EP0293595B1 - Résine ionomère et sa préparation - Google Patents
Résine ionomère et sa préparation Download PDFInfo
- Publication number
- EP0293595B1 EP0293595B1 EP88106635A EP88106635A EP0293595B1 EP 0293595 B1 EP0293595 B1 EP 0293595B1 EP 88106635 A EP88106635 A EP 88106635A EP 88106635 A EP88106635 A EP 88106635A EP 0293595 B1 EP0293595 B1 EP 0293595B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- unit
- carbon atoms
- acrylate
- methacrylate
- chloroacrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/44—Preparation of metal salts or ammonium salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/12—Hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/10—Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/50—Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
Definitions
- the present invention relates to an ionomer resin and methods for the preparation thereof; in particular it relates to an ionomer resin having a novel chemical structure and excellent mechanical strength and oxygen gas barrierring ability as well as efficient methods for the preparation thereof.
- polyolefin resins have found use in wide applications due to a number of excellent properties, but have offered problems in connection with printability and dyeing properties because of chemical inertness.
- olefins are copolymerized with polar vinyl monomers.
- olefins are copolymerized with polar vinyl monomers, followed by crosslinking with metal ions (JP-B-39(1964)-6810).
- ionomer resins by R.W. Rees et al and, since then, inomer resins of various structures have been proposed in the art.
- ionomer resins are typically represented by ethylene-methacrylic acid copolymers obtained by the high-pressure process and crosslinked with Na+ or Zn++.
- EP-A-0 218 254 describes ethylene copolymers having a weight avarage molecular weight of at least 5000 and comprising a repeating units (A) of the formula -(CH2-CH2)-, a repeating unit (B) of the formula -(CH2-CH(R1)-) wherein R1 is an C1 ⁇ 20-alkyl group and a repeating unit (C) of the formula -(CH2-C(R2)-(COOR3)) ⁇ , wherein R2 and R3 each respresent a hydrogen atom or a hydrocarbyl group.
- EP-A-0 104 316 and US-A-4 638 034 describe specific ionomer resins.
- the former one describes ionic copolymer salts from low molecular weight copolymer acids formed from ethylene and an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid having at least one carboxylic acid group, the copolymer acid being neutralized by the oxide of a metal from group II of the periodic table of elements.
- the latter one describes ethylene-acrylic acid copolymers or alkali or alkaline erth metal salts thereof.
- the characteristics of the already known inomeric resins are still found to be unsatisfactory in regard to their physical properties, in particular in regard to melting point, cristallinity, Vicat softening point, breaking strength and tensile modulus of elasticity.
- an ionomer resin having a weight-average molecular weight of at least 5,000 and containing as the primary components:
- ethylene is copolymerized with an unsaturated carboxylic acid in the presence of a Lewis acid, using as a catalyst a chromium compound and a compound of a metal of Groups I to V in the periodic table, thereby obtaining an ethylene-unsaturated carboxylic acid copolymer; and a compound of a metal of Group I, II, III, IVA or VIII in the periodic table is permitted to react with said copolymer.
- ethylene is copolymerized with an unsaturated carboxylic ester in the presence of a Lewis acid, using as a catalyst a chromium compound and a compound of a metal of Groups I to V in the periodic table, thereby obtaining an ethylene-unsaturated carboxylic ester copolymer; said copolymer is subjected to hydrolysis or thermal decomposition; and a compound of a metal of Group I, II, III, IVA or VIII in the periodic table is then permitted to react with the resulting product.
- Figures 1 to 3 show the infrared absorption spectra of the copolymer obtained at respective stages in Example 1.
- the ionomer resins of the present invention consist essentially of, or contain as the main components, the first repeating unit (A) expressed by Formula I (i.e., the unit of ethylene), the second repeating unit (B) expressed by Formula II (i.e., the unit of acrylic acid or its derivative) and the third repeating unit (C) expressed by Formula III (i.e., the unit of a metal salt of acrylic acid or its derivative), said three repeating units being arranged randomly and linearly.
- the ionomer resins of the present invention are free from such a branched long chain as found in the ethylene-unsaturated carboxylic acid copolymers obtained by the high-pressure radical process.
- the repeating units (B) or (C) are polymerized in the block form found.
