EP0296363B1 - Circuit breaker with selfproduced flow of extinguishing gas - Google Patents

Circuit breaker with selfproduced flow of extinguishing gas Download PDF

Info

Publication number
EP0296363B1
EP0296363B1 EP88108091A EP88108091A EP0296363B1 EP 0296363 B1 EP0296363 B1 EP 0296363B1 EP 88108091 A EP88108091 A EP 88108091A EP 88108091 A EP88108091 A EP 88108091A EP 0296363 B1 EP0296363 B1 EP 0296363B1
Authority
EP
European Patent Office
Prior art keywords
pressure
compression
circuit breaker
chamber
cylinder base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108091A
Other languages
German (de)
French (fr)
Other versions
EP0296363A3 (en
EP0296363A2 (en
Inventor
Herbert Dr. Karrenbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva Energietechnik GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
AEG Energietechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6330171&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0296363(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Licentia Patent Verwaltungs GmbH, AEG Energietechnik GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0296363A2 publication Critical patent/EP0296363A2/en
Publication of EP0296363A3 publication Critical patent/EP0296363A3/en
Application granted granted Critical
Publication of EP0296363B1 publication Critical patent/EP0296363B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock
    • H01H3/605Mechanical arrangements for preventing or damping vibration or shock making use of a fluid damper

Definitions

  • the invention relates to a switch with a self-generated extinguishing gas flow with a switching chamber filled with insulating gas, with at least two switching pieces, at least one of which is movable, a compression device which can be actuated by the switching movement and consists of a compression piston and a compression cylinder with a cylinder base and a pressure chamber adjoining it with an insulating material nozzle. wherein one or more passages connect the compression space to the pressure chamber and the passages have closures which are opened in a low pressure area of the pressure chamber and are closed in a high pressure area of the pressure chamber, and wherein the compression device is dimensioned such that it is used to extinguish the weak Arc required quenching gas flow generated.
  • High-voltage switches are usually designed as auto-blow switches filled with insulating gas.
  • the contacts are separated and the arc is blown with the insulating gas, usually SF6, until it goes out.
  • the compression required for this blowing is achieved either by means of a compression device or by means of the thermal energy of the arc itself.
  • the interrupters are either surrounded by a fully insulated metal housing or by a porcelain insulator.
  • the compression space in this gas pressure switch is formed by a fixed base with a fixed cylinder and an insulating material nozzle connected to the movable contact piece, the insulating material nozzle being guided gas-tight in the stationary cylinder.
  • the pressure chamber is designed as a flow channel and incorporated into the insulating material nozzle, and the valves are located in the fixed floor and in the insulating material nozzle.
  • an auto-blow switch which has a switching chamber filled with insulating gas, in which there are two contact pieces, one of which is one is fixed and the other is displaceable with the switching movement.
  • the switching movement actuates a compression device which consists of a compression piston and a compression cylinder with a cylinder base. Passages in this cylinder base connect the compression chamber with a pressure chamber, which is surrounded by an insulating material nozzle.
  • Arcs the current strength of which is in the lower and middle range, are extinguished by the compression device compressing extinguishing gas and blowing through the passages in the cylinder bottom into the pressure chamber, which creates a strong flow of extinguishing gas in the nozzle, which extinguishes the arc at zero current.
  • this auto blow switch In the area of low-current arcs, such as occur under normal operating conditions, this auto blow switch has a very good function. These low-current arcs have such a low thermal energy that there is no appreciable gas expansion in the pressure chamber due to heating, and thus neither the blowing by the compression device prevents nor the switching movement is impaired and thus the switching speed is reduced.
  • the function of this auto blow switch is not so optimal when switching off high-current arcs, such as occur in the event of a short circuit.
  • the high thermal energy of the arc leads to a very strong gas expansion in the pressure chamber due to the heating. With these high-current arcs, this expanded gas, which is under very high pressure, contributes significantly to extinguishing the arcs.
  • the invention has for its object to provide an auto-blow switch in which, in the case of arcs with a high current strength, the best possible blowing and the greatest possible breaking capacity are guaranteed.
  • the pressure in the low pressure range is caused by low-current arcs, the energy of which is too low to generate the extinguishing gas flow required for blowing them
  • the pressure in the high pressure range is caused by high-current arcs, the energy of which is sufficient to generate the extinguishing gas flow required for blowing it
  • the cylinder base is displaceable but gas-tight in the compression cylinder, that it occupies a first position in the low pressure range of the pressure chamber and that the cylinder base occupies a second position in the high pressure range of the pressure chamber , in which the pressure chamber is enlarged compared to the first position and the compression space is reduced.
  • the fact that the pressure chamber enlarges in the case of high-current arcs has an advantageous effect.
  • the enlargement of the pressure chamber increases the product volume times pressure, because the pressure is maintained by the extinguishing gas flowing in as long as the arc burns. This is the prerequisite for generating a stronger gas flow of sufficient duration to blow the powerful arcs.
  • the gas flow which is increased by increasing the product of pressure and volume, can thereby be used particularly effectively for blowing the arc by increasing the gap between the switching element arranged in the pressure chamber and the insulating material nozzle.
  • This is achieved by means of a switching piece which can be displaced in a pressure-dependent manner and therefore executes a movement relative to the insulating material nozzle in the direction of increasing the distance in the case of high-current arcs.
  • the inner parts of a switching chamber are shown.
  • the left halves of the figures show the switch in the closed state, the right halves when it is switched off.
  • the switching chamber is with insulating gas, e.g. B. SF6, filled and is surrounded by a housing, which can be designed as a fully insulated metal housing or as a porcelain insulator.
  • the electrical connections are located on the fixed contact piece 2 and on the carrier of the compression piston 29.
  • FIG. 1 shows an auto-blow switch in which the passages 1 are equipped with closures 10, which are designed here as valves.
  • the switching movements take place by means of a drive rod 13, which is firmly connected to a movable switching piece 3, a cylinder base 9, a compression cylinder 4 and an insulating material nozzle 5.
  • the movable contact piece 3 and a fixed contact piece 2 separate.
  • an arc 26 is formed between these contact pieces through the insulating material nozzle 5.
  • B. when switching off a power supply relatively weak arcs are formed because the current is not too high. The thermal energy of such arcs is not great, so that the gas expansion in the pressure chamber 6 does not lead to a significant increase in pressure as a result of the heating of the gas.
  • Such arcs must be blown using a device.
  • the compression device consisting of the compression cylinder 4, is used for this purpose, which, when switched off, slides over a compression piston 14 and thereby reduces the compression space 7.
  • the gas compressed in the compression space 7 is blown through passages 1 in the cylinder base 9 into the pressure chamber 6 in order to flow from there through the insulating nozzle 5, the arc 26 being blown.
  • the arc extinguishes because the blowing prevents the re-ignition after the zero current crossing. With such a shutdown, the pressure in the pressure chamber 6 is lower than in the compression chamber 7, so that the closures 10, here designed as valves, are open.
  • the pressure conditions are reversed in the case of high-current arcs, such as occur when short circuits are switched off.
  • the high thermal energy of these arcs leads to a strong gas expansion in the pressure chamber 6, so that the pressure in the pressure chamber 6 is higher than the pressure in the compression space 7.
  • the shutters 10, here the valves close in this way to prevent the high pressure from entering the compression space 7, which would lead to a braking of the switch-off movement as a result of the pressure increase.
  • the gas under high pressure remains in the pressure chamber 6 and is fully available for blowing the arc, the arc clogging the nozzle outside the zero current crossing and a strong flow of extinguishing agent starting shortly before the zero current crossing.
  • the switch can be operated with a lower drive energy or a higher switching speed can be achieved. Since the compression device is only operated by the closures 10 for the extinction of weak arcs, it is dimensioned such that it generates the quenching gas flow required for the extinguishing of these weak arcs.
  • Fig. 2 shows an embodiment with a development of the solution according to the invention.
  • This auto-blow switch differs from that shown in FIG. 1 in that the compression space 7 is connected to the switching chamber through ventilation openings 11.
  • the ventilation openings 11 are arranged here in the compression piston 14. They are provided with closures, here designed as valves 16.
  • the valves 16 open against the pressure of springs, these springs having such a spring constant that the opening of the valves 16 takes place when a pressure develops in the compression space 7 which corresponds to the high pressure range in the pressure chamber 6, at which the Close shutters 10 as a result of gas expansion by means of high-current arcs.
  • This pressure range is reached in the compression space 7 in that the closures 10 are closed, the compression cylinder 4 slides over the fixed compression piston 14 and the enclosed gas is compressed.
  • the valves 16 therefore only open when high-current arcs generate the correspondingly high pressure in the pressure chamber 6 and, as a result, no gas can flow out of the compression space 7.
  • weak arcs on the other hand, the closures 10 open and the pressure in the compression space 7 cannot rise so high due to the gas flowing through the passages 1 that the valves 16 open.
  • the possible pressure increase in the compression space 7 is therefore limited, regardless of whether high-current or low-current arcs have to be extinguished.
  • the drive only has to overcome a limited pressure in the compression space 7, whereby it is relieved. It is possible to use an even weaker drive or to further increase the switching speed.
  • Fig. 3 shows an embodiment which differs from Figs. 1 and 2 in that the cylinder bottom 9 'in the compression cylinder 4 is mounted gas-tight. Opposite the drive rod 13 is the cylinder bottom 9 'is also guided gastight, a spring 8 pressing it against a collar 23 which is fixedly connected to the drive rod 13. The spring 8 is supported on a shoulder 22 of the drive rod 13.
  • the cylinder base 9 ' has - like the cylinder base 9 of FIGS. 1 and 2 - passages 1 with closures 10.
  • the compression cylinder 4 has ventilation openings 11 ', which are assigned to the bores 18 in the edge 17 of the cylinder base 9' such that when the cylinder base 9 'is displaced against the pressure of the spring 8, the bores 18 are aligned with the ventilation openings 11' and thus connect of the compression space 7 to the switching chamber.
  • This displaceable cylinder base 9 ' causes the pressure chamber 6 to increase in the event of a large rise in pressure as a result of high-current arcs in which the closures 10 close.
  • the compression space 7 is vented into the switching chamber through the bores 18 and the ventilation openings 11'.
  • the right side of the figure represents the switch when a low-current arc is switched off.
  • the cylinder base 9 lies against the collar 23, the bores 18 do not align with the ventilation openings 11', so that they are closed, and the compressed gas flows through the Passages 1 (arrows), whereby the arc 26 is blown.
  • This configuration ensures an even better blowing of the high-current arcs, since increasing the volume of the pressure chamber also results in a larger product of volume times pressure, which is decisive for the intensity and duration of the blowing.
  • the enlargement of the pressure chamber 6 also prevents an excessive rise in pressure in the pressure chamber 6, so that the critical value for the material is not reached so quickly.
  • the enlargement of the pressure chamber 6 takes place at the expense of the compression space 7. This is not disadvantageous because the compression device does not function when strong arcs are switched off.
  • the spring constant of the spring 8 is designed so that in the event of low-current arcs, in which the closures 10 remain open, the cylinder base 9 'remains in a first position in which it rests on the collar 23 which is firmly connected to the drive rod 13. Only with the arcs, which are so powerful that they build up a pressure in the pressure chamber 6, through which the closures 10 close, the spring 8 can be compressed. In such switching situations, the cylinder base 9 'thus moves into the region of the second position. The exact position of the cylinder base 9 'within this area of the second position is advantageously pressure-dependent.
  • the spring constant of the spring 8 is expediently determined as a function of the path of the cylinder base 9 'to be covered so that a particularly favorable product of pressure times volume for quenching the relevant arc is achieved in the pressure chamber 6.
  • the ventilation openings 11' must be designed as elongated holes, so that it is ensured that in the entire area in which the cylinder base 9 'is in its second Position can be, ventilation of the compression space 7 is guaranteed.
  • a further advantage of the development is that the ventilation of the compression space 7 occurs immediately after the closures 10 have been closed.
  • This immediate and complete pressure relief of the compression space 7, which is mechanically coupled with the displacement of the cylinder bottom 9 '- that is, not communicated via the detour of a pressure build-up in the compression space 7 - ensures that the switching speed compared to the switch-off when the current is extinguished is reduced Arcing is increased even further, since there is no pressure opposing the switching movement in the compression space.
  • a mechanical or pneumatic damper is expediently arranged, which intercepts it at the end of the switching movement.
  • the training is also advantageous for the switch-on process.
  • the drive rod 13 moves with the movable contact piece 2, the cylinder bottom 9 ', the compression cylinder 4 and the insulating nozzle 5 upwards, whereby the compression space 7 is enlarged.
  • This creates a negative pressure in the compression space 7, which sucks the cylinder bottom 9 'downward against the pressure of the spring 8, as a result of which a Ventilation by means of the holes 18 and the vent openings 11 'results.
  • the switch-on speed is not impeded by the formation in the compression chamber 7 of a negative pressure which counteracts the switch-on movement.
  • a connecting piece must be used for the positive connection between the drive rod 13 and the movable switching element 3 on the one hand and the compression cylinder 4 and the insulating material nozzle 5 on the other hand be arranged, which can be designed, for example, as webs 12 or as a perforated plate 21.
  • Fig. 4 shows a development of the embodiment of Fig. 3, in which the passages 1 'between the compression space 7 and the pressure chamber 6 are formed in that in the first position of the cylinder bottom 9' the holes 18 open into an extension 19 of the cylinder wall .
  • This is shown in the left half of FIG. 4, the arrow showing the path of the extinguishing gas flow when extinguishing low-current arcs.
  • the spring constant of the spring 8 or an additional weak spring, which lies in series with the spring 8 in this area, must however be so low that a displacement of the cylinder bottom 9 'into the second position takes place so smoothly that this displacement compensates for pressure by Passages 1 'preceded.
  • a configuration is also possible in which the cylinder base 9 'only hits the spring 8 or 8' at the beginning of the region of the second position, ie that the displacement of the cylinder base 9 'until the passages 1' are closed only counteracts the friction of the bearing .
  • the displacement of the cylinder base 9' opens the ventilation of the compression space 7 to the switching chamber by means of the bore 18 and the vent 11 '. This can be seen from the right half of FIG. 4, the arrow indicating the ventilation of the compression space 7 in the switching chamber.
  • the holes 18 and the openings 11 ' are made in the number and size of the circumference, which for quick venting is required.
  • Fig. 4 further shows a cylinder ring 30 which is slidably disposed on the outside of the compression cylinder 4 so that it closes the ventilation openings 11 'towards the end of the switching movement.
  • This cylinder ring 30 is firmly connected to the carrier 29 of the compression piston 4.
  • the purpose of this arrangement is that the switching movement is softly intercepted towards the end of the switch-off by a gas cushion forming in the compression space 7. This braking of the switch-off movement no longer affects the switch-off properties of the switch, since the arc has already extinguished in this switch position.
  • Fig. 5 shows an embodiment in which the width of the gap 15 between the switching piece 3 and the insulating nozzle 5 adapts to the different extinguishing conditions for small and large currents.
  • the drive rod 13 contains a guide with a high current contact, in which a displaceable contact piece carrier 20 is mounted.
  • This displaceable contact piece carrier 20 is firmly connected to the cylinder base 9 'and to the contact piece 3, which is designed here as a movable (i.e. executing the switching movement) contact piece.
  • the cylinder base 9 ' is pressed by a spring 8' in its first position against a collar 23 'which is in fixed connection with the compression cylinder 4 and is arranged below the insulating material nozzle 5 within the pressure chamber 6.
  • the spring 8 ' is supported on a shoulder at the upper end of the compression cylinder 4.
  • the spring 8 ' is designed such that the cylinder base 9' assumes a pressure-dependent position in its second position.
  • This pressure-dependent position is between the first position and a position that corresponds to the maximum pressure; in this case the cylinder bottom 9 'abuts a perforated plate 21 and the spring 8' is compressed to the maximum.
  • the movable contact piece 3 is in a position relative to the insulating material nozzle 5, as a result of which the gap 15 is set as a function of pressure.
  • the gap 15 When small currents are switched off, the gap 15 is so narrow that, in spite of the relative weakness of the gas flow generated by the compression device, it causes an intensive blowing of the arc. With large flows, the gap 15 increases correspondingly with the stroke of the cylinder base 9 ', so that the nozzle gap is enlarged. The quenching gas thereby flows in a wider stream of quenching gas, which has a high flow rate due to the high pressure of the gas expanding under the thermal energy of the arc and thus leads to intensive blowing of the arc.
  • the conditions for blowing the arc are additionally optimized in that the arc length is increased by the switching element 3 also carrying out the stroke of the cylinder bottom 9 'and thus the distance between the switching elements 2, 3 and thus the arc length is increased in addition to the switching movement.
  • valves 16 are arranged in the compression piston 14, which vent the compression space 7 into the switching chamber when the pressure is too high.
  • variable gap width can also be arranged according to an arrangement.
  • Fig. 3 or 4 integrate.
  • the movable contact piece 3 must also be guided in the drive rod 13 in a sliding manner and with a current contact.
  • a connection from the movable contact piece 3 to the cylinder base 9 ' would be possible in this case, for example, by connecting webs from the contact piece 3 running around the collar 23 to the cylinder base 9' and being arranged in the spaces between the webs 12.
  • FIG. 6 shows an embodiment that provides a variable gap width 15 according to the same principle as that described in FIG. 5.
  • pressure relief valves 25 are arranged which connect the pressure chamber 6 to the switching chamber when the pressure in the pressure chamber rises to a value which is critical for the material.
  • This pressure relief valves 25 are formed by one or more openings 27 in the pressure chamber 6, which are closed by the cylinder bottom 9 'at permissible pressure and are opened at impermissibly high pressure in that the cylinder bottom 9' opens the openings 27 by being due to the Pressure increase from the area of the second position to a third position, which is achieved by overcoming a spring force with a spring constant corresponding to this pressure increase.
  • the spring 8 ' can have an increased spring constant between this second and the third position, or an additional spring is arranged in this area parallel to the spring 8', so that this increased spring constant results from the sum of both spring constants.
  • the spring 8 ' is supported on the perforated plate 21. The remaining parts correspond to FIG. 5.
  • FIG. 6 shows a ventilation valve 24, which is located in the compression piston 14 and has the task of venting the compression space 7 when a negative pressure arises in the compression space 7 as a result of the switch-on movement.
  • a relatively weak spring of the valve 24 allows this valve 24 to go into the open position as soon as the pressure in the compression space 7 becomes lower than in the switching chamber. The spring only has the task of ensuring that valve 24 closes securely even when shaken.
  • Such a ventilation valve 24 can of course be arranged in all of the exemplary embodiments in order to avoid a negative pressure in the compression space 7 which hinders the switch-on movement.

