EP0296363B1 - Interrupteur à écoulement de gaz d'extinction autoengendré - Google Patents

Interrupteur à écoulement de gaz d'extinction autoengendré Download PDF

Info

Publication number
EP0296363B1
EP0296363B1 EP88108091A EP88108091A EP0296363B1 EP 0296363 B1 EP0296363 B1 EP 0296363B1 EP 88108091 A EP88108091 A EP 88108091A EP 88108091 A EP88108091 A EP 88108091A EP 0296363 B1 EP0296363 B1 EP 0296363B1
Authority
EP
European Patent Office
Prior art keywords
pressure
compression
circuit breaker
chamber
cylinder base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108091A
Other languages
German (de)
English (en)
Other versions
EP0296363A3 (en
EP0296363A2 (fr
Inventor
Herbert Dr. Karrenbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva Energietechnik GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
AEG Energietechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6330171&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0296363(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Licentia Patent Verwaltungs GmbH, AEG Energietechnik GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0296363A2 publication Critical patent/EP0296363A2/fr
Publication of EP0296363A3 publication Critical patent/EP0296363A3/de
Application granted granted Critical
Publication of EP0296363B1 publication Critical patent/EP0296363B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock
    • H01H3/605Mechanical arrangements for preventing or damping vibration or shock making use of a fluid damper