- a small amount of a fourth repeating unit (D) having a short-chain alkyl branch may be introduced in the reaction of ethylene with the unsaturated carboxylic acid or its ester.
- R3 stands for an alkyl group, such as a methyl or ethyl group
- Such a short-chain alkyl branch is formed depending upon the reaction conditions selected, and may occur easily, for instance, if the total proportion of the repeating units (B) and (C) contained exceeds about 2 mol% or the reaction takes place at a temperature exceeding 30°C.
- Such an alkyl branch may also be formed by the incorporation of alpha-olefins such as propylene, 1-butene, 1-pentene and 4-methylpentene-1.
- the ionomer resins of the present invention have a total proportion of the repeating units (B) and (C) ranging from 0.001 to 45 mol%, preferably 0.1 to 20 mol% and a weight-average molecular weight of no lower than 5,000, usually 10,000 to 2,000,000.
- repeating unit (B) expressed by Formula II may be an acrylic acid, methacrylic acid, alpha-chloroacrylic acid or alpha-phenylacrylic acid unit, by way of example.
- the repeating unit (C) expressed by Formula III may be, by way of example, sodium acrylate, potassium acrylate, lithium acrylate, calcium acrylate, magnesium acrylate, zinc acrylate, tin acrylate, aluminium acrylate, iron acrylate, sodium methacrylate, lithium methacrylate, calcium methacrylate, zinc methacrylate, tin methacrylate, copper methacrylate, aluminium methacrylate, iron methacrylate, sodium ⁇ -chloroacrylate, calcium ⁇ -chloroacrylate, lead ⁇ -chloroacrylate, tin ⁇ -chloroacrylate, copper ⁇ -chloroacrylate, aluminium ⁇ -chloroacrylate, iron ⁇ -chloroacrylate, sodium ⁇ -phenyl acrylate, calcium ⁇ -phenyl acrylate, zinc ⁇ -phenyl acrylate, tin ⁇ -phenyl acrylate, copper ⁇ -pheny
- the ionomer resins of the present invention may be prepared by various methods. Practically, however, they are prepared by the methods as mentioned in the foregoing. That is, ethylene is copolymerized with the unsaturated carboxylic acid or ester in the presence of a Lewis acid, using as a catalyst a chromium compound and a compound of a metal of Groups I to V of the periodic table, thereby obtaining copolymers of ethylene with the unsaturated carboxylic acid or ester.
- the chromium compounds used may be one or more compounds selected from the group consisting of chromium carboxylates such as chromium acetate, chromium stearate, chromium-2-ethylhexoate, chromium benzoate and chromium naphthanoate or their anhydrides, esters, ethers and ketone adducts; chromium alkoxides such as tetramethoxychromium, tetraethoxychromium, tetra-n-butoxychromium, triethoxychromium monochloride and diethoxychromium dichloride; chromium xylate compounds such as chromium trisacetylacetonate, chromium tris(2-methyl-1,3-butanedionate), chromium tris(trifluoroacetylacetonate) and chrom
- organic metallic compounds use may be made of organic compounds of metals of Groups I to V of the periodic table, which, by way of example, include methyllithium, ethyllithium, butyllithium, diethylmagnesium, ethylbutylmagnesium, dimethylzinc, diethylzinc, dibutylzinc, trimethylgallium, triethylgallium, tributylgallium, triethylboron, tetraethyltin, trimethylaluminium, triethylaluminium, tri-isopropylaluminium, tri-isobutylaluminium, dimethylaluminium monochloride, diethylaluminium monochloride, diethylaluminium monoboromide, di-isopropylaluminium monochloride, diisobutylaluminium monochloride, methylaluminium sesquichloride, ethyla
- carboxylates organic phosphates, halides and alkoxides of other metals may optionally be added.
- Lewis acids include aluminium chloride, aluminium boromide, ethylaluminium dichloride and diethyl aluminium chloride, by way of example.
- unsaturated carboxylic acids or esters for reaction with ethylene include acrylic acid, methacrylic acid, ⁇ -chloroacrylic acid, ⁇ -phenylacrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate, methyl ⁇ -chloroacrylate and ethyl ⁇ -chloromethacrylate.