Description

Die Erfindung betrifft einen Schalter mit selbsterzeugter Löschgasströmung mit einer mit Isoliergas gefüllten Schaltkammer, mit mindestens zwei Schaltstücken, von denen mindestens eines beweglich ist, einer durch die Schaltbewegung betätigbaren Kompressionseinrichtung aus einem Kompressionskolben und einem Kompressionszylinder mit Zylinderboden und einer daran anschliessenden Druckkammer mit einer Isolierstoffdüse, wobei ein oder mehrere Durchlässe den Kompressionsraum mit der Druckkammer verbinden und die Durchlässe Verschlüsse aufweisen, die in einem niedrigen Druchbereich der Druckkammer geöffnet sind und in einem hohen Druckbereich der Druckkammer geschlossen sind und wobei die Kompressionseinrichtung so bemessen ist, dass sie die zur Löschung der schwachen Lichtbögen erforderliche Löschgasströmung erzeugt.The invention relates to a switch with a self-generated extinguishing gas flow with a switching chamber filled with insulating gas, with at least two switching pieces, at least one of which is movable, a compression device which can be actuated by the switching movement and consists of a compression piston and a compression cylinder with a cylinder base and a pressure chamber adjoining it with an insulating material nozzle. wherein one or more passages connect the compression space to the pressure chamber and the passages have closures which are opened in a low pressure area of the pressure chamber and are closed in a high pressure area of the pressure chamber, and wherein the compression device is dimensioned such that it is used to extinguish the weak Arc required quenching gas flow generated.

Hochspannungsschalter sind heute in der Regel als mit Isoliergas gefüllte Selbstblasschalter ausgeführt. In einer solchen mit Isoliergas gefüllten Schaltkammer werden die Kontakte getrennt und wird der Lichtbogen bis zum Erlöschen mit dem Isoliergas, meistens SF₆, beblasen. Die für diese Beblasung erforderliche Kompression wird entweder mittels einer Kompressionseinrichtung oder mittels der thermischen Energie des Lichtbogens selbst erzielt. Die Schaltkammern werden entweder von einem vollisolierten Metallgehäuse oder von einem Porzellanisolator umgeben.Today, high-voltage switches are usually designed as auto-blow switches filled with insulating gas. In such a switching chamber filled with insulating gas, the contacts are separated and the arc is blown with the insulating gas, usually SF₆, until it goes out. The compression required for this blowing is achieved either by means of a compression device or by means of the thermal energy of the arc itself. The interrupters are either surrounded by a fully insulated metal housing or by a porcelain insulator.