Definitions

  • the invention relates to a switch with a self-generated extinguishing gas flow with a switching chamber filled with insulating gas, with at least two switching pieces, at least one of which is movable, a compression device which can be actuated by the switching movement and consists of a compression piston and a compression cylinder with a cylinder base and a pressure chamber adjoining it with an insulating material nozzle. wherein one or more passages connect the compression space to the pressure chamber and the passages have closures which are opened in a low pressure area of the pressure chamber and are closed in a high pressure area of the pressure chamber, and wherein the compression device is dimensioned such that it is used to extinguish the weak Arc required quenching gas flow generated.
  • High-voltage switches are usually designed as auto-blow switches filled with insulating gas.
  • the contacts are separated and the arc is blown with the insulating gas, usually SF6, until it goes out.
  • the compression required for this blowing is achieved either by means of a compression device or by means of the thermal energy of the arc itself.
  • the interrupters are either surrounded by a fully insulated metal housing or by a porcelain insulator.
  • the compression space in this gas pressure switch is formed by a fixed base with a fixed cylinder and an insulating material nozzle connected to the movable contact piece, the insulating material nozzle being guided gas-tight in the stationary cylinder.
  • the pressure chamber is designed as a flow channel and incorporated into the insulating material nozzle, and the valves are located in the fixed floor and in the insulating material nozzle.
  • an auto-blow switch which has a switching chamber filled with insulating gas, in which there are two contact pieces, one of which is one is fixed and the other is displaceable with the switching movement.
  • the switching movement actuates a compression device which consists of a compression piston and a compression cylinder with a cylinder base. Passages in this cylinder base connect the compression chamber with a pressure chamber, which is surrounded by an insulating material nozzle.
  • Arcs the current strength of which is in the lower and middle range, are extinguished by the compression device compressing extinguishing gas and blowing through the passages in the cylinder bottom into the pressure chamber, which creates a strong flow of extinguishing gas in the nozzle, which extinguishes the arc at zero current.
  • this auto blow switch In the area of low-current arcs, such as occur under normal operating conditions, this auto blow switch has a very good function. These low-current arcs have such a low thermal energy that there is no appreciable gas expansion in the pressure chamber due to heating, and thus neither the blowing by the compression device prevents nor the switching movement is impaired and thus the switching speed is reduced.
  • the function of this auto blow switch is not so optimal when switching off high-current arcs, such as occur in the event of a short circuit.
  • the high thermal energy of the arc leads to a very strong gas expansion in the pressure chamber due to the heating. With these high-current arcs, this expanded gas, which is under very high pressure, contributes significantly to extinguishing the arcs.
  • the invention has for its object to provide an auto-blow switch in which, in the case of arcs with a high current strength, the best possible blowing and the greatest possible breaking capacity are guaranteed.
  • the pressure in the low pressure range is caused by low-current arcs, the energy of which is too low to generate the extinguishing gas flow required for blowing them
  • the pressure in the high pressure range is caused by high-current arcs, the energy of which is sufficient to generate the extinguishing gas flow required for blowing it
  • the cylinder base is displaceable but gas-tight in the compression cylinder, that it occupies a first position in the low pressure range of the pressure chamber and that the cylinder base occupies a second position in the high pressure range of the pressure chamber , in which the pressure chamber is enlarged compared to the first position and the compression space is reduced.
  • the fact that the pressure chamber enlarges in the case of high-current arcs has an advantageous effect.
  • the enlargement of the pressure chamber increases the product volume times pressure, because the pressure is maintained by the extinguishing gas flowing in as long as the arc burns. This is the prerequisite for generating a stronger gas flow of sufficient duration to blow the powerful arcs.
  • the gas flow which is increased by increasing the product of pressure and volume, can thereby be used particularly effectively for blowing the arc by increasing the gap between the switching element arranged in the pressure chamber and the insulating material nozzle.
  • This is achieved by means of a switching piece which can be displaced in a pressure-dependent manner and therefore executes a movement relative to the insulating material nozzle in the direction of increasing the distance in the case of high-current arcs.
  • the inner parts of a switching chamber are shown.
  • the left halves of the figures show the switch in the closed state, the right halves when it is switched off.