- Aliphatic, aromatic, alicyclic and halogenated hydrocarbons may be used as the solvents for copolymerization, and include pentane, hexane, heptane, octane, decane, dodecane, kerosine, xylene, toluene, benzene, cyclohexane, ethylbenzene, chlorobenzene and ethylene dichloride.
- Copolymers of ethylene with the unsaturated carboxylic acids or esters are obtained by copolymerization.
- the latter copolymers are converted to the copolymers of ethylene with the unsaturated carboxylic acids by hydrolysis or thermal decomposition, while a part of the ester groups may or may not be allowed to remain.
- a specific metallic compound is then permitted to react with the copolymers of ethylene with the unsaturated carboxylic acids to effect ionization crosslinking where the carboxyl groups of the copolymers are replaced by metal ions, thereby obtaining the desired ionomer resins.
- the "metallic compounds” refer to compounds of metals belonging to Groups I, II, III, IVA and VIII in the periodic table and, by way of example, include preferably water-soluble organic acid salts e.g., formates and acetates, hydroxides, alkoxides e.g., methoxides and ethoxides, nitrates, carbonates and bicarbonates of sodium, potassium, lithium, cesium, silver, copper, mercury, beryllium, magnesium, strontium, barium, cadmium, zinc, scandium, aluminium, titanium, zirconium, osmium, iron, cobalt and nickel.
- water-soluble organic acid salts e.g., formates and acetates, hydroxides, alkoxides e.g., methoxides and ethoxides, nitrates, carbonates and bicarbonates of sodium, potassium, lithium, cesium, silver, copper, mercury, beryllium, magnesium, strontium
- the crosslinking reaction of the ethylene-unsaturated carboxylic acid copolymers with the metallic compounds may be effected by hot mixing or solution reaction.
- This reaction gives the ionomer resins of the present invention, wherein a part, preferably 10 to 50%, of the carboxyl group of the repeating unit (B) in said copolymers, expressed by Formula II, is replaced by the metal ion.
- Novel ionomer resins of the present invention are improved in regard of heat resistance, mechanical strength and O2 barrier ability over the ionomer resins obtained by the ionization of conventional copolymers of ethylene with unsaturated carboxylic acids prepared by the high-pressure radical process, and can thus be effectively used as the materials for general goods and industrial products required to possess printability and dye properties.
- the thus obtained copolymer had a weight-average molecular weight of 51,000 and showed infrared absorption spectra as shown in Figure 1.
- Analysis of the infrared absorption spectra have indicated that at 1730 cm ⁇ 1 , 1160 cm ⁇ 1, 730 cm ⁇ 1 and 720 cm ⁇ 1 there are respectively absorptions based on the stretching vibration of the carbonyl group of ethyl acrylate, the ether bond, the methylene chain in the crystal region and the methylene chain in the amorphous region.
- the content of the ethyl methacrylate residue was found to be 3.0 mol% by these absorption intensities.
- 13C-NMR spectra it has turned out that the polymer chain is in the linear form, and has the ethyl acrylate residues introduced randomly therein.
- this copolymer was heat-treated at 180°C for 3 minutes in a nitrogen gas, cooled down to 50°C in 5 minutes, and heated at a heating rate of 10°C/min. As a result, the copolymer was found to have a melting point of 129°C. This copolymer was also found to have a melt index of 5.4 g/10 min., as measured at 190°C under a load of 21,2 N (2.16 kg).
- Example 1 was substantially repeated, except that the amount of sodium hydroxide added was 4 ml in Examples 1 (4).
- the results of measurement of various properties of the obtained ionized copolymer are set out in Table 1.
- Example 1 was substantially repeated, except that the amount of a 0.1 N aqueous solution of sodium hydroxide was 8 ml in Example 1 (4).
- the results of measurement of various properties of the obtained ionized copolymer are set out in Table 1.
- Example 1 was substantially repeated, except that 4 ml of an aqueous solution of zinc acetate were used in a concentration of 1 mol/l in place of the aqueous solution of sodium hydroxide in Example 1 (4).
- the results of measurement of various properties of the obtained ionised copolymer are set out in Table 1.
- Example 1 was substantially repeated, except that 4 ml of an aqueous solution of lithium hydroxide were used in a concentration of 1 mol/l in place of the aqueous solution of sodium hydroxide in Example 1 (4).