Aus der FR-A-2 264 380 ist ein Schalter der eingangs genannten Art bekannt. Der Kompressionsraum wird bei diesem Druckgasschalter von einem feststehenden Boden mit einem feststehenden Zylinder und einer mit dem beweglichen Schaltstück verbundenen Isolierstoffdüse gebildet, wobei die Isolierstoffdüse in dem feststehenden Zylinder gasdicht geführt ist. Die Druckkammer ist als Strömungskanal ausgeführt und in die Isolierstoffdüse eingearbeitet, und die Ventile befinden sich in dem feststehenden Boden und in der Isolierstoffdüse. Bei diesem Druckgasschalter sind sowohl die Grösse der Druckkkammer als auch der Spalt zwischen Isolierstoffdüse und Schaltstück fest vorgegeben und nicht an die Löschbedingungen von kleinen und grossen Strömen anpassbar.From FR-A-2 264 380 a switch of the type mentioned is known. The compression space in this gas pressure switch is formed by a fixed base with a fixed cylinder and an insulating material nozzle connected to the movable contact piece, the insulating material nozzle being guided gas-tight in the stationary cylinder. The pressure chamber is designed as a flow channel and incorporated into the insulating material nozzle, and the valves are located in the fixed floor and in the insulating material nozzle. With this Compressed gas switches both the size of the pressure chamber and the gap between the insulating material nozzle and the contact piece are fixed and cannot be adapted to the extinguishing conditions of small and large currents.

Aus der Firmenschrift "Hochspannungsschalter AUTOPNEUMATIC. 72,5 kV-765 kV", A22 V1.05.55/0785 DE/EN, Seite 6 ist ein Selbstblasschalter bekannt, der eine mit Isoliergas gefüllte Schaltkammer aufweist, in der sich zwei Schaltstücke befinden, von denen eines feststehend und das andere mit der Schaltbewegung verschiebbar ist. Durch die Schaltbewegung wird eine Kompressionseinrichtung betätigt, die aus einem Kompressionskolben und einem Kompressionszylinder mit Zylinderboden besteht. Durchlässe in diesem Zylinderboden verbinden den Kompressionsraum mit einer Druckkammer, die von einer Isolierstoffdüse umgeben ist. Lichtbögen, deren Stromstärke im unteren und mittleren Bereich liegt, werden dadurch gelöscht, dass die Kompressionseinrichtung Löschgas komprimiert und durch die Durchlässe imm Zylinderboden in die Druckkammer bläst, wodurch eine starke Löschgasströmung in der Düse entsteht, die den Lichtbogen im Stromnulldurchgang zum Erlöschen bringt.From the company publication "High-voltage switch AUTOPNEUMATIC. 72.5 kV-765 kV", A22 V1.05.55 / 0785 DE / EN, page 6, an auto-blow switch is known which has a switching chamber filled with insulating gas, in which there are two contact pieces, one of which is one is fixed and the other is displaceable with the switching movement. The switching movement actuates a compression device which consists of a compression piston and a compression cylinder with a cylinder base. Passages in this cylinder base connect the compression chamber with a pressure chamber, which is surrounded by an insulating material nozzle. Arcs, the current strength of which is in the lower and middle range, are extinguished by the compression device compressing extinguishing gas and blowing through the passages in the cylinder bottom into the pressure chamber, which creates a strong flow of extinguishing gas in the nozzle, which extinguishes the arc at zero current.

Im Bereich stromschwächerer Lichtbögen, wie sie etwa unter normalen Betriebsbedingungen auftreten, weist dieser Selbsttblasschalter eine recht gute Funktion auf. Diese stromschwächeren Lichtbögen haben eine so geringe thermische Energie, dass es in der Druckkammer durch Erhitzung zu keiner nennenswerten Gasexpansion kommt, und so weder die Beblasung durch die Kompressionseinrichtung verhindert noch die Schaltbewegung beeinträchtigt und damit die Schaltgeschwindigkeit vermindert wird.
Bei der Abschaltung stromstarker Lichtbögen, wie sie beispielsweise in Kurzschlussfällen auftreten, ist die Funktion dieses Selbstblasschalters nicht so optimal. Durch die hohe thermische Energie des Lichtbogens kommt es in der Druckkammer zu einer sehr starken Gasexpansion infolge der Erhitzung. Bei diesen stromstarken Lichtbögen trägt zur Löschung der Lichtbögen dieses expanierte, unter sehr hohem Druck stehende Gas wesentlich bei. Dieses unter sehr hohem Druck stehende Gas dringt jedoch auch durch die Durchlässe des Zylinderbodens in den Kompressionsraum des Kompressionszylinders ein und führt dadurch zu einer Verlangsamung der Schaltbewegung. Das in den Kompressionsraum eingedrungene Gas geht für den Löschvorgang verloren, da die Löschung des Lichtbogens im Stromnulldurchgang erfolgen muss, der Kompressionszylinder das in ihn eingedrungene Gas jedoch erst dann wieder ausstösst, wenn der hohe Druck in der Druckkammer wieder abgebaut ist. Dies ist jedoch erst nach Erlöschen des Lichtbogens der Fall.
Eine so ausgestattete Kompressionseinrichtung ist bei Schaltvorgängen mit stromstarken Lichtbögen also zweifach von Nachteil, einmal dadurch, dass der Schaltvorgang gebremst wird, und zum andern dadurch, dass ein Teil des expandierenden Löschgases für die Beblasung des Lichtbogens verlorengeht.
In the area of low-current arcs, such as occur under normal operating conditions, this auto blow switch has a very good function. These low-current arcs have such a low thermal energy that there is no appreciable gas expansion in the pressure chamber due to heating, and thus neither the blowing by the compression device prevents nor the switching movement is impaired and thus the switching speed is reduced.
The function of this auto blow switch is not so optimal when switching off high-current arcs, such as occur in the event of a short circuit. The high thermal energy of the arc leads to a very strong gas expansion in the pressure chamber due to the heating. With these high-current arcs, this expanded gas, which is under very high pressure, contributes significantly to extinguishing the arcs. This under very high pressure However, standing gas also penetrates through the passages of the cylinder bottom into the compression space of the compression cylinder and thereby slows down the switching movement. The gas that has entered the compression chamber is lost to the quenching process because the arc must be quenched at zero current, but the compression cylinder does not release the gas that has penetrated into it until the high pressure in the pressure chamber is reduced again. However, this is only the case after the arc has been extinguished.
A compression device equipped in this way is therefore twice disadvantageous in switching processes with high-current arcs, firstly in that the switching process is slowed down and secondly in that part of the expanding quenching gas is lost for blowing the arc.

Bei diesem bekannten Selbstblasschalter treten jedoch noch weitere Probleme auf:
Bei sehr energiereichen Lichtbögen ist die Druckkammer, welche von der Isolierdüse umschlossen wird, für die hohen Drücke, wie sie durch die Gasexpansion bei der Unterbrechung sehr starker Ströme auftritt, zu klein.
Für die Intensität und Dauer der Beblasung des Lichtbogens ist das Produkt aus Druck und Volumen massgeblich. Der Druckerhöhung sind jedoch hauptsächlich durch die Stablität des Isoliermaterials der Isolierstoffdüse Grenzen gesetzt. Das Ausschaltvermögen wird somit durch das Volumen der Druckkammer bestimmt.
Desweiteren ist der Spalt zwischen Isolierdüse und Schaltstück fest vorgegeben und nicht den unterschiedlichen Löschbedingungen bei kleinen und grossen Strömen angepasst.
However, there are other problems with this known auto-blow switch:
In the case of very high-energy arcs, the pressure chamber, which is enclosed by the insulating nozzle, is too small for the high pressures that occur due to gas expansion when very strong currents are interrupted.
The product of pressure and volume is decisive for the intensity and duration of the blowing of the arc. However, the pressure increase is mainly limited by the stability of the insulating material of the insulating nozzle. The breaking capacity is thus determined by the volume of the pressure chamber.
Furthermore, the gap between the insulating nozzle and the contact piece is fixed and not adapted to the different extinguishing conditions for small and large currents.

Der Erfindung liegt die Aufgabe zugrunde, einen Selbstblasschalter zu schaffen, bei dem im Falle von Lichtbögen mit einer hohen Stromztärke eine möglichst gute Beblasung und ein möglichst grosses Ausschaltvermögen gewährleistet sind.The invention has for its object to provide an auto-blow switch in which, in the case of arcs with a high current strength, the best possible blowing and the greatest possible breaking capacity are guaranteed.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Druck des niedrigen Druckbereichs durch stromschwache Lichtbögen hervorgerufen wird, deren Energie zu gering ist, um die zu ihrer Beblasung erforderliche Löschgasströmung selbst zu erzeugen, und der Druck des hohen Druckbereichs durch stromstarke Lichtbögen hervorgerufen wird, deren Energie ausreicht, um die zu ihrer Beblasung erforderliche Löschgasströmung selbst zu erzeugen, und dass der Zylinderboden im Kompressionszylinder verschiebbar, aber gasdicht gelagert ist, dass er im niedrigen Druckbereich der Druckkammer eine erste Position einnimmt und dass der Zylinderboden im hohen Druckbereich der Druckkammer eine zweite Position einnimmt, in der die Druckkammer gegenüber der ersten Position vergrössert und der Kompressionsraum verkleinert ist.This object is achieved according to the invention in that the pressure in the low pressure range is caused by low-current arcs, the energy of which is too low to generate the extinguishing gas flow required for blowing them, and the pressure in the high pressure range is caused by high-current arcs, the energy of which is sufficient to generate the extinguishing gas flow required for blowing it, and that the cylinder base is displaceable but gas-tight in the compression cylinder, that it occupies a first position in the low pressure range of the pressure chamber and that the cylinder base occupies a second position in the high pressure range of the pressure chamber , in which the pressure chamber is enlarged compared to the first position and the compression space is reduced.

Vorteilhaft wirkt sich dabei aus, dass sich die Druckkammer bei stromstarken Lichtbögen vergrössert. Durch die Vergrösserung der Druckkammer wird das Produkt Volumen mal Druck grösser, weil der Druck durch nachströmendes Löschgas aufrechterhalten wird, solange der Lichtbogen brennt. Dies ist die Voraussetzung, um eine stärkere Gasströmung von ausreichender Dauer zur Beblasung der stromstarken Lichtbögen zu erzeugen.The fact that the pressure chamber enlarges in the case of high-current arcs has an advantageous effect. The enlargement of the pressure chamber increases the product volume times pressure, because the pressure is maintained by the extinguishing gas flowing in as long as the arc burns. This is the prerequisite for generating a stronger gas flow of sufficient duration to blow the powerful arcs.

