DE3115518C2 (de)
DE19534198A1 (de) Verfahren zur Herstellung organofunktionalisierter Aerogele
DE68918038T2 (de) Verfahren zur Regulierung spezifischer Oberflächen von Aluminiumoxid.
EP0704412A1 (de) Presslinge auf Basis von pyrogen hergestellten Oxiden
DE3116786A1 (de) Homogener siliciumcarbid-formkoerper und verfahren zu seiner herstellung
DE3709137C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880707

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910627

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WACKER-CHEMIE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 80597

Country of ref document: AT

Date of ref document: 19921015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3874630

Country of ref document: DE

Date of ref document: 19921022

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930610

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930614

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930617

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930624

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930629

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940707

Ref country code: AT

Effective date: 19940707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: WACKER-CHEMIE G.M.B.H.

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 88110847.6

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 88110847.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050707