- the results of measurement of various properties of the obtained ionized copolymer are set out in Table 1.
- Example 1 Similar operations as in Example 1 (3) were carried out, except that the reaction was permitted to take place for 3 hours under reflux with the addition of 2 ml of an 1 N aqueous solution of sodium hydroxide and 30 ml of water, thereby obtaining a copolymer having a degree of hydrolysis of 32%.
- the obtained copolymer was treated in a similar manner as in Example 1 (4).
- the results of measurement of various properties of the obtained ionized copolymer are set out in Table 1.
- Example 1 (2) Similar operations as in Example 1 (2) were carried out, except that methyl acrylate was used for ethyl methacrylate, and the partial pressures of hydrogen and ethylene were 0,4 MPa (3 kg/cm2G) and 0,8 MPa (7 kg/cm2G) respectively, thereby obtaining a copolymer which was found to have a methyl acrylate residue content of 4.7 mol% and a weight-average molecular weight of 32,600.
- Example 2 For hydrolysis, similar operations as in Example 1 (3) were carried out, except that the copolymer obtained as above was substituted for the ethylene-ethyl acrylate copolymer.
- the obtained ethylene-acrylic acid copolymer was found to have a melting point of 126°C and a melt index of 3.9 g/10 min.
- Example 1 With the ethylene-acrylic acid copolymer obtained as above, Example 1 (4) was substantially repeated, except for dropwise addition of 4 ml of an 1 N aqueous solution of sodium hydroxide. The obtained ionized copolymer was found to have a degree of ionization of 16.4% with various properties given in Table 1.
- Example 2 For hydrolysis, similar operations as in Example 1 (3) were carried out, except that 70 g of the ethylene-methyl acrylate copolymer obtained in Ex. 7 were charged in 1 liter of methanol with subsequent addition of 100 ml of an 1 N aqueous solution of sodium hydroxide and 100 ml of water, thereby obtaining an ethylene-acrylic acid copolymer which was found to have a melting point of 126°C and a melt index of 7.3 g/10 min.
- Example 2 Similar operations as in Example 1 (2) were carried out, provided however that in place of the equimolar mixture of ethyl acrylate with aluminium trichloride, use was made of a 106.8 mmol, calculated as acrylic acid, of a mixture of acrylic acid and aluminium trichloride in a molar ratio of 1:3, thereby obtaining 37.4 g of a copolymer which was found to have a weight-average molecular weight of 58,600 and an acrylic acid residue content of 1.7 mol% as a result of the infrared-absorption-spectral analysis. This copolymer was also found to have a melting point of 131°C and a melt index of 1.5 g/10 min.
- Example 1 Similar operations as in Example 1 (4) were carried out, provided however that the ethylene-acrylic acid copolymer obtained as above was used with dropwise addition of 20 ml of a 0.1 N aqueous solution of sodium hydroxide.
- the thus obtained ionized copolymer was found to have a degree of ionization of 12.5% with various properties shown in Table 1.
- Example 9 For the preparation of a copolymer, Example 9 was substantially repeated, except that methyl methacrylate was substituted for acrylic acid, thereby obtaining 16.7 g of the copolymer.
- the obtained copolymer was found to have a weight-average molecular weight of 44,400 and a methyl methacrylate residue content of 2.4 mol% as a result of the infrared-absorption-spectral analysis.
- This copolymer was also found to have a melting point of 128°C and a melt index of 1.7 g/10 min.
- Example 2 For hydrolysis, similar operations as in Example 1 (3) were then carried out, except that use was made of the ethylene-methyl methacrylate copolymer obtained as above, thereby obtaining an ethylene-methacrylic acid copolymer.
- Example 1 Similar operations as in Example 1 (4) were performed, provided however that the ethylene-methacrylic acid copolymer obtained as above was employed as the copolymer, thereby obtaining an ionized copolymer having a degree of ionization of 14.6%. Various properties of that copolymer, as measured, are shown in Table 1.
- Example 1 (2) was repeated, except that the pressure of hydrogen was 0,5 MPa (4 kg/cm2G), and 76.2 g of an ethylene-acrylic acid copolymer having an acrylic acid residue content of 2.6 mol% were obtained.