Die durch Erhöhung des Produkts aus Druck und Volumen verstärkte Gasströmung lässt sich dadurch besonders effektiv zur Beblasung des Lichtbogens einsetzen, indem der Spalt gemäss Anspruch 11 zwischen dem in der Druckkammer angeordneten Schaltstück und der Isolierstoffdüse vergrössert wird. Dies wird durch ein Schaltstück erreicht, welches druckabhängig verschiebbar ist und darum bei stromstarken Lichtbögen eine Relativbewegung zur Isolierstoffdüse in Richtung der Vergrösserung des Abstands ausführt.The gas flow, which is increased by increasing the product of pressure and volume, can thereby be used particularly effectively for blowing the arc by increasing the gap between the switching element arranged in the pressure chamber and the insulating material nozzle. This is achieved by means of a switching piece which can be displaced in a pressure-dependent manner and therefore executes a movement relative to the insulating material nozzle in the direction of increasing the distance in the case of high-current arcs.

Zweckmässige Ausgestaltungen sind den weiteren Unteransprüchen zu entnehmen.Appropriate configurations can be found in the further subclaims.

Die Erfindung wird nachstehend anhand von zeichnerisch dargestellten Ausführungsbeispielen erläutert, wobei auf weitere Vorteile verwiesen wird.The invention is explained below with reference to exemplary embodiments shown in the drawing, reference being made to further advantages.

Es zeigen

Fig. 1
ein Ausführungsbeispiel mit verschliessbaren Durchlässen im Zylinderboden,
Fig. 2
ein Ausführungsbeispiel mit Entlüftungsöffnungen im Kompressionsraum,
Fig. 3 und Fig. 4
Ausführungsbeispiele mit verschiebberem Zylinderboden und
Fig. 5 und Fig. 6
Ausführungsbeispiele mit variabler Spaltbreite zwischen Schaltstück und Isolierstoffdüse.
Show it
Fig. 1
an embodiment with closable passages in the cylinder bottom,
Fig. 2
an embodiment with ventilation openings in the compression space,
3 and 4
Embodiments with slidable cylinder base and
5 and 6
Exemplary embodiments with a variable gap width between the contact piece and the insulating material nozzle.

Dargestellt sind jeweils die Innenteile einer Schaltkammer. Die linken Hälften der Figuren zeigen den Schalter im geschlossenen Zustand, die rechten Hälften bei der Ausschaltung. Die Schaltkammer ist mit Isoliergas, z. B. SF₆, gefüllt und wird von einem Gehäuse umgeben, welches als vollisoliertes Metallgehäuse oder als Porzellanisolator ausgeführt sein kann. Am festen Schaltstück 2 sowie am Träger des Kompressionskolbens 29 befinden sich die elektrischen Anschlüsse.The inner parts of a switching chamber are shown. The left halves of the figures show the switch in the closed state, the right halves when it is switched off. The switching chamber is with insulating gas, e.g. B. SF₆, filled and is surrounded by a housing, which can be designed as a fully insulated metal housing or as a porcelain insulator. The electrical connections are located on the fixed contact piece 2 and on the carrier of the compression piston 29.

Fig. 1 zeigt einen Selbstblasschalter, bei dem die Durchlässe 1 mit Verschlüssen 10, welche hier als Ventile ausgeführt sind, ausgestattet sind. Die Schaltbewegungen erfolgen mittels einer Antriebsstange 13, die mit einem beweglichen Schaltstück 3, einem Zylinderboden 9, einem Kompressionszylinder 4 sowie einer Isolierstoffdüse 5 fest verbunden ist. Bei der Ausschaltung trennen sich das bewegliche Schaltstück 3 und ein festes Schaltstück 2. Dadurch bildet sich zwischen diesen Schaltstücken durch die Isolierstoffdüse 5 hindurch ein Lichtbogen 26. Im Rahmen des Normalbetriebs, so z. B. bei der Abschaltung eines Netzteils, bilden sich relativ schwache Lichtbögen, da die Stromstärke nicht allzu hoch ist. Die thermische Energie solcher Lichtbögen ist nicht groß, so daß die Gasexpansion in der Druckkammer 6, infolge der Erhitzung des Gases zu keiner erheblichen Drucksteigerung führt. Solche Lichtbögen müssen mittels einer Einrichtung beblasen werden. Dazu dient die Kompressionseinrichtung, bestehend aus dem Kompressionszylinder 4, der sich bei der Ausschaltung über einen Kompressionskolben 14 schiebt und dabei den Kompressionsraum 7 verringert. Das im Kompressionsraum 7 zusammengepreßte Gas wird durch Durchlässe 1 im Zylinderboden 9 in die Druckkammer 6 geblasen, um von dort durch die Isolierstoffdüse 5 zu strömen, wobei der Lichtbogen 26 beblasen wird. Der Lichtbogen erlöscht dadurch, daß durch die Beblasung die Neuzündung nach dem Stromnulldurchgang verhindert wird. Bei einer solchen Abschaltung ist der Druck in der Druckkammer 6 niedriger als im Kompressionsraum 7, so daß die Verschlüsse 10, hier als Ventile ausgeführt, geöffnet sind.1 shows an auto-blow switch in which the passages 1 are equipped with closures 10, which are designed here as valves. The switching movements take place by means of a drive rod 13, which is firmly connected to a movable switching piece 3, a cylinder base 9, a compression cylinder 4 and an insulating material nozzle 5. When switched off, the movable contact piece 3 and a fixed contact piece 2 separate. As a result, an arc 26 is formed between these contact pieces through the insulating material nozzle 5. B. when switching off a power supply, relatively weak arcs are formed because the current is not too high. The thermal energy of such arcs is not great, so that the gas expansion in the pressure chamber 6 does not lead to a significant increase in pressure as a result of the heating of the gas. Such arcs must be blown using a device. The compression device, consisting of the compression cylinder 4, is used for this purpose, which, when switched off, slides over a compression piston 14 and thereby reduces the compression space 7. The gas compressed in the compression space 7 is blown through passages 1 in the cylinder base 9 into the pressure chamber 6 in order to flow from there through the insulating nozzle 5, the arc 26 being blown. The arc extinguishes because the blowing prevents the re-ignition after the zero current crossing. With such a shutdown, the pressure in the pressure chamber 6 is lower than in the compression chamber 7, so that the closures 10, here designed as valves, are open.

Die Druckverhältnisse sind bei stromstarken Lichtbögen, wie sie beispielsweise bei der Abschaltung von Kurzschlüssen auftreten, umgekehrt. Durch die hohe thermische Energie dieser Lichtbögen kommt es in der Druckkammer 6 zu einer starken Gasexpansion, so daß der Druck in der Druckkammer 6 höher ist, als der Druck im Kompressionsraum 7. Die Verschlüsse 10, hier die Ventile, schließen, um auf diese Weise ein Eindringen des hohen Drucks in den Kompressionsraum 7 zu verhindern, was zu einer Bremsung der Ausschaltbewegung infolge der Druckerhöhung führen würde. Das unter hohem Druck stehende Gas verbleibt in der Druckkammer 6 und steht zur Beblasung des Lichtbogens voll zur Verfügung, wobei der Lichtbogen außerhalb des Stromnulldurchgangs die Düse verstopft und kurz vor dem Stromnulldurchgang eine starke Löschmittelströmung einsetzt. Dadurch, daß der hohe Druck vom Kompressionsraum 7 ferngehalten wird, kann der Schalter mit einer geringeren Antriebsenergie betrieben werden oder es läßt sich eine höhere Schaltgeschwindigkeit erzielen. Da die Kompressionseinrichtung durch die Verschlüsse 10 nur für die Löschung schwacher Lichtbögen in Betrieb ist, wird sie so bemessen, daß sie die für die Löschung dieser schwachen Lichtbögen erforderliche Löschgasströmung erzeugt.The pressure conditions are reversed in the case of high-current arcs, such as occur when short circuits are switched off. The high thermal energy of these arcs leads to a strong gas expansion in the pressure chamber 6, so that the pressure in the pressure chamber 6 is higher than the pressure in the compression space 7. The shutters 10, here the valves, close in this way to prevent the high pressure from entering the compression space 7, which would lead to a braking of the switch-off movement as a result of the pressure increase. The gas under high pressure remains in the pressure chamber 6 and is fully available for blowing the arc, the arc clogging the nozzle outside the zero current crossing and a strong flow of extinguishing agent starting shortly before the zero current crossing. Because the high pressure from Compression chamber 7 is kept away, the switch can be operated with a lower drive energy or a higher switching speed can be achieved. Since the compression device is only operated by the closures 10 for the extinction of weak arcs, it is dimensioned such that it generates the quenching gas flow required for the extinguishing of these weak arcs.

Fig. 2 zeigt ein Ausführungsbeispiel mit einer Weiterbildung der erfindungsgemäßen Lösung. Dieser Selbstblasschalter unterscheidet sich von dem in Fig. 1 dargestellten dadurch, daß der Kompressionsraum 7 durch Entlüftungsöffnungen 11 mit der Schaltkammer verbunden ist. Die Entlüftungsöffnungen 11 sind hier im Kompressionskolben 14 angeordnet. Sie sind mit Verschlüssen, hier als Ventile 16 ausgeführt, versehen. Die Ventile 16 öffnen gegen den Druck von Federn, wobei diese Federn eine solche Federkonstante aufweisen, daß die Öffnung der Ventile 16 dann erfolgt, wenn im Kompressionsraum 7 sich ein Druck entwickelt, der dem hohen Druckbereich in der Druckkammer 6 entspricht, bei dem dort die Verschlüsse 10 infolge der Gasexpansion durch stromstarke Lichtbögen schließen. Dieser Druckbereich wird im Kompressionsraum 7 dadurch erreicht, daß die Verschlüsse 10 geschlossen sind, der Kompressionszylinder 4 sich über den feststehenden Kompressionskolben 14 schiebt und das eingeschlossene Gas komprimiert wird. Die Ventile 16 öffnen somit nur dann, wenn stromstarke Lichtbögen den entsprechend hohen Druck in der Druckkammer 6 erzeugen und infolge dessen aus dem Kompressionsraum 7 kein Gas abströmen kann. Bei schwachen Lichtbögen öffnen dagegen die Verschlüsse 10 und der Druck im Kompressionsraum 7 kann durch das durch die Durchlässe 1 abströmende Gas nicht so hoch ansteigen, daß die Ventile 16 öffnen. Der mögliche Druckanstieg im Kompressionsraum 7 ist also begrenzt, unabhängig davon, ob stromstarke oder stromschwache Lichtbögen gelöscht werden müssen. Der Antrieb muß nur noch einen begrenzten Druck im Kompressionsraum 7 überwinden, wodurch er entlastet wird. Es ist möglich, einen noch schwächeren Antrieb zu verwenden, oder die Schaltgeschwindigkeit weiter zu erhöhen.Fig. 2 shows an embodiment with a development of the solution according to the invention. This auto-blow switch differs from that shown in FIG. 1 in that the compression space 7 is connected to the switching chamber through ventilation openings 11. The ventilation openings 11 are arranged here in the compression piston 14. They are provided with closures, here designed as valves 16. The valves 16 open against the pressure of springs, these springs having such a spring constant that the opening of the valves 16 takes place when a pressure develops in the compression space 7 which corresponds to the high pressure range in the pressure chamber 6, at which the Close shutters 10 as a result of gas expansion by means of high-current arcs. This pressure range is reached in the compression space 7 in that the closures 10 are closed, the compression cylinder 4 slides over the fixed compression piston 14 and the enclosed gas is compressed. The valves 16 therefore only open when high-current arcs generate the correspondingly high pressure in the pressure chamber 6 and, as a result, no gas can flow out of the compression space 7. In the case of weak arcs, on the other hand, the closures 10 open and the pressure in the compression space 7 cannot rise so high due to the gas flowing through the passages 1 that the valves 16 open. The possible pressure increase in the compression space 7 is therefore limited, regardless of whether high-current or low-current arcs have to be extinguished. The drive only has to overcome a limited pressure in the compression space 7, whereby it is relieved. It is possible to use an even weaker drive or to further increase the switching speed.