  • the switching chamber is with insulating gas, e.g. B. SF6, filled and is surrounded by a housing, which can be designed as a fully insulated metal housing or as a porcelain insulator.
  • the electrical connections are located on the fixed contact piece 2 and on the carrier of the compression piston 29.
  • FIG. 1 shows an auto-blow switch in which the passages 1 are equipped with closures 10, which are designed here as valves.
  • the switching movements take place by means of a drive rod 13, which is firmly connected to a movable switching piece 3, a cylinder base 9, a compression cylinder 4 and an insulating material nozzle 5.
  • the movable contact piece 3 and a fixed contact piece 2 separate.
  • an arc 26 is formed between these contact pieces through the insulating material nozzle 5.
  • B. when switching off a power supply relatively weak arcs are formed because the current is not too high. The thermal energy of such arcs is not great, so that the gas expansion in the pressure chamber 6 does not lead to a significant increase in pressure as a result of the heating of the gas.
  • Such arcs must be blown using a device.
  • the compression device consisting of the compression cylinder 4, is used for this purpose, which, when switched off, slides over a compression piston 14 and thereby reduces the compression space 7.
  • the gas compressed in the compression space 7 is blown through passages 1 in the cylinder base 9 into the pressure chamber 6 in order to flow from there through the insulating nozzle 5, the arc 26 being blown.
  • the arc extinguishes because the blowing prevents the re-ignition after the zero current crossing. With such a shutdown, the pressure in the pressure chamber 6 is lower than in the compression chamber 7, so that the closures 10, here designed as valves, are open.
  • the pressure conditions are reversed in the case of high-current arcs, such as occur when short circuits are switched off.
  • the high thermal energy of these arcs leads to a strong gas expansion in the pressure chamber 6, so that the pressure in the pressure chamber 6 is higher than the pressure in the compression space 7.
  • the shutters 10, here the valves close in this way to prevent the high pressure from entering the compression space 7, which would lead to a braking of the switch-off movement as a result of the pressure increase.
  • the gas under high pressure remains in the pressure chamber 6 and is fully available for blowing the arc, the arc clogging the nozzle outside the zero current crossing and a strong flow of extinguishing agent starting shortly before the zero current crossing.
  • the switch can be operated with a lower drive energy or a higher switching speed can be achieved. Since the compression device is only operated by the closures 10 for the extinction of weak arcs, it is dimensioned such that it generates the quenching gas flow required for the extinguishing of these weak arcs.
  • Fig. 2 shows an embodiment with a development of the solution according to the invention.
  • This auto-blow switch differs from that shown in FIG. 1 in that the compression space 7 is connected to the switching chamber through ventilation openings 11.
  • the ventilation openings 11 are arranged here in the compression piston 14. They are provided with closures, here designed as valves 16.
  • the valves 16 open against the pressure of springs, these springs having such a spring constant that the opening of the valves 16 takes place when a pressure develops in the compression space 7 which corresponds to the high pressure range in the pressure chamber 6, at which the Close shutters 10 as a result of gas expansion by means of high-current arcs.
  • This pressure range is reached in the compression space 7 in that the closures 10 are closed, the compression cylinder 4 slides over the fixed compression piston 14 and the enclosed gas is compressed.
  • the valves 16 therefore only open when high-current arcs generate the correspondingly high pressure in the pressure chamber 6 and, as a result, no gas can flow out of the compression space 7.
  • weak arcs on the other hand, the closures 10 open and the pressure in the compression space 7 cannot rise so high due to the gas flowing through the passages 1 that the valves 16 open.
  • the possible pressure increase in the compression space 7 is therefore limited, regardless of whether high-current or low-current arcs have to be extinguished.
  • the drive only has to overcome a limited pressure in the compression space 7, whereby it is relieved. It is possible to use an even weaker drive or to further increase the switching speed.
  • Fig. 3 shows an embodiment which differs from Figs. 1 and 2 in that the cylinder bottom 9 'in the compression cylinder 4 is mounted gas-tight. Opposite the drive rod 13 is the cylinder bottom 9 'is also guided gastight, a spring 8 pressing it against a collar 23 which is fixedly connected to the drive rod 13. The spring 8 is supported on a shoulder 22 of the drive rod 13.
  • the cylinder base 9 ' has - like the cylinder base 9 of FIGS. 1 and 2 - passages 1 with closures 10.
  • the compression cylinder 4 has ventilation openings 11 ', which are assigned to the bores 18 in the edge 17 of the cylinder base 9' such that when the cylinder base 9 'is displaced against the pressure of the spring 8, the bores 18 are aligned with the ventilation openings 11' and thus connect of the compression space 7 to the switching chamber.