- Test piece 100 x 100 mm was prepared from the sheet having a thickness of 100 ⁇ m, and oxygen gas permeability index of the test piece was measured with M-C3® (manufactured by Toyo Seiki Seisakusho, Co., Ltd.). As the result, the oxygen gas permeability index of the test piece was 0.53x10 ⁇ 10 cm3 ⁇ cm/cm2 ⁇ s ⁇ 1,3 KPa ⁇ (cmHg)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Claims (12)
- Résine ionomère ayant un poids moléculaire moyen en poids d'au moins 5000 et contenant, comme principaux constituants :(A) un motif récurrent représenté par :
(̵ CH₂-CH₂ )̵ (I)
(B) un motif récurrent représenté par :(C) un motif récurrent représenté par :lesdits motifs récurrents étant disposés au hasard et en chaîne linéaire, la proportion totale desdits motifs récurrents (B) et (C) contenus étant de 0,001 à 45 mol %. - Résine ionomère selon la revendication 1, dans laquelle le poids moléculaire moyen en poids de la résine est de 10 000 à 2 000 000.
- Résine ionomère selon la revendication 1, dans laquelle le motif récurrent (B) représenté par la formule II est un motif d'acide acrylique, un motif d'acide méthacrylique, un motif d'acide α-chloracrylique ou un motif d'acide α-phénylacrylique.
- Résine ionomère selon la revendication 1, dans laquelle le motif récurrent (C) représenté par la formule III est un motif d'acrylate de sodium, un motif d'acrylate de potassium, un motif d'acrylate de lithium, un motif d'acrylate de calcium, un motif d'acrylate de magnésium, un motif d'acrylate de zinc, un motif d'acrylate d'étain, un motif d'acrylate d'aluminium, un motif d'acrylate de fer, un motif de méthacrylate de sodium, un motif de méthacrylate de lithium, un motif de méthacrylate de calcium, un motif de méthacrylate de zinc, un motif de méthacrylate d'étain, un motif de méthacrylate de cuivre, un motif de méthacrylate d'aluminium, un motif de méthacrylate de fer, un motif de α-chloracrylate de sodium, un motif de α-chloracrylate de calcium, un motif de α-chloracrylate de plomb, un motif de α-chloracrylate d'étain, un motif de α-chloracrylate de cuivre, un motif de α-chloracrylate d'aluminium, un motif de α-chloracrylate de fer, un motif de α-phénylacrylate de sodium, un motif de α-phénylacrylate de calcium, un motif de α-phénylacrylate de zinc, un motif de α-phénylacrylate d'étain, un motif de α-phénylacrylate de cuivre, un motif de α-phénylacrylate d'aluminium ou un motif de α-phénylacrylate de fer.
- Procédé de préparation d'une résine ionomère ayant un poids moléculaire moyen en poids d'au moins 5000 et contenant, comme principaux constituants :(A) un motif récurrent représenté par :
(̵ CH₂-CH₂ )̵ (I)
(B) un motif récurrent représenté par :(C) un motif récurrent représenté par :lesdits motifs récurrents étant disposés au hasard et en chaîne linéaire, la proportion totale desdits motifs récurrents (B) et (C) contenus étant de 0,001 à 45 mol %, qui comprend la copolymérisation d'éthylène avec un acide carboxylique insaturé en présence d'un acide de Lewis, en utilisant comme catalyseur un composé du chrome et un composé d'un métal des Groupes I à V du Tableau Périodique, pour obtenir un copolymère éthylène-acide carboxylique insaturé et la réaction dudit copolymère avec un composé d'un métal du Groupe I, II, III, IVA ou VIII du Tableau Périodique. - Procédé selon la revendication 5, dans lequel le poids moléculaire moyen en poids de la résine ionomère est de 10 000 à 2 000 000.
- Procédé selon la revendication 5, dans lequel le motif récurrent (B) représenté par la formule II est un motif d'acide acrylique, un motif d'acide méthacrylique, un motif d'acide α-chloracrylique ou un motif d'acide α-phénylacrylique.