Die Fig. 3 zeigt ein Ausführungsbeispiel, das sich von den Fig. 1 und 2 dadurch unterscheidet, daß der Zylinderboden 9' im Kompressionszylinder 4 gasdicht verschiebbar gelagert ist. Gegenüber der Antriebsstange 13 ist der Zylinderboden 9' ebenfalls gasdicht geführt, wobei ihn eine Feder 8 gegen einen fest mit der Antriebsstange 13 verbundenen Bund 23 drückt. Die Feder 8 stützt sich auf einen Absatz 22 der Antriebsstange 13 ab. Der Zylinderboden 9' weist - wie der Zylinderboden 9 der Fig. 1 und 2 - Durchlässe 1 mit Verschlüssen 10 auf. Am Außenrand des Zylinderbodens 9' befindet sich ein zylinderringförmiger Rand 17, der im Kompressionszylinder 4 gasdicht gleitet. Dieser Rand 17 ist mit Bohrungen 18 ausgestattet. Der Kompressionszylinder 4 weist Entlüftungsöffnungen 11' auf, die den Bohrungen 18 im Rand 17 des Zylinderboden 9' so zugeordnet sind, daß bei Verschiebung des Zylinderbodens 9' gegen den Druck der Feder 8 die Bohrungen 18 mit den Entlüftungsöffnungen 11' fluchten und so eine Verbindung des Kompressionsraums 7 zur Schaltkammer entsteht. Dieser verschiebbare Zylinderboden 9' bewirkt bei großem Druckanstieg infolge stromstarker Lichtbögen, bei denen die Verschlüsse 10 schließen, eine Vergrößerung der Druckkammer 6. Gleichzeitig wird der Kompressionsraum 7 durch die Bohrungen 18 und die Entlüftungsöffnungen 11' in die Schaltkammer entlüftet. Die rechte Seite der Figur stellt den Schalter bei der Ausschaltung eines stromschwachen Lichtbogens dar. Der Zylinderboden 9' liegt am Bund 23 an, die Bohrungen 18 fluchten nicht mit den Entlüftungsöffnungen 11', so daß sie verschlossen sind, und das komprimierte Gas strömt durch die Durchlässe 1 (Pfeile), wodurch der Lichtbogen 26 beblasen wird. Diese Ausgestaltung sorgt für eine noch bessere Beblasung der stromstarken Lichtbögen, da durch die Vergrößerung des Volumens der Druckkammer auch ein größeres Produkt aus Volumen mal Druck entsteht, welches für die Intensität und Dauer der Beblasung maßgeblich ist. Durch die Vergrößerung der Druckkammer 6 wird auch ein zu starker Druckansteig in der Druckkammer 6 verhindert, so daß der für das Material kritische Wert nicht so schnell erreicht wird. Die Vergrößerung der Druckkammer 6 findet auf Kosten des Kompressionsraum 7 statt. Dies ist deshalb nicht von Nachteil, weil bei der Ausschaltung starker Lichtbögen die Kompressionseinrichtung nicht in Funktion ist.Fig. 3 shows an embodiment which differs from Figs. 1 and 2 in that the cylinder bottom 9 'in the compression cylinder 4 is mounted gas-tight. Opposite the drive rod 13 is the cylinder bottom 9 'is also guided gastight, a spring 8 pressing it against a collar 23 which is fixedly connected to the drive rod 13. The spring 8 is supported on a shoulder 22 of the drive rod 13. The cylinder base 9 'has - like the cylinder base 9 of FIGS. 1 and 2 - passages 1 with closures 10. On the outer edge of the cylinder bottom 9 'there is a cylindrical ring-shaped edge 17 which slides in the compression cylinder 4 in a gas-tight manner. This edge 17 is equipped with holes 18. The compression cylinder 4 has ventilation openings 11 ', which are assigned to the bores 18 in the edge 17 of the cylinder base 9' such that when the cylinder base 9 'is displaced against the pressure of the spring 8, the bores 18 are aligned with the ventilation openings 11' and thus connect of the compression space 7 to the switching chamber. This displaceable cylinder base 9 'causes the pressure chamber 6 to increase in the event of a large rise in pressure as a result of high-current arcs in which the closures 10 close. At the same time, the compression space 7 is vented into the switching chamber through the bores 18 and the ventilation openings 11'. The right side of the figure represents the switch when a low-current arc is switched off. The cylinder base 9 'lies against the collar 23, the bores 18 do not align with the ventilation openings 11', so that they are closed, and the compressed gas flows through the Passages 1 (arrows), whereby the arc 26 is blown. This configuration ensures an even better blowing of the high-current arcs, since increasing the volume of the pressure chamber also results in a larger product of volume times pressure, which is decisive for the intensity and duration of the blowing. The enlargement of the pressure chamber 6 also prevents an excessive rise in pressure in the pressure chamber 6, so that the critical value for the material is not reached so quickly. The enlargement of the pressure chamber 6 takes place at the expense of the compression space 7. This is not disadvantageous because the compression device does not function when strong arcs are switched off.

Die Federkonstante der Feder 8 wird so ausgelegt, daß bei stromschwachen Lichtbögen, bei denen die Verschlüsse 10 geöffnet bleiben, der Zylinderboden 9' in einer ersten Position verharrt, in der er an dem mit der Antriebsstange 13 fest verbundenen Bund 23 anliegt. Erst bei den Lichtbögen, die so stromstark sind, daß sie einen Druck in der Druckkammer 6 aufbauen, durch den sich die Verschlüsse 10 schließen, läßt sich die Feder 8 zusammendrücken. In solchen Schaltsituationen bewegt sich also der Zylinderboden 9' in den Bereich der zweiten Position. Die genaue Lage des Zylinderbodens 9' innerhalb dieses Bereichs der zweiten Position ist vorteilhafterweise druckabhängig. Zweckmäßigerweise ist die Federkonstante der Feder 8 in Abhängigkeit vom zurückzulegenden Weg des Zylinderbodens 9' so bestimmt, daß in der Druckkammer 6 ein besonders günstiges Produkt aus Druck mal Volumen für die Löschung des betreffenden Lichtbogens erzielt wird.The spring constant of the spring 8 is designed so that in the event of low-current arcs, in which the closures 10 remain open, the cylinder base 9 'remains in a first position in which it rests on the collar 23 which is firmly connected to the drive rod 13. Only with the arcs, which are so powerful that they build up a pressure in the pressure chamber 6, through which the closures 10 close, the spring 8 can be compressed. In such switching situations, the cylinder base 9 'thus moves into the region of the second position. The exact position of the cylinder base 9 'within this area of the second position is advantageously pressure-dependent. The spring constant of the spring 8 is expediently determined as a function of the path of the cylinder base 9 'to be covered so that a particularly favorable product of pressure times volume for quenching the relevant arc is achieved in the pressure chamber 6.

Bei einer solchen Ausgestaltung, in der sich die zweite Position des Zylinderbodens 9' innerhalb eines Bereichs druckabhängig einstellt, müssen die Entlüftungsöffnungen 11' als Langlöcher ausgeführt werden, damit gewährleistet ist, daß im gesamten Bereich, in dem sich der Zylinderboden 9' in seiner zweiten Position befinden kann, eine Entlüftung des Kompressionsraums 7 gewährleistet ist.In such an embodiment, in which the second position of the cylinder base 9 'is set within a range depending on the pressure, the ventilation openings 11' must be designed as elongated holes, so that it is ensured that in the entire area in which the cylinder base 9 'is in its second Position can be, ventilation of the compression space 7 is guaranteed.

Neben der Optimierung des Produkts aus Druck mal Volumen für die Druckkammer 6 und somit einer Verbesserung der Beblasung, ist ein weiterer Vorteil der Weiterbildung der, daß die Entlüftung des Kompressionsraums 7 sofort nach dem Verschließen der Verschlüsse 10 eintritt. Diese sofortige und völlige Druckentlastung des Kompressionsraumes 7, die mechanisch mit der Verschiebung des Zylinderbodens 9' gekoppelt ist - also nicht über den Umweg eines Druckaufbaus im Kompressionsraum 7 vermittelt wird -, sorgt dafür, daß bei der Löschung stromstarker Lichtbögen die Schaltgeschwindigkeit gegenüber der Ausschaltung stromschwacher Lichtbögen noch zusätzlich erhöht wird, da im Kompressionsraum kein Druck der Schaltbewegung entgegensteht. Bei dieser Ausgestaltung wird zweckmäßigerweise ein mechanischer oder pneumatischer Dämpfer angeordnet, der am Ende der Schaltbewegung diese abfängt.In addition to the optimization of the product of pressure times volume for the pressure chamber 6 and thus an improvement in the blowing, a further advantage of the development is that the ventilation of the compression space 7 occurs immediately after the closures 10 have been closed. This immediate and complete pressure relief of the compression space 7, which is mechanically coupled with the displacement of the cylinder bottom 9 '- that is, not communicated via the detour of a pressure build-up in the compression space 7 - ensures that the switching speed compared to the switch-off when the current is extinguished is reduced Arcing is increased even further, since there is no pressure opposing the switching movement in the compression space. In this embodiment, a mechanical or pneumatic damper is expediently arranged, which intercepts it at the end of the switching movement.