  • This displaceable cylinder base 9 ' causes the pressure chamber 6 to increase in the event of a large rise in pressure as a result of high-current arcs in which the closures 10 close.
  • the compression space 7 is vented into the switching chamber through the bores 18 and the ventilation openings 11'.
  • the right side of the figure represents the switch when a low-current arc is switched off.
  • the cylinder base 9 lies against the collar 23, the bores 18 do not align with the ventilation openings 11', so that they are closed, and the compressed gas flows through the Passages 1 (arrows), whereby the arc 26 is blown.
  • This configuration ensures an even better blowing of the high-current arcs, since increasing the volume of the pressure chamber also results in a larger product of volume times pressure, which is decisive for the intensity and duration of the blowing.
  • the enlargement of the pressure chamber 6 also prevents an excessive rise in pressure in the pressure chamber 6, so that the critical value for the material is not reached so quickly.
  • the enlargement of the pressure chamber 6 takes place at the expense of the compression space 7. This is not disadvantageous because the compression device does not function when strong arcs are switched off.
  • the spring constant of the spring 8 is designed so that in the event of low-current arcs, in which the closures 10 remain open, the cylinder base 9 'remains in a first position in which it rests on the collar 23 which is firmly connected to the drive rod 13. Only with the arcs, which are so powerful that they build up a pressure in the pressure chamber 6, through which the closures 10 close, the spring 8 can be compressed. In such switching situations, the cylinder base 9 'thus moves into the region of the second position. The exact position of the cylinder base 9 'within this area of the second position is advantageously pressure-dependent.
  • the spring constant of the spring 8 is expediently determined as a function of the path of the cylinder base 9 'to be covered so that a particularly favorable product of pressure times volume for quenching the relevant arc is achieved in the pressure chamber 6.
  • the ventilation openings 11' must be designed as elongated holes, so that it is ensured that in the entire area in which the cylinder base 9 'is in its second Position can be, ventilation of the compression space 7 is guaranteed.
  • a further advantage of the development is that the ventilation of the compression space 7 occurs immediately after the closures 10 have been closed.
  • This immediate and complete pressure relief of the compression space 7, which is mechanically coupled with the displacement of the cylinder bottom 9 '- that is, not communicated via the detour of a pressure build-up in the compression space 7 - ensures that the switching speed compared to the switch-off when the current is extinguished is reduced Arcing is increased even further, since there is no pressure opposing the switching movement in the compression space.
  • a mechanical or pneumatic damper is expediently arranged, which intercepts it at the end of the switching movement.
  • the training is also advantageous for the switch-on process.
  • the drive rod 13 moves with the movable contact piece 2, the cylinder bottom 9 ', the compression cylinder 4 and the insulating nozzle 5 upwards, whereby the compression space 7 is enlarged.
  • This creates a negative pressure in the compression space 7, which sucks the cylinder bottom 9 'downward against the pressure of the spring 8, as a result of which a Ventilation by means of the holes 18 and the vent openings 11 'results.
  • the switch-on speed is not impeded by the formation in the compression chamber 7 of a negative pressure which counteracts the switch-on movement.
  • a connecting piece must be used for the positive connection between the drive rod 13 and the movable switching element 3 on the one hand and the compression cylinder 4 and the insulating material nozzle 5 on the other hand be arranged, which can be designed, for example, as webs 12 or as a perforated plate 21.
  • Fig. 4 shows a development of the embodiment of Fig. 3, in which the passages 1 'between the compression space 7 and the pressure chamber 6 are formed in that in the first position of the cylinder bottom 9' the holes 18 open into an extension 19 of the cylinder wall .
  • This is shown in the left half of FIG. 4, the arrow showing the path of the extinguishing gas flow when extinguishing low-current arcs.
  • the spring constant of the spring 8 or an additional weak spring, which lies in series with the spring 8 in this area, must however be so low that a displacement of the cylinder bottom 9 'into the second position takes place so smoothly that this displacement compensates for pressure by Passages 1 'preceded.
  • a configuration is also possible in which the cylinder base 9 'only hits the spring 8 or 8' at the beginning of the region of the second position, ie that the displacement of the cylinder base 9 'until the passages 1' are closed only counteracts the friction of the bearing .
  • the displacement of the cylinder base 9' opens the ventilation of the compression space 7 to the switching chamber by means of the bore 18 and the vent 11 '. This can be seen from the right half of FIG. 4, the arrow indicating the ventilation of the compression space 7 in the switching chamber.
  • the holes 18 and the openings 11 ' are made in the number and size of the circumference, which for quick venting is required.