- Procédé selon la revendication 5, dans lequel le motif récurrent (C) représenté par la formule III est un motif d'acrylate de sodium, un motif d'acrylate de potassium, un motif d'acrylate de lithium, un motif d'acrylate de calcium, un motif d'acrylate de magnésium, un motif d'acrylate de zinc, un motif d'acrylate d'étain, un motif d'acrylate d'aluminium, un motif d'acrylate de fer, un motif de méthacrylate de sodium, un motif de méthacrylate de lithium, un motif de méthacrylate de calcium, un motif de méthacrylate de zinc, un motif de méthacrylate d'étain, un motif de méthacrylate de cuivre, un motif de méthacrylate d'aluminium, un motif de méthacrylate de fer, un motif de α-chloracrylate de sodium, un motif de α-chloracrylate de calcium, un motif de α-chloracrylate de plomb, un motif de α-chloracrylate d'étain, un motif de α-chloracrylate de cuivre, un motif de α-chloracrylate d'aluminium, un motif de α-chloracrylate de fer, un motif de α-phénylacrylate de sodium, un motif de α-phénylacrylate de calcium, un motif de α-phénylacrylate de zinc, un motif de α-phénylacrylate d'étain, un motif de α-phénylacrylate de cuivre, un motif de α-phénylacrylate d'aluminium ou un motif de α-phénylacrylate de fer.
- Procédé de préparation d'une résine ionomère ayant un poids moléculaire moyen en poids d'au moins 5000 et contenant, comme principaux constituants :(A) un motif récurrent représenté par :
(̵ CH₂-CH₂ )̵ (I)
(B) un motif récurrent représenté par :(C) un motif récurrent représenté par :lesdits motifs récurrents étant disposés au hasard et en chaîne linéaire, la proportion totale desdits motifs récurrents (B) et (C) contenus étant de 0,001 à 45 mol %, qui comprend la copolymérisation d'éthylène avec un ester carboxylique insaturé en présence d'un acide de Lewis, en utilisant comme catalyseur un composé du chrome et un composé d'un métal des Groupes I à V du Tableau Périodique, pour obtenir un copolymère éthylène-ester carboxylique insaturé, l'application audit copolymère d'une hydrolyse ou d'une décomposition thermique et la réaction du produit résultant avec un composé d'un métal du Groupe I, II, III, IVA ou VIII du Tableau Périodique. - Procédé selon la revendication 9, dans lequel le poids moléculaire moyen en poids de la résine ionomère est compris entre 10 000 et 2 000 000.
- Procédé selon la revendication 9, dans lequel le motif récurrent (B) représenté par la formule II est un motif d'acide acrylique, un motif d'acide méthacrylique, un motif d'acide α-chloracrylique ou un motif d'acide α-phénylacrylique.
- Procédé selon la revendication 9, dans lequel le motif récurrent (C) représenté par la formule III est un motif d'acrylate de sodium, un motif d'acrylate de potassium, un motif d'acrylate de lithium, un motif d'acrylate de calcium, un motif d'acrylate de magnésium, un motif d'acrylate de zinc, un motif d'acrylate d'étain, un motif d'acrylate d'aluminium, un motif d'acrylate de fer, un motif de méthacrylate de sodium, un motif de méthacrylate de lithium, un motif de méthacrylate de calcium, un motif de méthacrylate de zinc, un motif de méthacrylate d'étain, un motif de méthacrylate de cuivre, un motif de méthacrylate d'aluminium, un motif de méthacrylate de fer, un motif de α-chloracrylate de sodium, un motif de α-chloracrylate de calcium, un motif de α-chloracrylate de plomb, un motif de α-chloracrylate d'étain, un motif de α-chloracrylate de cuivre, un motif de α-chloracrylate d'aluminium, un motif de α-chloracrylate de fer, un motif de α-phénylacrylate de sodium, un motif de α-phénylacrylate de calcium, un motif de α-phénylacrylate de zinc, un motif de α-phénylacrylate d'étain, un motif de α-phénylacrylate de cuivre, un motif de α-phénylacrylate d'aluminium ou un motif de α-phénylacrylate de fer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62104530A JPH0678384B2 (ja) | 1987-04-30 | 1987-04-30 | アイオノマ−樹脂およびその製造法 |