Die Weiterbildung ist auch für den Einschaltvorgang von Vorteil. Beim Einschaltvorgang bewegt sich die Antriebsstange 13 mit dem beweglichen Schaltstück 2, dem Zylinderboden 9', dem Kompressionszylinder 4 und der Isolierstoffdüse 5 nach oben, wodurch der Kompressionsraum 7 vergrößert wird. Im Kompressionsraum 7 entsteht dadurch ein Unterdruck, der den Zylinderboden 9' gegen den Druck der Feder 8 nach unten saugt, wodurch sich eine Belüftung mittels der Bohrungen 18 und der Entlüftungsöffnungen 11' ergibt. Auf diese Weise wird die Einschaltgeschwindigkeit nicht durch die Bildung eines der Einschaltbewegung entgegenwirkenden Unterdrucks im Kompressionsraum 7 behindert.The training is also advantageous for the switch-on process. When switching on, the drive rod 13 moves with the movable contact piece 2, the cylinder bottom 9 ', the compression cylinder 4 and the insulating nozzle 5 upwards, whereby the compression space 7 is enlarged. This creates a negative pressure in the compression space 7, which sucks the cylinder bottom 9 'downward against the pressure of the spring 8, as a result of which a Ventilation by means of the holes 18 and the vent openings 11 'results. In this way, the switch-on speed is not impeded by the formation in the compression chamber 7 of a negative pressure which counteracts the switch-on movement.

Weil der Zylinderboden 9' gegenüber der Antriebsstange 13 sowie dem Kompressionszylinder 4 relativ verschiebbar ist, also diese Teile nicht mehr miteinander verbindet, muß zur kraftschlüssigen Verbindung zwischen der Antriebsstange 13 und dem beweglichen Schaltstück 3 einerseits sowie dem Kompressionszylinder 4 und der Isolierstoffdüse 5 andererseits ein Verbindungsstück angeordnet werden, welches beispielsweise als Stege 12 oder als durchbrochene Platte 21 ausgeführt sein kann.Because the cylinder base 9 'relative to the drive rod 13 and the compression cylinder 4 is relatively displaceable, i.e. no longer connects these parts to one another, a connecting piece must be used for the positive connection between the drive rod 13 and the movable switching element 3 on the one hand and the compression cylinder 4 and the insulating material nozzle 5 on the other hand be arranged, which can be designed, for example, as webs 12 or as a perforated plate 21.

Fig. 4 zeigt eine Weiterbildung des Ausführungsbeispiels von Fig. 3, bei dem die Durchlässe 1' zwischen dem Kompressionsraum 7 und der Druckkammer 6 dadurch gebildet werden, daß in der ersten Position des Zylinderbodens 9' die Bohrungen 18 in eine Erweiterung 19 der Zylinderwandung münden. Dies ist in der linken Hälfte der Fig. 4 dargestellt, wobei der Pfeil den Weg des Löschgasstroms bei der Löschung stromschwacher Lichtbögen zeigt. Die Federkonstante der Feder 8 oder einer zusätzlichen schwachen Feder, die in diesem Bereich zur Feder 8 in Reihe liegt, muß jedoch so niedrig sein, daß eine Verschiebung des Zylinderbodens 9' in die zweite Position so leichtgängig erfolgt, daß diese Verschiebung einem Druckausgleich durch die Durchlässe 1' zuvorkommt. Möglich ist auch eine Ausgestaltung, bei der der Zylinderboden 9' zu Beginn des Bereichs der zweiten Position erst auf die Feder 8 oder 8' trifft, d. h. daß der Verschiebung des Zylinderbodens 9' bis zum Verschluß der Durchlässe 1' lediglich die Reibung der Lagerung entgegensteht. In der zweiten Position des Zylinderbodens 9' besteht keine Verbindung zwischen der Erweiterung 19 und der Bohrung 18. Unmittelbar nach Unterbrechung der Verbindung zwischen der Bohrung 18 und der Erweiterung 19 öffnet sich durch die Verschiebung des Zylinderbodens 9' die Entlüftung des Kompressionsraums 7 zur Schaltkammer mittels der Bohrung 18 und der Entlüftungsöffnung 11'. Dies ist aus der rechten Hälfte der Figur 4 ersichtlich, wobei der Pfeil die Entlüftung des Kompressionsraumes 7 in die Schaltkammer anzeigt. Die Bohrungen 18 und die Öffnungen 11' werden in der Anzahl und Größe am Umfang angebracht, die für die schnelle Entlüftung erforderlich ist.Fig. 4 shows a development of the embodiment of Fig. 3, in which the passages 1 'between the compression space 7 and the pressure chamber 6 are formed in that in the first position of the cylinder bottom 9' the holes 18 open into an extension 19 of the cylinder wall . This is shown in the left half of FIG. 4, the arrow showing the path of the extinguishing gas flow when extinguishing low-current arcs. The spring constant of the spring 8 or an additional weak spring, which lies in series with the spring 8 in this area, must however be so low that a displacement of the cylinder bottom 9 'into the second position takes place so smoothly that this displacement compensates for pressure by Passages 1 'preceded. A configuration is also possible in which the cylinder base 9 'only hits the spring 8 or 8' at the beginning of the region of the second position, ie that the displacement of the cylinder base 9 'until the passages 1' are closed only counteracts the friction of the bearing . In the second position of the cylinder base 9 'there is no connection between the extension 19 and the bore 18. Immediately after the connection between the bore 18 and the extension 19 is interrupted, the displacement of the cylinder base 9' opens the ventilation of the compression space 7 to the switching chamber by means of the bore 18 and the vent 11 '. This can be seen from the right half of FIG. 4, the arrow indicating the ventilation of the compression space 7 in the switching chamber. The holes 18 and the openings 11 'are made in the number and size of the circumference, which for quick venting is required.

Fig. 4 zeigt des weiteren einen Zylinderring 30, der auf dem Kompressionszylinder 4 außen gleitend angeordnet ist, so daß er die Entlüftungsöffnungen 11' gegen Ende der Schaltbewegung schließt. Dieser Zylinderring 30 ist mit dem Träger 29 des Kompressionskolbens 4 fest verbunden. Der Zweck dieser Anordnung besteht darin, daß die Schaltbewegung gegen Ende der Ausschaltung durch ein sich im Kompressionsraum 7 bildendes Gaspolster weich abgefangen wird. Eine Beeinträchtigung der Ausschalteigenschaften des Schalters erfolgt durch diese Bremsung der Ausschaltbewegung nicht mehr, da in dieser Schalterstellung der Lichtbogen bereits erloschen ist.Fig. 4 further shows a cylinder ring 30 which is slidably disposed on the outside of the compression cylinder 4 so that it closes the ventilation openings 11 'towards the end of the switching movement. This cylinder ring 30 is firmly connected to the carrier 29 of the compression piston 4. The purpose of this arrangement is that the switching movement is softly intercepted towards the end of the switch-off by a gas cushion forming in the compression space 7. This braking of the switch-off movement no longer affects the switch-off properties of the switch, since the arc has already extinguished in this switch position.

Fig. 5 zeigt eine Ausgestaltung bei der sich die Breite des Spaltes 15 zwischen dem Schaltstück 3 und der Isolierstoffdüse 5 den unterschiedlichen Löschbedingungen bei kleinen und großen Strömen anpaßt.Fig. 5 shows an embodiment in which the width of the gap 15 between the switching piece 3 and the insulating nozzle 5 adapts to the different extinguishing conditions for small and large currents.

Die Antriebsstange 13 enthält eine Führung mit einem Hochstromkontakt, in welcher ein verschiebbarer Schaltstückträger 20 gelagert ist. Dieser verschiebbare Schaltstückträger 20 ist mit dem Zylinderboden 9' sowie mit dem Schaltstück 3, welches hier als bewegliches (d. h. die Schaltbewegung ausführendes) Schaltstück ausgebildet ist, fest verbunden. Der Zylinderboden 9' wird von einer Feder 8' in seiner ersten Position gegen einen Bund 23' gedrückt, welcher in fester Verbindung mit dem Kompressionszylinder 4 steht, und unterhalb der Isolierstoffdüse 5 innerhalb der Druckkammer 6 angeordnet ist. Die Feder 8' stützt sich auf einen Absatz am oberen Ende des Kompressionszylinders 4 ab.The drive rod 13 contains a guide with a high current contact, in which a displaceable contact piece carrier 20 is mounted. This displaceable contact piece carrier 20 is firmly connected to the cylinder base 9 'and to the contact piece 3, which is designed here as a movable (i.e. executing the switching movement) contact piece. The cylinder base 9 'is pressed by a spring 8' in its first position against a collar 23 'which is in fixed connection with the compression cylinder 4 and is arranged below the insulating material nozzle 5 within the pressure chamber 6. The spring 8 'is supported on a shoulder at the upper end of the compression cylinder 4.

Auch bei dieser Ausgestaltung ist die Feder 8' so ausgelegt, daß der Zylinderboden 9' in seiner zweiten Position eine druckabhängige Lage einnimmt. Diese druckabhängige Lage befindet sich zwischen der ersten Position und einer Position, die dem maximalen Druck entspricht; bei diesem liegt der Zylinderboden 9' an einer durchbrochenen Platte 21 an und die Feder 8' ist maximal zusammengedrückt. Entsprechend der Lage des Zylinderbodens 9' in der zweiten Position befindet sich das bewegliche Schaltstück 3 in einer relativen Lage zur Isolierstoffdüse 5, wodurch sich der Spalt 15 druckabhängig einstellt.In this embodiment too, the spring 8 'is designed such that the cylinder base 9' assumes a pressure-dependent position in its second position. This pressure-dependent position is between the first position and a position that corresponds to the maximum pressure; in this case the cylinder bottom 9 'abuts a perforated plate 21 and the spring 8' is compressed to the maximum. Corresponding to the position of the cylinder base 9 'in the second position, the movable contact piece 3 is in a position relative to the insulating material nozzle 5, as a result of which the gap 15 is set as a function of pressure.