  • Fig. 4 further shows a cylinder ring 30 which is slidably disposed on the outside of the compression cylinder 4 so that it closes the ventilation openings 11 'towards the end of the switching movement.
  • This cylinder ring 30 is firmly connected to the carrier 29 of the compression piston 4.
  • the purpose of this arrangement is that the switching movement is softly intercepted towards the end of the switch-off by a gas cushion forming in the compression space 7. This braking of the switch-off movement no longer affects the switch-off properties of the switch, since the arc has already extinguished in this switch position.
  • Fig. 5 shows an embodiment in which the width of the gap 15 between the switching piece 3 and the insulating nozzle 5 adapts to the different extinguishing conditions for small and large currents.
  • the drive rod 13 contains a guide with a high current contact, in which a displaceable contact piece carrier 20 is mounted.
  • This displaceable contact piece carrier 20 is firmly connected to the cylinder base 9 'and to the contact piece 3, which is designed here as a movable (i.e. executing the switching movement) contact piece.
  • the cylinder base 9 ' is pressed by a spring 8' in its first position against a collar 23 'which is in fixed connection with the compression cylinder 4 and is arranged below the insulating material nozzle 5 within the pressure chamber 6.
  • the spring 8 ' is supported on a shoulder at the upper end of the compression cylinder 4.
  • the spring 8 ' is designed such that the cylinder base 9' assumes a pressure-dependent position in its second position.
  • This pressure-dependent position is between the first position and a position that corresponds to the maximum pressure; in this case the cylinder bottom 9 'abuts a perforated plate 21 and the spring 8' is compressed to the maximum.
  • the movable contact piece 3 is in a position relative to the insulating material nozzle 5, as a result of which the gap 15 is set as a function of pressure.
  • the gap 15 When small currents are switched off, the gap 15 is so narrow that, in spite of the relative weakness of the gas flow generated by the compression device, it causes an intensive blowing of the arc. With large flows, the gap 15 increases correspondingly with the stroke of the cylinder base 9 ', so that the nozzle gap is enlarged. The quenching gas thereby flows in a wider stream of quenching gas, which has a high flow rate due to the high pressure of the gas expanding under the thermal energy of the arc and thus leads to intensive blowing of the arc.
  • the conditions for blowing the arc are additionally optimized in that the arc length is increased by the switching element 3 also carrying out the stroke of the cylinder bottom 9 'and thus the distance between the switching elements 2, 3 and thus the arc length is increased in addition to the switching movement.
  • valves 16 are arranged in the compression piston 14, which vent the compression space 7 into the switching chamber when the pressure is too high.
  • variable gap width can also be arranged according to an arrangement.
  • Fig. 3 or 4 integrate.
  • the movable contact piece 3 must also be guided in the drive rod 13 in a sliding manner and with a current contact.
  • a connection from the movable contact piece 3 to the cylinder base 9 ' would be possible in this case, for example, by connecting webs from the contact piece 3 running around the collar 23 to the cylinder base 9' and being arranged in the spaces between the webs 12.
  • FIG. 6 shows an embodiment that provides a variable gap width 15 according to the same principle as that described in FIG. 5.
  • pressure relief valves 25 are arranged which connect the pressure chamber 6 to the switching chamber when the pressure in the pressure chamber rises to a value which is critical for the material.
  • This pressure relief valves 25 are formed by one or more openings 27 in the pressure chamber 6, which are closed by the cylinder bottom 9 'at permissible pressure and are opened at impermissibly high pressure in that the cylinder bottom 9' opens the openings 27 by being due to the Pressure increase from the area of the second position to a third position, which is achieved by overcoming a spring force with a spring constant corresponding to this pressure increase.
  • the spring 8 ' can have an increased spring constant between this second and the third position, or an additional spring is arranged in this area parallel to the spring 8', so that this increased spring constant results from the sum of both spring constants.
  • the spring 8 ' is supported on the perforated plate 21. The remaining parts correspond to FIG. 5.
  • FIG. 6 shows a ventilation valve 24, which is located in the compression piston 14 and has the task of venting the compression space 7 when a negative pressure arises in the compression space 7 as a result of the switch-on movement.
  • a relatively weak spring of the valve 24 allows this valve 24 to go into the open position as soon as the pressure in the compression space 7 becomes lower than in the switching chamber. The spring only has the task of ensuring that valve 24 closes securely even when shaken.
  • Such a ventilation valve 24 can of course be arranged in all of the exemplary embodiments in order to avoid a negative pressure in the compression space 7 which hinders the switch-on movement.