JP104530/87 | 1987-04-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0293595A2 EP0293595A2 (fr) | 1988-12-07 |
EP0293595A3 EP0293595A3 (en) | 1990-05-30 |
EP0293595B1 true EP0293595B1 (fr) | 1994-01-05 |
Family
ID=14383048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88106635A Expired - Lifetime EP0293595B1 (fr) | 1987-04-30 | 1988-04-26 | Résine ionomère et sa préparation |
Country Status (6)
Country | Link |
---|---|
US (1) | US4956418A (fr) |
EP (1) | EP0293595B1 (fr) |
JP (1) | JPH0678384B2 (fr) |
KR (1) | KR910005671B1 (fr) |
CA (1) | CA1331822C (fr) |
DE (1) | DE3886820T2 (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2521820B2 (ja) * | 1989-09-21 | 1996-08-07 | 三井・デュポンポリケミカル株式会社 | アイオノマ―組成物 |
US5206614A (en) * | 1991-03-28 | 1993-04-27 | Westinghouse Electric Corp. | Line conductor gasket |
US5571878A (en) * | 1991-09-24 | 1996-11-05 | Chevron Chemical Company | Ethylene-alkyl acrylate copolymers and derivatives having improved melt-point temperatures and adhesive strength and processes for preparing same |
US5627239A (en) * | 1993-07-13 | 1997-05-06 | Chevron Chemical Company | Compositions having ethylenic backbone and benzylic, allylic, or ether-containing side-chains, oxygen scavenging compositions containing same, and process for making these compositions by esterification or transesterification of a polymer melt |
US6518365B1 (en) * | 1999-07-28 | 2003-02-11 | E. I. Du Pont De Nemours And Company | High melt swell polymer |
US20100247939A1 (en) * | 2007-12-07 | 2010-09-30 | Du Pont-Mitsui Polychemicals Co., Ltd. | Ionomer, resin composition containing the ionomer, unstretched film, sheet or molded body each made of the composition, and laminate comprising layer of the unstretched film |
WO2016060218A1 (fr) * | 2014-10-15 | 2016-04-21 | 日本ポリエチレン株式会社 | Procédé de production d'ionomère à base d'éthylène et ionomère à base d'éthylène |
CN113366028A (zh) * | 2019-01-28 | 2021-09-07 | 日本聚乙烯株式会社 | 含极性基团的烯烃共聚物 |
WO2020179632A1 (fr) * | 2019-03-04 | 2020-09-10 | 日本ポリエチレン株式会社 | Ionomère multidimensionnel |
JP2021001330A (ja) * | 2019-06-24 | 2021-01-07 | 日本ポリエチレン株式会社 | 射出成形用又は圧縮成形用樹脂組成物 |
JP2021001332A (ja) * | 2019-06-24 | 2021-01-07 | 日本ポリエチレン株式会社 | 軟質系シート用エチレン系アイオノマー及びその成形体 |
WO2020262482A1 (fr) * | 2019-06-24 | 2020-12-30 | 日本ポリエチレン株式会社 | Résine destinée à un corps moulé en film, et article moulé comprenant ladite résine |
WO2021124950A1 (fr) * | 2019-12-19 | 2021-06-24 | 株式会社クラレ | Procédé de production de résine ionomère |
KR102499907B1 (ko) * | 2020-11-27 | 2023-02-16 | 주식회사 쿠라레 | 아이오노머 수지 |
CN117715956A (zh) | 2021-07-28 | 2024-03-15 | 可乐丽欧洲有限责任公司 | 离聚物树脂颗粒物的制造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626945A (en) * | 1949-07-11 | 1953-01-27 | Us Rubber Co | Interpolymerization of polyolefinic esters of 2-alkenyl alcohols with certain monoolefinic hydrocarbons |
NL128027C (fr) * | 1961-08-31 | 1900-01-01 | ||
NL6511920A (fr) * | 1965-09-14 | 1967-03-15 | ||
FR2157382A5 (fr) * | 1971-10-11 | 1973-06-01 | Asahi Dow Ltd | |
EP0104316B1 (fr) * | 1982-08-04 | 1987-11-04 | Allied Corporation | Préparation de sels de copolymères de faible poids moléculaire à l'aide d'oxydes métalliques |
US4638034A (en) * | 1985-06-24 | 1987-01-20 | National Distillers And Chemical Corporation | Preparation of ethylene-acrylic acid copolymer or salt thereof |
JPS6143613A (ja) * | 1985-07-26 | 1986-03-03 | Showa Highpolymer Co Ltd | 硬化性樹脂組成物 |