Bei der Ausschaltung kleiner Ströme ist der Spalt 15 so schmal, daß er trotz der relativen Schwäche der durch die Kompressionseinrichtung erzeugten Gasströmung eine intensive Beblasung des Lichtbogens herbeiführt.
Bei großen Strömen vergrößert sich der Spalt 15 mit dem Hub des Zylinderbodens 9' entsprechend, so daß der Düsenspalt vergrößert wird. Das Löschgas fließt dadurch in einem breiteren Löschgasstrom, welcher wegen des hohen Drucks des unter der thermischen Energie des Lichtbogens expandierenden Gases eine hohe Strömungsgeschwindigkeit aufweist und so zu einer intensiven Beblasung des Lichtbogens führt.
Die Bedingungen für die Beblasung des Lichtbogens werden zusätzlich dadurch optimiert, daß die Lichtbogenlänge vergrößert wird, indem das Schaltstück 3 ebenfalls den Hub des Zylinderbodens 9' ausführt und so der Abstand zwischen den Schaltstücken 2, 3 und damit die Lichtbogenlänge zusätzlich zur Schaltbewegung vergrößert wird.
When small currents are switched off, the gap 15 is so narrow that, in spite of the relative weakness of the gas flow generated by the compression device, it causes an intensive blowing of the arc.
With large flows, the gap 15 increases correspondingly with the stroke of the cylinder base 9 ', so that the nozzle gap is enlarged. The quenching gas thereby flows in a wider stream of quenching gas, which has a high flow rate due to the high pressure of the gas expanding under the thermal energy of the arc and thus leads to intensive blowing of the arc.
The conditions for blowing the arc are additionally optimized in that the arc length is increased by the switching element 3 also carrying out the stroke of the cylinder bottom 9 'and thus the distance between the switching elements 2, 3 and thus the arc length is increased in addition to the switching movement.

Die feste Verbindung zwischen der Antriebsstange 13, dem Kompressionszylinder 4 und der Isolierstoffdüse 5 wird durch die durchbrochene Platte 21 hergestellt. Günstig ist ein zusätzliches Überdruckventil 28 im Zylinderboden 9' - auch eine andere Stelle der Druckkammer 6 ist denkbar-welches im Normalbetrieb geschlossen ist und die Druckkammer 6 mit der Kompressionskammer 7 - oder der Schaltkammer - dann verbindet, wenn der Druck einen Wert erreicht, der für das Material kritisch ist. Bei Überdruckventilen 28, die in den Kompressionsraum 7 münden, muß dieser im hohen Druckbereich über eine gute Entlüftung zur Schaltkammer verfügen. In der dargestellten Ausgestaltung sind Ventile 16 im Kompressionskolben 14 angeordnet, die bei einem zu hohen Druck den Kompressionsraum 7 in die Schaltkammer entlüften.The fixed connection between the drive rod 13, the compression cylinder 4 and the insulating nozzle 5 is made by the perforated plate 21. An additional pressure relief valve 28 in the cylinder bottom 9 'is favorable - another location of the pressure chamber 6 is also conceivable - which is closed in normal operation and connects the pressure chamber 6 with the compression chamber 7 - or the switching chamber - when the pressure reaches a value which is critical for the material. In the case of pressure relief valves 28 which open into the compression space 7, the latter must have good ventilation to the switching chamber in the high pressure range. In the illustrated embodiment, valves 16 are arranged in the compression piston 14, which vent the compression space 7 into the switching chamber when the pressure is too high.

Selbstverständlich läßt sich eine solche variable Spaltbreite auch in eine Anordnung gem. Fig. 3 oder 4 integrieren. Dazu muß das bewegliche Schaltstück 3 ebenfalls in der Antriebsstange 13 gleitend und mit einem Stromkontakt geführt werden. Eine Verbindung vom beweglichen Schaltstück 3 mit dem Zylinderboden 9' wäre in diesem Fall beispielsweise dadurch möglich, Verbindungsstege vom Schaltstück 3 um den Bund 23 herum verlaufend zu dem Zylinderboden 9' führen und dabei in den Zwischenräumen zwischen den Stegen 12 angeordnet sind.Of course, such a variable gap width can also be arranged according to an arrangement. Fig. 3 or 4 integrate. For this purpose, the movable contact piece 3 must also be guided in the drive rod 13 in a sliding manner and with a current contact. A connection from the movable contact piece 3 to the cylinder base 9 'would be possible in this case, for example, by connecting webs from the contact piece 3 running around the collar 23 to the cylinder base 9' and being arranged in the spaces between the webs 12.

Fig. 6 zeigt eine Ausgestaltung, die eine variable Spaltbreite 15 nach dem gleichen Prinzip vorsieht, wie dies in Fig. 5 beschrieben wurde. Zusätzlich sind Überdruckventile 25 angeordnet, welche die Druckkammer 6 mit der Schaltkammer verbinden, wenn der Druck in der Druckkammer auf einen Wert ansteigt, der für das Material kritisch ist. Diese Überdruckventile 25 werden durch eine oder mehrere Öffnungen 27 in der Druckkammer 6 gebildet, die vom Zylinderboden 9' bei zulässigem Druck verschlossen sind und bei unzulässig hohem Druck dadurch geöffnet werden, daß der Zylinderboden 9' die Öffnungen 27 freigibt, indem er sich infolge der Druckerhöhung von dem Bereich der zweiten Position weiter in eine dritte Position verschiebt, welche durch Überwindung einer Federkraft mit einer dieser Druckerhöhung entsprechend erhöhten Federkonstante erreicht wird. Dazu kann die Feder 8' zwischen dieser zweiten und der dritten Position eine erhöhte Federkonstante aufweisen, oder es wird in diesem Bereich parallel zur Feder 8' eine zusätzliche Feder angeordnet, so daß sich diese erhöhte Federkonstante aus der Summe beider Federkonstanten ergibt. Um Raum für diese Überdruckventile 25 zu schaffen, wird die Feder 8' auf der durchbrochenen Platte 21 aufgestützt. Die übrigen Teile entsprechen der Fig. 5.FIG. 6 shows an embodiment that provides a variable gap width 15 according to the same principle as that described in FIG. 5. In addition, pressure relief valves 25 are arranged which connect the pressure chamber 6 to the switching chamber when the pressure in the pressure chamber rises to a value which is critical for the material. This pressure relief valves 25 are formed by one or more openings 27 in the pressure chamber 6, which are closed by the cylinder bottom 9 'at permissible pressure and are opened at impermissibly high pressure in that the cylinder bottom 9' opens the openings 27 by being due to the Pressure increase from the area of the second position to a third position, which is achieved by overcoming a spring force with a spring constant corresponding to this pressure increase. For this purpose, the spring 8 'can have an increased spring constant between this second and the third position, or an additional spring is arranged in this area parallel to the spring 8', so that this increased spring constant results from the sum of both spring constants. In order to create space for these pressure relief valves 25, the spring 8 'is supported on the perforated plate 21. The remaining parts correspond to FIG. 5.

Zusätzlich zeigt Fig. 6 ein Belüftungsventil 24, das sich im Kompressionskolben 14 befindet und die Aufgabe hat, bei der Entstehung eines Unterdrucks im Kompressionsraum 7 infolge der Einschaltbewegung den Kompressionsraum 7 zu belüften. Eine relativ schwache Feder des Ventils 24 läßt dieses Ventil 24 in die geöffnete Stellung gehen, sobald der Druck im Kompressionsraum 7 geringer wird als in der Schaltkammer. Die Feder hat lediglich die Aufgabe auch bei Erschütterungen für ein sicheres Schließen des Ventils 24 zu sorgen. Ein solches Belüftungsventil 24 kann zur Vermeidung eines die Einschaltbewegung behindernden Unterdrucks im Kompressionsraum 7 selbstverständlich bei sämtlichen Ausführungsbeispielen angeordnet werden.In addition, FIG. 6 shows a ventilation valve 24, which is located in the compression piston 14 and has the task of venting the compression space 7 when a negative pressure arises in the compression space 7 as a result of the switch-on movement. A relatively weak spring of the valve 24 allows this valve 24 to go into the open position as soon as the pressure in the compression space 7 becomes lower than in the switching chamber. The spring only has the task of ensuring that valve 24 closes securely even when shaken. Such a ventilation valve 24 can of course be arranged in all of the exemplary embodiments in order to avoid a negative pressure in the compression space 7 which hinders the switch-on movement.

Die in den Figuren dargestellten Ausführungsbeispiele sind nur Beispiele für zweckmäßige Kombinationen der Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Maßnahmen. Zahlreiche weitere Kombinationen sind möglich. Denkbar ist des weiteren eine Ausgestaltung bei der die Teile, die in den Ausführungsbeispielen die Schaltbewegung ausführen, feststehen und dafür das Schaltstück 2 und der Kompressionskolben 14 die Schaltbewegung ausführt.The exemplary embodiments shown in the figures are only examples of expedient combinations of the developments and refinements of the measures according to the invention. Numerous other combinations are possible. A configuration is also conceivable in which the parts which carry out the switching movement in the exemplary embodiments are fixed and instead the switching piece 2 and the compression piston 14 carry out the switching movement.

Claims (21)