Landscapes

  • Circuit Breakers (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Claims (21)

  1. Interrupteur à écoulement de gaz d'extinction autogénéré, présentant une chambre de commande remplie de gaz isolant comportant au moins deux pièces de contact dont au moins l'une est mobile, un dispositif de compression actionnable par le mouvement de contact, se composant d'un piston de compression (14) et d'un cylindre de compression (4) avec un fond de cylindre (9), auquel est raccordée une chambre de pression (6) qui comporte une tuyère isolante (5), ou un ou plusieurs passages (1) relient l'enceinte de compression (7) avec la chambre de pression (6) et ou les passages (1) présentent des verrous (10) qui, dans une zone de basse pression de la chambre de pression (6), sont ouverts et, dans une zone de haute pression de la chambre de pression (6) sont fermés et où le dispositif de compression est dimensionné de manière a générer le gaz d'extinction nécessaire à l'extinction des arcs faibles, caractérisé en ce que
    la pression de la zone de basse pression est générée par des arcs à faible intensité, dont l'énergie est trop faible pour autogénérer l'écoulement du gaz d'extinction nécessaire à leur soufflage, et que la pression de la zone de haute pression est générée par des arcs à haute intensité, dont l'énergie est suffisante pour autogénérer l'écoulement du gaz d'extinction nécessaire à leur soufflage et que le fond de cylindre (9) est logé de manière coulissante, mais étanche au gaz dans le cylindre de compression (4), qu'il prend une première position dans la zone de basse pression de la chambre de pression (6) et que le fond de cylindre (9) prend une deuxième position dans la zone de haute pression de la chambre de pression (6) dans laquelle la chambre de pression (6) s'agrandit par rapport à la première position et l'enceinte de compression (7) diminue.
  2. Interrupteur selon la revendication 1,
    caractérisé en ce que
    l'enceinte de compression (7) présente des ouvertures d'aération (11 ou 11'), lesquelles sont munies de verrous (16 ou 17) qui sont ouverts à l'extinction des arcs à haute intensité.
  3. Interrupteur selon la revendication 1,
    caractérisé en ce que
    le coulissement du fond de cylindre (9') de la première position vers la deuxième position, s'effectue sous la force d'un ressort (8, 8') dont la constante de rappel est conçue de sorte que le ressort (8 ou 8'), en atteignant la zone de haute pression, est comprimé.
  4. Interrupteur selon la revendication 1 ou 3,
    caractérisé en ce que
    la situation du fond de cylindre (9') dans la deuxième position et donc l'étendue de l'agrandissement de la chambre de pression (6) est déterminée de sorte qu'un produit particulièrement avantageux pour l' extinction de l'arc concerné (26), résulte de la pression par le volume.
  5. Interrupteur selon la revendication 4,
    caractérisé en ce que
    le fond de cylindre (9') ajuste sa situation à l'intérieur de la deuxième position en fonction de la pression, à l'aide d'un choix correspondant de constantes de rappel des ressorts (8 ou 8').
  6. Interrupteur selon l'une des revendications 2 à 5,
    caractérisé en ce que
    les ouvertures d'aération (11) sont disposées dans le piston de compression (14) et qui sont ventilables par des vannes (16), lesquelles s'ouvrent sous la poussée dans l'enceinte de compression (7), et qui se trouvent au-dessus de la zone de pression de la chambre de pression générée en cas de courants faibles.
  7. Interrupteur selon l'une des revendications 2 à 5,
    caractérisé en ce que
    le fond de cylindre (9') présente une bordure (17) orientée vers l'enceinte de compression (7), laquelle, dans la première position du fond de cylindre (9'), ferme des ouvertures d'aération (11') disposées dans le cylindre de compression (4) et ouvre, dans la deuxième position du fond de cylindre (9'), les ouvertures d'aération (11').
  8. Interrupteur selon l'une des revendications 3 à 7,
    caractérisé en ce que
    le fond de cylindre (9'), dans la première position, maintient des passages (1') ouverts et que les passages (1') sont fermés par un léger coulissement du fond de cylindre (9').
  9. Interrupteur selon la revendication 8,
    caractérisé en ce que
    la constante de rappel du ressort (8 ou 8') ou d'un ressort supplémentaire est faible dans la zone de ce léger coulissement, que ce coulissement du fond de cylindre (9') devance une compensation de pression, par l'intermédiaire de ces passages (1').
  10. Interrupteur selon la revendication 8 ou 9,
    caractérisé en ce que
    les passages (1') sont formés par des perçages (18) dans la bordure (17) du fond de cylindre (9'), qui, dans la première position du fond de cylindre (9'), débouchent dans un élargissement (19) de la paroi de cylindre et, dans la deuxième position du fond de cylindre (9'), sont fermés par la paroi de cylindre.
  11. Interrupteur selon l'une des revendications 3 à 10,
    caractérisé en ce que