US4833224A (en) * | 1985-10-11 | 1989-05-23 | Idemitsu Kosan Company Limited | Ethylene copolymers and process for production |
-
1987
- 1987-04-30 JP JP62104530A patent/JPH0678384B2/ja not_active Expired - Lifetime
-
1988
- 1988-04-06 US US07/178,235 patent/US4956418A/en not_active Expired - Lifetime
- 1988-04-07 CA CA000563508A patent/CA1331822C/fr not_active Expired - Fee Related
- 1988-04-26 DE DE88106635T patent/DE3886820T2/de not_active Expired - Fee Related
- 1988-04-26 EP EP88106635A patent/EP0293595B1/fr not_active Expired - Lifetime
- 1988-04-27 KR KR1019880004746A patent/KR910005671B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US4956418A (en) | 1990-09-11 |
DE3886820T2 (de) | 1994-05-11 |
KR910005671B1 (ko) | 1991-08-01 |
DE3886820D1 (de) | 1994-02-17 |
EP0293595A3 (en) | 1990-05-30 |
EP0293595A2 (fr) | 1988-12-07 |
KR880012659A (ko) | 1988-11-28 |
JPS63270709A (ja) | 1988-11-08 |
JPH0678384B2 (ja) | 1994-10-05 |
CA1331822C (fr) | 1994-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0293595B1 (fr) | Résine ionomère et sa préparation | |
EP0017229B1 (fr) | Copolymères ordonnés d'éthylène et d'un acide carboxylique alpha, bêta-insaturé, procédé pour leur préparation et ionomères préparés avec ces copolymères odonnés | |
EP0237294B1 (fr) | Procédé de préparation de polymères d'éthylène | |
EP2035467B1 (fr) | Neutralisation d'un catalyseur de polymérisation désactivé effectuée au moyen de sels d'acide phosphorique ou phosphonique | |
EP0786477B1 (fr) | Procede de production de polyolefine possedant un groupe fonctionnel terminal | |
US4587039A (en) | Electrically-conductive resin composition | |
WO2008043388A1 (fr) | catalyseurs de polymérisation à modification de surface pour la préparation de films en polyoléfine à faible teneur en gel | |
EP0949280A1 (fr) | Traitement de chauffage des catalysateurs de Ziegler-Natta pour augmenter l' activité dans le processus de polymérisation en solution | |
KR900000154B1 (ko) | 에틸렌계 공중합체 및 그 제조방법 | |
CA1338394C (fr) | Procede de fabrication de moulages etires | |
US5270420A (en) | Stretched molding | |
JP2531585B2 (ja) | 酸素バリヤ−性成形材料 | |
CA2234189C (fr) | Traitement thermique des catalyseurs ziegler-natta en vue d'accroitre le poids moleculaire des polymeres dans la polymerisation en solution | |
KR930010739B1 (ko) | 촉매의 탈활성화로 알파(α)-올레핀을 용액중합하는 방법 | |
JPH01103640A (ja) | 樹脂組成物 | |
EP1297029B1 (fr) | Procede de polymerisation d'ethylene | |
US4403081A (en) | Method for producing α-olefin polymers | |
JPH01282204A (ja) | エチレン系共重合体の製造方法 | |
KR100462840B1 (ko) | 극성 단량체의 함량이 높은 올레핀 공중합체, 이의제조방법 및 금속염이 함유된 올레핀 공중합체 이오노머 | |
JPS61278508A (ja) | エチレン系共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19901123 |
|
17Q | First examination report despatched |
Effective date: 19920305 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940105 Ref country code: CH Effective date: 19940105 Ref country code: BE Effective date: 19940105 Ref country code: SE Effective date: 19940105 Ref country code: LI Effective date: 19940105 |
|
REF | Corresponds to: |
Ref document number: 3886820 Country of ref document: DE Date of ref document: 19940217 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040406 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040408 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040421 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040506 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051101 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051230 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20051101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20051230 |