  1. Circuit breaker with self-produced flow of extinguishing gas, comprising a switching chamber filled with insulating gas, at least two contacts, of which at least one is movable, a compression device which is actuable by the switching movement and consists of a compression piston (14) and a compression cylinder (4) with cylinder base (9), and a pressure chamber (6) adjoining thereat and having a nozzle (5) of insulating material, wherein one or more passages (1) connect the compression chamber (7) with the pressure chamber (6) and have closures (10) which are opened in a low-pressure range of the pressure chamber (6) and are closed in a high-pressure range of the pressure chamber (6), and wherein the compression device is so dimensioned that it produces the flow of extinguishing gas required for the extinguishing of the weak arcs, characterised thereby that the pressure of the low pressure range is generated by low-current arcs, the energy of which is too small to produce the extinguishing gas flow itself required for their quenching, and the pressure of the high pressure range is generated by high-current arcs, the energy of which is sufficient to produce the extinguishing gas flow itself required for their quenching, and that the cylinder base (9) is displaceable in the compression cylinder (4) but gastightly mounted, that it adopts a first position in the low-pressure range of the pressure chamber (6) and that the cylinder base (9) adopts a second position, in which the pressure chamber (6) is enlarged by comparison with the first position and the compression chamber (7) reduced, in the high-pressure range of the pressure chamber (6).
  2. Circuit breaker according to claim 1, characterised thereby that the compression chamber (7) has ventilation openings (11 or 11') to the switching chamber, which are equipped with closures (16 or 17) which are opened in the case of elimination of strong arcs.
  3. Circuit breaker according to claim 1, characterised thereby that the displacement of the cylinder base (9') from the first into the second position takes place against the force of a spring (8 or 8'), the spring constant of which is so designed that the spring (8 or 8') is compressed on the attainment of the high pressure range.
  4. Circuit breaker according to claim 1 or 3, characterised thereby that the position of the cylinder base (9') in the second position and thus the extent of the enlargement of the pressure chamber (6) is determined in order that a particularly favourable product of pressure times volume results for the extinguishing of the arc (26) concerned.
  5. Circuit breaker according to claim 4, characterised thereby that the cylinder base (9') adjusts its setting within the second position in dependence on pressure by means of an appropriate choice of the spring constant of the spring (8 or 8').
  6. Circuit breaker according to one of claims 2 to 5, characterised thereby that the ventilation openings (11) are arranged in the compression piston (14) and can be ventilated by valves (16), which open in the case of pressures in the compression chamber (7) which lie above that pressure range of the pressure chamber which arises with small currents.
  7. Circuit breaker according to one of claims 2 to 5, characterised thereby that the cylinder base (9') comprises an edge (17) which faces into the compression chamber (7) and which in the first position of the cylinder base (9') closes the ventilation openings (11') arranged in the compression cylinder (4) and the second position of the cylinder base (9') opens the ventilation openings (11').
  8. Circuit breaker according to one of claims 3 to 7, characterised thereby that in the first position the cylinder base (9') keeps open passages (1') and that the passages (1') are closed by a small displacement of the cylinder base (9').
  9. Circuit breaker according to claim 8, characterised thereby that the spring constant of the spring (8 or 8') or of an additional spring is so low in the region of this small displacement that its displacement of the cylinder base (9') prevents a pressure equalisation by way of these passages (1').
  10. Circuit breaker according to claim 8 or 9, characterised thereby that the passages (1') are formed by bores (18) in the edge (17) of the cylinder base (9'), which bores open into an enlargement (19) of the cylinder wall in the first position of the cylinder base (9') and are closed by the cylinder wall in the second position of the cylinder base (9').
  11. Circuit breaker according to one of claims 3 to 10, characterised thereby that the contact (3) is firmly connected with the displaceable cylinder base (9') as well as a contact carrier (20), wherein this displaceable contact carrier (20) enables, while maintaining the electrical connection, the same relative movement of the contact (3) relative to the nozzle (5) of insulating material as the cylinder base (9') executes relative to the nozzle (5) of insulating material, and that in the first position of the cylinder base (9') the gap (15) between the nozzle (5) of insulating material and the contact (3) is small and in the second position is larger, wherein the gap width (15) is so set that the respective flows of extinguishing gas are used as fully as possible for the quenching.
  12. Circuit breaker according to one of claims 3 to 11, characterised thereby that the drive rod (13) is firmly connected by way of webs (12) or a perforated plate (21) with the compression cylinder (4), with the nozzle (5) of insulating material as well as with the movable contact (3) or the bearing in which the contact carrier (20) is displaceably mounted, whereby these parts carry out the switching movement and the compression piston (14) as well as a fixed contact (2) are stationary.
  13. Circuit breaker according to one of claims 3 to 12, characterised thereby that the spring (8) is supported on a step (22) of the drive rod (13) and the cylinder base (9') in its first position presses against a collar (23), which is firmly connected with the drive rod (13).
  14. Circuit breaker according to one of claims 3 to 12, characterised thereby that the spring (8') is supported on a projection at the upper end of the compression cylinder (4) or on the perforated plate (21) and the cylinder base (9') in its first position presses against a collar (23'), which is arranged in fixed connection with the compression cylinder (4) below the nozzle (5) of insulating material as well as within the pressure chamber (6).
  15. Circuit breaker according to one of claims 1 to 14, characterised thereby that arranged between the compression chamber (7) and the switching chamber are one or more ventilating valves (24), which are opened during the switching on and otherwise are closed.
  16. Circuit breaker according to one of claims 1 to 15, characterised thereby that arranged between the pressure chamber (6) and the switching chamber is an excess pressure valve (25), which in normal operation is closed, and that the pressure chamber (6) is connected with the switching chamber if the pressure reaches a value critical for the material.
  17. Circuit breaker according to claim 16, characterised thereby that the excess pressure valve (25) is formed by one or more openings (27), which are closed by the cylinder base (9') in the case of permissible pressure and are opened by that in the case of impermissible pressure increase, that the cylinder base (9') frees the openings in that in consequence of the pressure increase it displaces from the region of the second position further into a third position, which is reached by overcoming a spring force with an increased spring constant corresponding to this pressure increase, wherein the spring (8') has between the second and third position of the cylinder base (9') a correspondingly increased spring constant, or by an additional spring which is arranged in this region parallel to the spring (8'), so that such a spring constant results in sum.
  18. Circuit breaker according to one of claims 2 to 15, characterised thereby that arranged between the pressure chamber (6) and the compression chamber (7) is an excess pressure valve (28), which is closed in the normal operation and connects the pressure chamber (6) with the compression chamber (7) if the pressure reaches a value which is critical for the material.
  19. Circuit breaker according to one of claims 2 to 18, characterised thereby that towards the end of the switching off movement the parts which execute the switching movement are braked by means of a mechanical or pneumatic damper.
  20. Circuit breaker according to one of claims 2 to 19, characterised thereby that the ventilation openings (11 or 11') of the compression chamber (7) to the switching chamber are closed again towards the end of the switching movement so that a gas cushion arises which brakes the switching movement.
  21. Circuit breaker according to claim 20, characterised thereby that a cylinder ring (30), which is firmly connected with the carrier of the compression piston (29) and slides externally on the compression cylinder (4), is so arranged that it closes the ventilation openings (11') towards the end of the switching movement.
EP88108091A 1987-06-24 1988-05-20 Circuit breaker with selfproduced flow of extinguishing gas Expired - Lifetime EP0296363B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3720816 1987-06-24
DE19873720816 DE3720816A1 (en) 1987-06-24 1987-06-24 SWITCH WITH SELF-GENERATED EXHAUST GAS FLOW

Publications (3)

Publication Number Publication Date
EP0296363A2 EP0296363A2 (en) 1988-12-28
EP0296363A3 EP0296363A3 (en) 1989-10-18
EP0296363B1 true EP0296363B1 (en) 1993-04-14

Family

ID=6330171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108091A Expired - Lifetime EP0296363B1 (en) 1987-06-24 1988-05-20 Circuit breaker with selfproduced flow of extinguishing gas

Country Status (2)

Country Link
EP (1) EP0296363B1 (en)
DE (2) DE3720816A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843405C1 (en) * 1988-12-23 1990-06-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
DE3930548C2 (en) * 1989-09-13 1994-05-19 Licentia Gmbh Gas pressure switch
DE4025553C2 (en) * 1990-08-11 1994-03-10 Licentia Gmbh Gas pressure switch
DE4211159A1 (en) * 1992-03-31 1993-10-07 Siemens Ag Electrical high-voltage circuit breaker
FR2704976B1 (en) * 1993-05-07 1995-06-23 Gec Alsthom T & D Sa HIGH OR MEDIUM VOLTAGE BLOW GAS CIRCUIT BREAKER.
DE4412249A1 (en) * 1994-04-06 1995-10-12 Siemens Ag Electrical high-voltage circuit breaker with a boiler room and a compression room
DE29509015U1 (en) * 1995-05-24 1995-08-03 Siemens Ag High-voltage circuit breakers with a fixed heating volume
DE19526805A1 (en) * 1995-07-13 1997-01-16 Siemens Ag High-voltage circuit breaker with an insulating body
FR2837321B1 (en) * 2002-03-18 2004-08-06 Alstom HIGH VOLTAGE CIRCUIT BREAKER INCLUDING A DECOMPRESSION VALVE
ATE523889T1 (en) * 2006-11-27 2011-09-15 Abb Technology Ag BUFFER CIRCUIT SWITCH WITH REDUCED BUFFER VOLUME PRESSURE
EP1939910A1 (en) 2006-12-27 2008-07-02 ABB Technology AG Gas blast circuit breaker with a radial flow opening
EP2249364A1 (en) * 2009-05-07 2010-11-10 ABB Research Ltd. Method for creating mechanically compressed discharge gas in a gas-isolated high voltage switch and devices for carrying out the method
DE102010020979A1 (en) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Compressed gas circuit breakers
MX2013010202A (en) 2011-03-17 2013-09-26 Abb Technology Ag Gas-insulated high-voltage circuit breaker.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2079896A5 (en) * 1970-02-16 1971-11-12 Merlin Gerin
DE2411897A1 (en) * 1974-03-12 1975-09-18 Siemens Ag ARRANGEMENT FOR EXTINGUISHING AN ARC IN A GAS FLOW SWITCH
FR2291601A1 (en) * 1974-11-15 1976-06-11 Alsthom Cgee Arc extinction by aurocompression in circuit breakers - involves use of cylinder type unit which has piston in centre delayed by spring
CH594978A5 (en) * 1975-08-07 1978-01-31 Sprecher & Schuh Ag
CH625907A5 (en) * 1978-04-07 1981-10-15 Sprecher & Schuh Ag Gas-blast power circuit breaker
GB2080037B (en) * 1980-07-14 1984-04-26 Aei Gas blast circuit interrupter

Also Published As

Publication number Publication date
DE3720816C2 (en) 1990-06-28
EP0296363A3 (en) 1989-10-18
EP0296363A2 (en) 1988-12-28
DE3880211D1 (en) 1993-05-19
DE3720816A1 (en) 1989-01-05

Similar Documents

Publication Publication Date Title
EP0296363B1 (en) Circuit breaker with selfproduced flow of extinguishing gas
DE3438635A1 (en) EXHAUST GAS SWITCH
DE3247121C2 (en)
DE3141324C2 (en) Circuit breaker
EP0126929B2 (en) Pressurised-gas switch
DE2812945C2 (en) Gas switch
DE19536673A1 (en) Circuit breaker
DE1130028B (en) Compression switch
DE4103119A1 (en) EXHAUST GAS SWITCH
DE729599C (en) Switch with arc extinguishing by means of the pressure generated by an auxiliary arc
DE19910166C2 (en) High-voltage circuit breaker with a compression device
DE2828773C2 (en) Auto-pneumatic pressure gas switch
DE3930548C2 (en) Gas pressure switch
EP0334008B1 (en) Single-pressure switch with sf6
DE3315622A1 (en) EXHAUST GAS SWITCH
EP0374384B1 (en) Single-pressure switch with SF6
EP0456139B1 (en) Compression switch
DE1913969A1 (en) Electric switch
DE4025553C2 (en) Gas pressure switch
DE2759265C3 (en) Gas switch
DE19939940A1 (en) Gas pressure switch
DE3051153C2 (en)
EP0664553B1 (en) High-voltage power circuit breaker with a heating chamber
DE3843405C1 (en)
AT398140B (en) EXHAUST GAS SWITCH

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR LI SE

17P Request for examination filed

Effective date: 19900315

17Q First examination report despatched

Effective date: 19920214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI SE

REF Corresponds to:

Ref document number: 3880211

Country of ref document: DE

Date of ref document: 19930519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19940112

EAL Se: european patent in force in sweden

Ref document number: 88108091.5

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LICENTIA PATENT- VERWALTUNGS-GMBH TRANSFER- AEG EN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AEG ENERGIETECHNIK GMBH

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19961113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020524

Year of fee payment: 15

Ref country code: CH

Payment date: 20020524

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070723

Year of fee payment: 20