    la pièce de contact (3) est reliée fixement avec le fond de cylindre coulissant (9') ainsi qu'avec un support de pièce de contact (20), le support coulissant de pièce de contact (20) rendant alors possible, en conservant le raccordement électrique, le même mouvement relatif de la pièce de contact (3) par rapport à la tuyère isolante (5) tel qu'il est effectué par le fond de cylindre (9') par rapport à la tuyère isolante (5), et en ce que dans la première position du fond de cylindre (9'), la fente (15), entre la tuyère isolante (5) et la pièce de contact (3), est petite, et dans la deuxième position, est plus grande, la largeur de la fente (15) s'ajustant de sorte que chaque flux de gaz d'extinction soit exploite au mieux pour le soufflage.
  12. Interrupteur selon l'une des revendications 3 à 11,
    caractérise en ce que
    la barre d'entraînement (13) est reliée de manière fixe, par l'intermédiaire de nervures (12) ou d'une plaque ajourée (21), au cylindre de compression (4), à la tuyère isolante (5) ainsi qu'à le pièce de contact mobile (3) ou eu palier, dans lequel le support de pièce de contact (20) est logé de manière coulissante, ces pièces effectuant ainsi le mouvement de contact et le piston de compression (14) ainsi qu'une pièce de contact (2) sont immobiles.
  13. Interrupteur selon l'une des revendications 3 à 12,
    caractérisé en ce que
    le ressort 8 prend appui sur un telon (22) de la barre d'entraînement (13) et le fond de cylindre (9'), dans sa première position, prend appui contre un collet (23), qui est relié de manière fixe à la barre d'entraînement (13).
  14. Interrupteur selon l'une des revendications 3 à 12,
    caractérisé en ce que
    le ressort (8') prend appui sur un talon à l'extrémité supérieure du cylindre de compression (4) ou sur la plaque ajourée (21), et le fond de cylindre (9'), dans se première position, appuie contre un collet (23'), lequel est relié fixement au cylindre de compression (4) et est disposé en aval de la tuyère isolente (5) ainsi qu'à l'intérieur de la chambre de pression (6).
  15. Interrupteur selon l'une des revendications 1 à 14,
    caractérisé en ce qu'
    entre l'enceinte de compression (7) et la chambre de commande, sont disposées une ou plusieurs vannes d'aération (24), qui sont ouvertes pendant le mise en contact et qui, le reste du temps, sont fermées.
  16. Interrupteur selon l'une des revendications 1 à 15,
    caractérisé en ce qu'
    entre la chambre de pression (6) et la chambre de commande est disposée une vanne de surpression (25), qui, en fonctionnement normal, est fermée et qui relie la chambre de pression (6) avec la chambre de commande, si la pression atteint une valeur critique pour le matériel.
  17. Interrupteur selon la revendication 16,
    caractérisé en ce que
    la vanne de surpression (25) est formée par une ou plusieurs ouvertures (27), qui sont fermées par le fond de cylindre (9') en cas de pression admissible et qui, en cas d'augmentation inadmissible de la pression, sont ouvertes par le fait que le fond de cylindre (9') libère les ouvertures, en continuant à coulisser, à la suite de l'augmentation de pression, de la zone de la deuxième position vers une troisème position, qui est obtenue, par maîtrise d'une force de ressort avec une constante de rappel accrue correspondant à cette augmentation de pression, le ressort (8') présentant alors, entre la deuxième position et la troisième positions du fond de cylindre (9'), une constante de rappel augmentée en conséquence, ou bien qui est obtenue par un ressort supplémentaire qui est disposé dans cette zone, parallèlement au ressort (8'), de sorte qu'il résulte dans la somme une telle constante de rappel.
  18. Interrupteur selon l'une des revendications 2 à 15,
    caractérisé en ce qu'
    entre la chambre de pression (6) et l'enceinte de compression (7) est disposée une vanne de surpression (28), qui est fermée en fonctionnement normal, et qui relie la chambre de pression (6) avec l'enceinte de compression (7), quand la pression atteint une valeur critique pour le matériel.
  19. Interrupteur selon l'une des revendications 2 à 18,
    caractérisé en ce que
    vers la fin du mouvement de mise hors contact, les pièces qui exécutent le mouvement de contact sont freinées à l'aide d'un amortisseur mécanique ou pneumatique.
  20. Interrupteur selon l'une des revendications 2 à 19,
    caractérisé en ce que
    les ouvertures d'aération (11 ou 11') de l'enceinte de compression (7), en direction de la chambre de commande, se referment vers la fin du mouvement de contact, de sorte qu'un coussinet gazeux se forme et freine le mouvement de contact.
  21. Interrupteur selon la revendication 20,
    caractérisé en ce qu'
    une bague cylindrique (30), coulissante à l'extérieur sur le cylindre de compression (4), reliée fixement au support du fond de compression (29), est prévue de sorte qu'elle ferme les ouvertures d'aération (11') vers la fin du mouvement de contact.
EP88108091A 1987-06-24 1988-05-20 Interrupteur à écoulement de gaz d'extinction autoengendré Expired - Lifetime EP0296363B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3720816 1987-06-24
DE19873720816 DE3720816A1 (de) 1987-06-24 1987-06-24 Schalter mit selbsterzeugter loeschgasstroemung

Publications (3)

Publication Number Publication Date
EP0296363A2 EP0296363A2 (fr) 1988-12-28
EP0296363A3 EP0296363A3 (en) 1989-10-18
EP0296363B1 true EP0296363B1 (fr) 1993-04-14

Family

ID=6330171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108091A Expired - Lifetime EP0296363B1 (fr) 1987-06-24 1988-05-20 Interrupteur à écoulement de gaz d'extinction autoengendré

Country Status (2)

Country Link
EP (1) EP0296363B1 (fr)
DE (2) DE3720816A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843405C1 (fr) * 1988-12-23 1990-06-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
DE3930548C2 (de) * 1989-09-13 1994-05-19 Licentia Gmbh Druckgasschalter
DE4025553C2 (de) * 1990-08-11 1994-03-10 Licentia Gmbh Druckgasschalter
DE4211159A1 (de) * 1992-03-31 1993-10-07 Siemens Ag Elektrischer Hochspannungs-Leistungsschalter
FR2704976B1 (fr) * 1993-05-07 1995-06-23 Gec Alsthom T & D Sa Disjoncteur a gaz de soufflage a haute ou moyenne tension.
DE4412249A1 (de) * 1994-04-06 1995-10-12 Siemens Ag Elektrischer Hochspannungs-Leistungsschalter mit einem Heizraum und einem Kompressionsraum
DE29509015U1 (de) * 1995-05-24 1995-08-03 Siemens AG, 80333 München Hochspannungs-Leistungsschalter mit einem feststehenden Heizvolumen
DE19526805A1 (de) * 1995-07-13 1997-01-16 Siemens Ag Hochspannungs-Leistungsschalter mit einem Isolierstoffkörper
FR2837321B1 (fr) * 2002-03-18 2004-08-06 Alstom Disjoncteur haute tension comprenant un clapet de decompression
ATE523889T1 (de) * 2006-11-27 2011-09-15 Abb Technology Ag Puffer leistungsschalter mit reduziertem puffervolumendruck
EP1939910A1 (fr) * 2006-12-27 2008-07-02 ABB Technology AG Disjoncteur à gaz comprimé avec une aperture radiale du passage
EP2249364A1 (fr) * 2009-05-07 2010-11-10 ABB Research Ltd. Procédé de production de gaz de coupage comprimé mécaniquement dans un disjoncteur haute tension isolé du gaz et dispositifs d'exécution du procédé
DE102010020979A1 (de) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Druckgas-Leistungsschalter
BR112013023368A2 (pt) * 2011-03-17 2016-12-13 Abb Technology Ag disjuntor de alta tensão, isolado com gás

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2079896A5 (fr) * 1970-02-16 1971-11-12 Merlin Gerin
DE2411897A1 (de) * 1974-03-12 1975-09-18 Siemens Ag Anordnung zur loeschung eines lichtbogens in einem gasstroemungsschalter
FR2291601A1 (fr) * 1974-11-15 1976-06-11 Alsthom Cgee Dispositif de coupure a autocompression
CH594978A5 (fr) * 1975-08-07 1978-01-31 Sprecher & Schuh Ag
CH625907A5 (en) * 1978-04-07 1981-10-15 Sprecher & Schuh Ag Gas-blast power circuit breaker
GB2080037B (en) * 1980-07-14 1984-04-26 Aei Gas blast circuit interrupter

Also Published As

Publication number Publication date
DE3720816C2 (fr) 1990-06-28
EP0296363A3 (en) 1989-10-18
DE3720816A1 (de) 1989-01-05
EP0296363A2 (fr) 1988-12-28
DE3880211D1 (de) 1993-05-19

Similar Documents

Publication Publication Date Title
EP0296363B1 (fr) Interrupteur à écoulement de gaz d'extinction autoengendré
DE3438635A1 (de) Druckgasschalter
DE3247121C2 (fr)
DE3141324C2 (de) Leistungsschalter
EP0126929B2 (fr) Interrupteur à gaz comprimé
DE2812945C2 (de) Druckgasschalter
DE19536673A1 (de) Leistungsschalter
DE29709084U1 (de) Druckgasschalter
DE1130028B (de) Kompressionsschalter
DE4103119A1 (de) Druckgasschalter
DE729599C (de) Schalter mit Lichtbogenloeschung mittels des durch einen Hilfslichtbogen erzeugten Druckes
DE19910166C2 (de) Hochspannungsleistungsschalter mit einer Kompressionseinrichtung
DE2828773C2 (de) Autopneumatischer Druckgasschalter
DE69106436T2 (de) Mittelspannungsschalter.
DE3930548C2 (de) Druckgasschalter
EP0334008B1 (fr) Interrupteur mono-pression à SF6
DE3315622A1 (de) Druckgasschalter
EP0374384B1 (fr) Interrupteur monopression à SF6
EP0456139B1 (fr) Disjoncteur à compression
DE1913969A1 (de) Elektrischer Schalter
DE4025553C2 (de) Druckgasschalter
DE2759265C3 (de) Druckgasschalter
DE19939940A1 (de) Druckgasschalter
DE3051153C2 (fr)
EP0664553B1 (fr) Disjoncteur de puissance haute tension à chambre d'échauffement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR LI SE

17P Request for examination filed

Effective date: 19900315

17Q First examination report despatched

Effective date: 19920214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI SE

REF Corresponds to:

Ref document number: 3880211

Country of ref document: DE

Date of ref document: 19930519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19940112

EAL Se: european patent in force in sweden

Ref document number: 88108091.5

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LICENTIA PATENT- VERWALTUNGS-GMBH TRANSFER- AEG EN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AEG ENERGIETECHNIK GMBH

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19961113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020524

Year of fee payment: 15

Ref country code: CH

Payment date: 20020524

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070723

Year of fee payment: 20